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0. Sumunary. This paper is concerned with the waiting time process, W(t), for
the queueing system in which (1) there is only one counter, (2) the customers
arrive at random and are served in the order of arrival, and (3) the service time
distribution has a general form. It is observed that the Pollaczek-Khintchine
formula for the transform of the limiting distribution of W(¢) is similar to the
one occurring in the theory of continuous time storage processes, and it is in-
verted by the method used in that theory. Further, W(¢) is shown to be a special
case of the storage process, and known methods and results of the storage theory
are used to obtain the transition distribution function of W (t).

1. Introduction. Several analogies of storage processes with those occurring
in the theory of queues have been pointed out by Smith [19], Gani [4], Prabhu
[16], and many others; by making use of one of these, Gani and Prabhu [5] ob-
tained further results in storage theory. It has been remarked, however, that the
analogy between the two situations is in their mathematical formalisms rather
than in their physical models. This statement is essentially true if we confine our-
selves to discrete time storage processes, but there exists an exact analogy if we
consider continuous time models. The initial attempts to set up such a model
were by using limiting methods (Moran [14], Gani [3], Downton [2]); this pro-
cedure has, however, proved cumbersome, and has obscured the essential fea-
ures of the underlying stochastic process. In some recent: work, Gani and Prabhu
([6], [7], 8], [9]) have given a systematic treatment of the various problems oc-
curring in continuous time storage processes. The model they consider is the one
based on Moran’s [12] discrete time model for the dam, and is specified by the
following assumptions.

(a) Let X(t) represent the input during a time interval of length ¢; we assume
that X (t) is an additive process with stationary increments. Let K(z, t) be the
cumulative distribution function (c.d.f.) of X(¢), so that

(1.1) K(z,t) = Pr{X(t) = a} 0=z< 0, 05t< »);
it is known that the Laplace transform -of X (¢) is given by

(12) [ e aK @t =@ (R(6) > 0),
0
where £(8) is a function of a specified type.
(b) The release is continuous and occurs at a unit rate except when the store

is empty.
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(¢) The store has infinite capacity.

If we denote by Z(¢) the storage at any time ¢, it follows from the above
assumptions that

(1.3) Z(t 4+ dt) = Z(t) + dX(t) — min{Z(¢) + dX(t), di}

for 0 £t < «. Clearly Z(¢) is a temporally homogeneous Markov process;
this process has been studied by Gani and Prabhu in the case of a Poisson input,
and also in the case of a continuous infinitely divisible input of the Poisson type.

Next, consider the queueing system in which (a) the customers arrive ‘at
random’, i.e. the inter-arrival times have the negative exponential distribution
ANMAO St < »); (b) the queue discipline is ‘first come, first served’,
and (¢) there is only one counter and the service time has the distribution
dB(t) (0 =t < »). Let W(t) denote the waiting time of a customer who
arrives at time ¢ (i.e. the time spent by him in the queue before the commence-
ment of his service); W(¢) > 0 as long as the counter is occupied, but at any
time that the counter becomes free, W(t) becomes zero and remains zero until
a customer arrives. It is easily seen that W(¢) is a temporally homogeneous
Markov process; the Laplace transform of its distribution when the queue is
in ‘statistical equilibrium’ is given by the Pollaczek-Khintchine formula,

(1—p)6
.4: * S — Z
(1.4) o0 = T R(0) 20,
where ¥(0) is the Laplace transform of the service time distribution dB(t),
p = —M(0) is the relative traffic intensity measured in erlangs, and it is
assumed that p < 1 (Pollaczek [15], Khintchine [11]). Further, let us denote
the transition d.f. of W(¢) by F(z ; 2, t), so that

(1.5) F(z52,8) = PriW(t) = 2| W(0) = a},

where 0 < F(z0;2,t) S1for0 <2< © and 0 £ ¢ < . We may some-
times simplify this notation for the d.f. to F(z, t). The forward Kolmogorov
equation of the process W (¢) is

9 9 .
(1.6) &F(% t) — B—ZF(z’ t) = —NF(z,t) + 2 jo F(z —u,t)dB(u)

z 2max (0,2 — 1),

a result due to Takdes [20]. The purpose of this paper is to show that W(t) is a
special case of the continuous time storage process described above and to apply
known methods and results to obtain F(z, t) explicitly from (1.6). For this pur-
pose we first invert the formula (1.4); this is done in the next section.

