QUEUES FOR A FIXED-CYCLE TRAFFIC LIGHT
By G. F. NEwELL!

Brown Unaversity

1. Summary. In their book Studies in the Economics of Transportation, Beck-
mann, McGuire and Winsten (BMW) ([2], pp. 11-13, 40-42) proposed a simple
queuing model for traffic flow through a fixed-cycle traffic light. Although they
derived a relation between the average delay per car and the average length of
the queue at the beginning of a red phase of the light, they only indicated some
possible numerical schemes for evaluating the latter. Here we shall derive analytic
expressions for the average queue length and consequently also the average delay
under equilibrium conditions for the BMW model.

2. Introduction. Several papers have been written on the subject of queuing
at a fixed-cycle traffic light. Wardrop [7] and Webster [8] describe very extensive
studies based upon experimental observation, computer simulation and semi-
empirical theory with the theory based upon the assumption that the arrivals
of cars at the light form a Poisson process. Uematu [6] investigated the queues
for a model quite similar to that of BMW but was mainly concerned with the
question of how long it takes an empty queue to reach some preassigned length
for the first time. The present author also made a previous study [5] of delays
but only considered arrival rates which were not too close to the critical value
and used a more elaborate model than that considered here.

In the model proposed by BMW, it is assumed that events such as the arrival
or departure of a car at the traffic light may occur only on a set of discrete and
equally spaced time points. The traffic light pattern is periodic in time with each
cycle represented by a sequence of r consecutive time points designated as red
points followed by a sequence of ¢ points designated as green. At either a red or
green point there is a probability « that one new car will arrive and a probability
1 — o« that no new cars arrive, these probabilities being independent of the
number of arrivals at any other time points. No cars are allowed to leave the
light at red points but one car leaves at any green point provided that either a
new car also arrives at that time or the queue just prior to this time point is
non-empty. ‘

From these rules it follows that the lengths of the queue immediately before
time points define a non-stationary Markov chain in which at any red point
there is a probability « that the queue increases by one car and a probability
1 — a that it remains unchanged, whereas at any green point there is a prob-
ability « that a non-empty queue remains unchanged and a probability 1 — «
that it decreases by one. The lengths of the queue before corresponding time
points of successive cycles of the light, however, form a stationary Markov
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590 G. F. NEWELL

chain. If we let ¢, denote the length of queue just before the first red point of the
zth cycle, the ¢, satisfy the recursion relation,

(21) Qz41 = Ina-X{qz + u, — g, 0})

in which u, represents the total number of arrivals during the zth cycle. The u,
are independent random variables having a binomial distribution

(2.2) Priu, = m} = (r ; -") (1 — ) ™",

Our problem here is to find the equilibrium distribution for g, . Once this has
been found and E(q.) evaluated, the average waiting time per car measured in
units of the time interval between consecutive time points can be evaluated
from the formula derived by BMW,

(2.3) =r(1 —a) (g + r)E(g)/a+ (r + 1)/2].

Relation (2.1) is equivalent to the recursion formula for a queue with bulk
service of ¢ customers at a time. It has been studied previously by Bailey [1]
and Downton [3], [4] when arrivals have a Poisson distribution and service time
a x° distribution (a special case of which is service at constant time intervals).
Some of the analysis here for a binomial distribution of arrivals, particularly
Section 4, closely parallels the analysis described by Bailey.

3. Low Rates of Arrival. One method of determining the equilibrium distribu-
tion of g, is to take any initial distribution, for example ¢; = 0 with probability
one, and evaluate the distribution for ¢, g3, etc. from (2.1) and (2.2). If the
average rate of arrivals per cycle is less than the maximum rate of departure, i.e.,

(3.1) a(r+g) <g
then this sequence of distributions will always converge to the equilibrium dis-

tribution.
If, in addition to (3.1), the difference between these rates is larger than the

dispersion of u., i.e.,

(3.2) g —a(r+g) > [a(l —a)(r + 9,

then Pr{g, > 0} will be small compared with Pr{g, = 0}, Pr{g: > 0 and ¢; > 0}
will be relatively much smaller yet, and the sequence of distributions for ¢», ¢,
etc. will converge rapidly to the equilibrium distribution, the more rapidly the
larger the difference in the two sides of (3.2).

If we take Pr{gs = 0} = 1, the next approximation to the equilibrium dis-

tribution is

Pr{q2 = ]} = (T + g> (]_ -_ a)r—jag+j’ ] > 0,
g+
(33)
PI‘{Q2 = 0}

1 - ; Pr{g. = j}.
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The evaluation of the distributions for ¢ , ¢4, ete. is straightforward but becomes
quite tedious.