2. Inversion of the Pollaczek-Khintchine formula. This formula, (1.4), implies
that if p < 1, then the limiting distribution F*(z) = lim,.» F(z, t) exists,
and the Laplace transform



APPLICATION OF STORAGE THEORY 477

(2.1) o*(0) = f ¢ dF*(2)

is given by (1.4). Bene§ [1] has inverted this and obtained F*(z) in the form of a
compound geometric distribution. An alternative method of inversion is the
one used by Daniels (see the discussion in Kendall [10]) to deal with Moran’s
formula for the limiting distribution of the dam storage. To apply this method
let us assume that an analytic extension of ¥(8) to a full neighbourhood of the
origin in the 6-plane exists. We then note that, if p < 1, there exists a real
—c < 0 such that 6 — X\ + M(6) < 0 for —¢c < 8 < 0; the formula (1.4)
is then valid also for —¢ < 6 < 0. For this range of § we can write

(2.2) /(A =\ (6) — ) = ]:e_[’“”’(’)"o” di.

However, we have

(2.3) fome—"x dK (z, 1) = e P NO1

where dK(x, t) is the compound Poisson distribution,

(24) dK (z,t) = i:o e %t'_)" dB.(2), 0<z < ),

where B,(z) is the n-fold convolution of B(x) with itself, and Bo(z) = O if
z < 0and = 1if z = 0. Substituting (2.3) in (2.2) we obtain

/(A — €(8) — 6) = f: f: 0 AR (2, )
= ft:o f:_‘ e dK(z + t,t)
(25) = f;_ e’ f; dK(z + ¢,t)

0 02 0
+Lo_+e L, dK(t — z,t) dt.
Now

ft:dK(t —adt = f: Y (_’;f’i Bt —2) (2> 0)

n=0

is the constant term in the series
S_,‘o, ft e A T ABL(E — 2) = ;e"“"“"a“"w(x — )"
(2.6) = ()
_ e—()\—)\a)z Z{ (a } ,

0 a
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where G(a) = ¢(A — \a) is the probability generating function of the number
of arrivals in a service period of arbitrary duration. Now choose a real oy such
that 1 < a1 < ¢ and a real a; such that G(a1) < G(a2) < o (which is possible
since G(a) is continuous in «). Here ¢ is the real positive root (other than unity)
of the equation G(a) = a, and ¢ > 1 since G'(1) = =N (0) = p < 1.
In the annulus oy < |a| < az we have |G(a) | < G(az) < a1 < ||, sO
that | G(a)/a| < 1 and the right hand side of (2.6) becomes

ae O % (0 — Q(a)).

The constant term in this is given by the formula

1 e (A Na)z e A—da)z

omi |a!§a,a—G(a)da = lim (o — l)a—G’(a) =

since @ = 1 is the only pole of the integrand within the circle | @ | < o . Hence
we have the result

(1 - P)—la

©27) | akG = sy @ = (1 - p)” (b <1,2> 0).
t=z
Using (2.7), we can simplify (2.5) as
1 _ * —0z ° _ 1
(2.8) X—‘_—A'll'(—o)—_*b = ‘/;=0—6 ./;=0 dK(z + t,t) dt 0——————-—(1 — p) .

We now have

fw €1 — F*(2)]dz = = —

[ ¢ dF*(2)
0.

D -

+ _1l-e from (1.4)

1
]
1
6 "N — N0 — 06

= (1 —p) fw e f;dK(z + t,t) dt

« 2=0—

from (2.8). This is true for —¢ < 8 < 0, and hence for all 8. Thus we obtain
(2.9) F@) =1 = (1= p) [ aK(t+20)
0

as the limiting distribution of the waiting:time.

3. The waiting time W({) as a storage process. It is possible to demonstrate
the equivalence of (2.9) and Bene$’ result for the limiting distribution F*(z),
but the connection between the Pollaczek-Khintchine formula (1.4) and the
compound Poisson distribution does not seem to have been noticed so far. This
distribution, however, is of fundamental importance in the theory of queues
with Poisson arrivals. In fact, if N is the number of customers who arrive during
the interval (0, t), then their total service time has the distribution dBy(z),
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and, since N is a random variable having the Poisson distribution with mean M,
it follows that the total service time of customers arriving during (0, ¢) has the
compound Poisson distribution (2.4). This distribution can be considered as
the ‘service potential’, which is steadily exhausted by the server at unit rate
per unit time except when it is zero. Viewed in this manner, the waiting time
for a queue with Poisson arrivals reduces to a special case of the storage process
described in section 1, where the input X (¢) has the distribution (2.4). Clearly,
X (t) is an additive process with stationary increments, and from (2.3) it is
seen that its Laplace transform is given by

(31) f e_ox'dK(x, t) - e—ti(ﬂ)

0
as in (1.2), with

(32) £(6) = fow (1 — ) dB(u).

The particular case of ‘regular’ service time has been considered by Gani [3]
and Moran [13] in their treatment of certain finite dam models, and the time-
dependent solution of Tak4cs’s equation (1.6) in this case has been obtained
by Gani and Prabhu [8]. In the case of an arbitrary service time distribution,
this integro-differential equation is similar to the one obtained by Gani and
Prabhu [9] for the storage process with continuous infinitely divisible inputs of
the Poisson type, and can be solved by the method used there. This is done in
section 4. As a preliminary result however, we require the probability F(zo ; 0, t)
of not having to wait (i.e. the probability of finding the counter free) at time ¢.
To obtain this, we first find the probability dG(z, t) that the counter becomes
free for the first time at ¢, given that the waiting time of the initial customer was
W(0) = z > 0. This is analogous to the probability distribution of the ‘wet
period’ in a dam. Following Kendall [10] it can be proved quite generally that,
for an input of the general additive input with the distribution dK(z, t), this
distribution is given by dG(z,t) = (z/t) dK(t — 2, t), and its Laplace transform
by ¢ "®, where 7(6) satisfies the functional equation 7(0) = 6 + #{5(6)},
6 > 0. Applying these results to the waiting time process W(t), we find that

()\t)n—l

dB,(t — 2z)
n!

(3.3) dG(z,t) = Y e
0
This result has been directly proved by, Prabhu [17]. Further, we obtain

(34) [ e’ dG(z,t) = 9,

=z

where 7(6) satisfies the functional equation

(3.5) 7(0) = 6 + X — M{n(0)}, 6> 0.

This equation is essentially the same as one considered by Takécs [20], who
proved that it has a unique solution.



480 N. U. PRABHU

Now F(0, t) is the probability of finding the counter free at time ¢, not neces-
sarily for the first time; by a direct enumeration of the ways in which this can
happen we obtain

t
(36) Flz;0,0) = [ dG(zo, F(0;0,1 — 7).
29
We assert that the solution of the integral equation (3.6) is given by
3.7) - F(z; 0,t) dt = t
[ a6 de ift2a
20

To prove this statement, let us multiply the right hand side of (3.6) by dt,
and substitute (3.7); we obtain

t—zq t—¢ t—2z¢ .
[ [ e, a6t -0 = [ a6+ 60 &
0 Vzq 0

t
- f dG(z, t) dz = F(z: 0,) dt,
29

where we have used the fact that the distribution dG(z, t) is additive in the
parameter z, which is evident from its Laplace transform. We have thus proved
our assertion, and (3.7) gives the probability of finding the counter free at
time ¢.