Since, in most practical applications, r and ¢ are in the range of 10 to 20, we
expect that estimations of E(q,) in the limit r and ¢ — « with r/g fixed will be
of some value. In this limit, (3.3) can be used to approximate E(q.) whenever

(34) p=1lg— altr+@lrg/(r + @I > 1,

a condition which excludes only a range of a in which the difference between «
and the critical value, g/(r + g), is of order . For r sufficiently large, this
excluded range can be made arbitrarily small but if »r = g = 10, for example,
it is from a ~ 0.38 to 0.5 and for r = g = 20 from « ~ 0.42 to 0.5.

From (3.3) we obtain for 0 < j << r

Pr{g. = j}
(3.5) r+ 1 —a)af [ ra |’ —r + 9) 7
- { glrl f o= a>} e"p{ arg ¢ (?>}
and
— a r+laa+1 N
(36) Bg) = T He+ VU= a) [+ 0™l

glriu?

If we disregard the smaller values of o and assume that u < 7%, then (3.6) can
be simplified further by using Stirling’s formula and expansions of log & in powers
of u to give

(1) B =[50 | R 10 (5) + 06

For 4’ > 1, we can also estimate that E(g;) will differ from E(g:) only by an
additional term that is smaller than E(q:) by a factor proportional to
exp(—u’/2).

Whereas in practical applications, the error terms in (3.6) or (3.7) may be
quite significant, these equations at least give an accurate description of what
happens for sufficiently large r and p and a qualitative description even for
moderately large r. In the range u > 1, E(g.) is a monotone increasing function
of « and is of order ! for u = O(1). For r > 1, u is a rapidly varying function
of @ and as « decreases E(q.) also decreases very rapidly. Even for the largest
« at which we may apply these formulas, however, where E(q,) is of order +*,
the effect of the queue on w is small because in (2.3) E(g,) must be added to
another term that is of order r. For z = ¢ = 10, E(¢,) causes only about a 20%
increase in w even when u = 1.

To investigate what happens for p < 1, we consider below a different method
of evaluating F(qg,)
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4. Use of Generating Functions. Let
(4.1) G.(z) = jX_%zj Pr{g. = 7}

denote the probability generating function (p.g.f.) for g¢.. From (2.2) u, has
the p.g.f. (1 — a + az)"* and, since u, and ¢, are independent, u, + g, — g has
the p.gf. (1 — a + a2)""27°G,(2). If we subtract from this the probabilities
for negative values of u, + ¢, — g and reassign them to the event ¢,4; = 0, we
obtain from (2.1) the p.g.f. for ¢.41,

g—1 g—1
(42)  Gun(z) = z"’[(l — a4+ az2)"G.(2) — g akz"] + kZ_;, ax

in which the a; are the Taylor expansion coeficients of (1 — a + az) "G, (z).
If there is an equilibrium distribution for the queue length with G,4:1(2) =
G.(2) = G(z) then (4.2) gives

(43) 6(2) = @) [z” Sa-5 akzk]
k=0 k=0

with

(4.4) Qz) =2 — (1 —a+ az)™.

We do not know the a; unless we know G(z), but (4.3) and (4.4) at least
describe the form of G(z), a polynomial of degree g divided by another poly-
nomial of degree r + g. We also know that, if G(2) is a p.g.f., it must be analytic
in the unit circle | z | < 1 of the complex plane, and in particular at any points
in this circle where @Q(z) has a zero.

Since Q(z) is analytic, the number of zeros of @Q(z) inside or on the circle
| z| = 1isequal to g plus the number of cycles through which the complex phase
of 27°Q(z) changes when z traverses a path just outside the unit circle, or equiva-
lently g plus the number of times the image of this path under the transformation
27°Q(z) encircles the origin. Since for [z| = 1land 0 < a <1

|27°Q(z) — 1| = [1—a+az|* =<1,

with the last equality sign valid only at z = 1, the image of the unit circle
itself passes through the origin once as z passes through z = 1 but otherwise lies
to the right of the origin. Whether or not z~°Q(z) encircles the origin as z traverses
a path just outside the unit circle is, therefore determined by what happens to
27Q(z) for z in the neighborhood of z = 1. By expanding z °Q(z) in a Taylor
series about z = 1, one can easily show that as z passes to the right of z = 1,
27°Q(2) passes to the right of the origin if a(r + g) < g and so fails to encircle
the origin but passes to the left of the origin thereby encircling it once
if a(r + g) = g. We conclude from this that Q(z) has g zeros inside or on the
unit circle if a(r + ¢g) < gbut g + 1 zerosif a(r + g) = g. Since a(r + g) < g
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is also the condition for existence of an equilibrium distribution of ¢, , only this
case is of interest here.

If G(z) is to be analytic for |z | < 1, each of the g factors (z — 2;) of Q(z)
with | 2;] = 1 must cancel a corresponding factor of the gth degree polynomial
in the numerator of G(z) and G(z) will reduce to the form

6() = AT (e - )™,

in which z;,1 = 1,2, - -, r are the r zeros of Q(z) with | z;| > 1. Since, in addi-
tion, any p.g.f. must satisfy the condition G(1) = 1, we finally obtain

(4.5) G(z) = ,IJ (1 —2)(z—2)"

and

(4.6) B(g.) = d@(2)/dz | = 3 (21— D)™

I=1

The study of the g, distribution is thus reduced to a study of the roots z; of Q(z)
with |z;| > 1.

It is not generally possible to obtain explicit expressions for the roots z;,
but they must all lie on a curve of the complex plane defined by the equation

(4.7) [z2] = |1 — a+ az |10,

For any specified direction of z in the complex plane, one can sketch the graphs
of the two sides of (4.7) as a function of | z | and show that for a(r 4+ ¢) < g,
the two graphs always intersect twice, once for |2 | = 1 and once for [z | > 1.
The curve of (4.7), therefore, consists of two closed paths C’ and C such as shown
in Fig. 1, one lying inside the unit circle and the other outside.

The roots z; must also satisfy the equation

(4:8) zllllr — ’Yl(l —a+ azl)(r+ﬂ)/r’

with v7 = 1, and one can show that there is one and only one root of (4.8) on
the curve C of Fig. 1 corresponding to each of the r distinct values of v; with
vi = 1. By suitable numbering of the roots z; we can choose v; so that

(4.9) vi = exp[2mi(l — 1)/r].

We can also interpret (4.8) as a one-to-one mapping of the r roots on C into
the 7 values of v, equally spaced around the unit circle. If we let r and g — «
keeping r/g and « fixed, the curve C also stays fixed but the values of v, become
densely and uniformly distributed on the unit circle. At the same time, the
roots z; become dense on C.

We know already from Section 3 that for the above limiting process £(¢.) — 0.
This can also be derived from (4.6) by observing that for r — o« the sum in
(4.6) becomes the Riemann sum for an integral which we may interpret as
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FiG. 1

either an integral with respect to the continuous real variable I or with respect
to the complex variable v around the unit circle. If we choose the last form

we find
(410) 7B (q.) — 1/2r [ {4laly) — 1} .

The function z(v) defined by (4.8) for |y | =f 1 is also defined for [¥|> 1. For
| v| 2 1, 2(v) is analytic, | 2(y) | > 1, and is of order v for ¥ — «. The contour
integral in (4.10) therefore vanishes by virtue of Cauchy’s theorem. In addition,
the difference between the Riemann sum of an analytic function and the integral
over any closed path is asymptotically smaller than any finite power of the
spacing between points. E(g,) is, therefore, smaller than any finite power of
7! for r — .
If we define z; for non-integer real I through (4.8) and (4.9), it follows that

r+3}
L (z;—1)dl = 0.

By dividing this integral into r parts and subtracting it from (4.6), we can
also write E(q,) as the difference between a Riemann sum and its limiting in-

tegral, i.e.
T 4%
(411) Blg) = Z{m ~u = [T -y dz}.

l=1

6. Nearly Critical Arrival Rate. Equations (4.6) and (4.11) are particularly
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well suited to the evaluation of E(¢,) when a — g/(r 4+ g) because in this case
we find that 2z, — 1 and the one term of (4.6) for I = 1 becomes infinite. If, how-
ever, we let r — © and @ — g/(r + g) simultaneously then some of the neighbor-
ing roots to z; , for example 2z, and z, also approach 1.

Since z; is defined by (4.8) and (4.9) also for negative values of [ and is periodic
in ! with period r, we may consider [ in the range —7/2 < | < r/2, for example,
so that the roots nearest to 2z, are those with small (|, = --- —=1,0,2, --- .
To locate these roots we take the logarithm of both sides of (4.8) and eéxpand
in powers of (z; — 1) and u to obtain

—4ni(l — 1)(r + ¢)r g — 2(zi — 1)(r + ¢)}(rg)

+ (= 1)+ 0z — D™, (2 — 1) =0.
The roots of this approximately quadratic equation with |z;| > 1 are
(51) z—1=(r+¢)'te)Mu+ e +4m(l — DI} + 0l(z: — 1)7)

and in particular

(5.2) a—1=2(r+g) (rg)™ u+ 0l(r + )7 W),
We conclude immediately from this that, if » and g are finite,
E(g:) = (. — 1)7 4+ 0(1), for u — 0,
(5.3)

= rg{2(r + ¢)lg — a(r + I + OQ), fora—g/(r+g),

in which O(1) here means order relative to s as u — 0 but not relative to r and g.