The Laplace transform of (3.7) is given by

fzt (23 0, 1) dt = f:o dz f:o e dG(z, )

0
0
. e
= f e? dz =
20

7(6)

(3.8)

—2z97(6)

from (3.4),

where 7(6) is given by (3.5).
The results (3.4) and (3.8) are due to Bene§ [1]; however, the explicit ex-
pressions for dG@(z, t) and F(0, t) have not been given previously.

4. The transition d.f. of W(t). We are now in a position to solve the integro-
differential equation (1.6) and to obtain the transition d.f. of F(z, t) for the
waiting time process W (t). Let us denote the Laplace transform of dF(z, t)
by ¢(9, t), so that

(4.1) o6, 1) = fom e dF(z, 1) (R(6) > 0).

Taking Laplace transforms of both sides of (1.6) with respect to z, we obtain a
differential equation in ¢(6, t), which readily yields the solution ¢(6, t) =
¢ OV _ gl F(0,¢t — 7)e P dr as obtained by Takécs [19]. Writing
this in a slightly different way, we have
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¢
(4.2) (6, t) = gl O+ (=20 ._.f F(0, ¢ — T)e—rf(ﬂ)+ﬁr dr.
0

Now from (3.1) we have

(4.3) f e—'ozK(z’ t) dz = o—le—gg(o)
0
and
(4.4) f ) e—ozK(z + z/, t) dz = 0—16_15(0)_,.0':,

so that (4.2) yields the relation
t

(45) F(zt) = K(t + 2z — z,1t) —-f F(0,t — 7) dK(r + 2, 7).
0

However, the validity of this inversion rests on proving that the right hand side
of (4.5) vanishes for 2 < max (0, zo — ¢) or —z > min (0, ¢ — 2). Thus we
have to show that

t—z¢
K(t—z—2,t)=[ FOt—1) dk(r—2z1),

0 <z<t—m).

In order to do this, consider the process Z(t) = W(0) 4+ X(¢) — ¢, which is a
temporally homogeneous Markov process with the transition d.f.

(4.7) P(z;2,t) = K(t+2— 2,t).
By a direct enumeration of the paths { — —z in this process we obtain

(4.6)

(4.8) dP(¢, —2, t) = ﬁ)t dG(¢; 0, 7) dP(0; —2,t — 7) (¢ >0),

where dG(¢; 0, 7) denotes the probability of the first transition ¢ — 0. Clearly,
this is the same as the corresponding probability for our process W(t), since
the first transition ¢{ — 0 can be made only through positive values. Thus (4.8)
can be written as

t—¢
g MEm D 1) = "f, dG(t, t — Dk(r — 2, 7)
(0 < g‘ é t — Z),

where we have written dK(z, t) = k(=, t) dv for convenience. Integrating
(4.9) over 2o < { =t — z we obtain

t—zg t—1
K(t—2—z0t) = —f k(T—Z,T)f dG (¢, t — 1) dt

t—zy
— [ RO, t=Dk(r—2,7) dr

using (3.7). Thus we have proved (4.6); our inversion is therefore valid, and
(4.5) gives the transition d.f. of the waiting time process W(t).
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By an argument similar to the one used by Gani and Prabhu [9], it can be
proved that the limiting distribution F*(z) = lim.. F(z, t) exists independently
of z0if p < 1 and is given by (2.9). This confirms the result obtained in section 2.

In conclusion it may be noted that the integro-differential equation of Takécs
in the general case where the Poisson parameter A is a function of time has been
studied by Reich [18], who reduces it to a Volterra equation of the first kind.
However, for the case A = constant, we believe that our solution is much more
straightforward, and that our method is applicable to more general distribu-
tions of the service potential; this is being investigated.
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