Suppose we now let » — o with u fixed, particularly with p < 1 since this is
the only case that could not be handled satisfactorily in Section 3. Except when
! < r and z; ~ 1, the difference between (z; — 1)~ and its integral between
I — Land I + 1is of the order of magnitude of the second derivative of (z; — 1)~
with respect to [, which in turn is of order #* according to (4.8) and (4.9). The
sum of all such terms in (4.11) is at most of order ' and so any significant
contribution to (4.11) can come only for the small values of |l | where (5.1)
is applicable. From (4.11) and (5.1), we obtain

3 4w
rfg) 3 {<y+w+4m'<z— D

E(g,) = < 2

(54) "
- fl_* (s + W’ + 4t — DY) dl} +0(1)

with the dominant error team of O(1) relative to r coming from the error term
of (5.1), particularly for [ = 1 and to a lesser extent from the other I with | [ | < r.

The terms in the sum (5.4) are O(I"*) for | 1| > g, so the series converges
rapidly enough to be of practical use even for u ~ (4r) ~ 3. For small p, the
main contribution, however, comes from [ = 1 where the first term in the bracket
of (5.4) is (2u) ™" while all other contributions to the series are at most of order



596 G. F. NEWELL

1 even for u — 0. Generally we obtain for u of order 1 or less

(5.5) E(g.) = [rg/(r + @Pl(20)™ + 0(1)]
and for p < 1 we can expand (5.4) in powers of u to obtain

rg \I[1 B 2
(56) B = () [ - a+4+00 ]
with
(5.7) A= (2r)7F lim [2(R + nt - gr*] ~ 0.582.

One can estimate that O(u’) is roughly —u’/20 and in succeeding terms the
important parameter is /(47 )}, so that (5.6) will be correct to within about 30%
even for u = 1. The error in (3.7) for x4 = 1 should be of comparable size and if
one compares (5.6) with (3.7) one finds that they agree to within a factor of
about § forr —  and p = 1.

Since for r — o, the effect of the queue on w will not be significant unless
E(g.) is of order r, this will not occur unless xis O(r ) and g — a(r + ¢g) = 0(1).
If, in fact, ¢ — a(r 4+ g) = 1 the queue causes w to increase by a factor of 2.

We note finally that for certain values of (r + ¢)/r, namely 2, $, 3, 4 and 4,
one can obtain exact expressions for the roots z; by virtue of the fact that (4.8)
gives a set of quadratic, cubic or quartic equations. One can, therefore, also
obtain exact explicit formulas for E(q,) and w. If, for example, r = g, then

(5.8) 21— 1= ra {1 — 2e7; + [1 — 4a(1 — a)vil}}

in which the square root must be chosen in the right half of the complex plane
to give | z;| > 1. In particular

(5.9) 2 —1=a%(1 — 2a).

6. Comparison with Webster’s Formula. The only formula with which we can
compare the above results is Webster’s semi-empirical formula [8] for delays
which is based upon the assumption that the arrivals form a Poisson distribution
rather than a binomial distribution as assumed here. Webster’s formula consists
of three terms; the first is essentially the same as (2.3) with E(g;) = 0 and repre-
sents the delay for regularly spaced arrivals; the second term is the delay that
results from a queue when arrivals have a Poisson distribution but the service
time is a constant equal to (r 4+ ¢)/g time intervals; and the third term is an
empirical correction obtained by fitting curves to values calculated by computer
simulation.

Since a Poisson distribution allows arbitrary small time intervals between
arrivals, fluctuations may cause more cars to arrive in some green period than
can leave. Because of this one finds for a Poisson distribution of arrivals that
even when r — 0 (no traffic light) one still has a queue and furthermore the
average length of the queue becomes infinite as the arrival rate approaches the
critical value. As pointed out by BMW, the binomial distribution has the ad-
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vantage of forcing a minimum spacing between cars and so we avoid this un-
fortunate limiting behavior, even though this is accomplished in a somewhat
artificial way wherein the spacings are confined to be integer multiples of the
minimum spacing.

By using methods very similar to those described in Sections 1 to 5, it is pos-
sible also to compute the queue lengths and delays when the arrivals have a
Poisson distribution, provided we assume that (2.1) still holds. We need only
replace the p.g.f. for the binomial distribution of u, by the corresponding ex-
pression for the Poisson distribution. By doing this one finds as the analogue
of (5.5)

(6.1) E(g.) = dglg — a(r + )] + O(),

the leading term of which is (¢ + r)/r times as large as in (5.5). The average
waiting time for nearly critical arrival rate is then given by

(6.2) w=1"/{2(1 —a)(g+ )} + (g + r)/{2lg — a(r + 9} + 0¢H).

Fur‘ghermore, in (6.1) and (6.2), the O(r*) are asymptotically proportiona
to r.

The first term of (6.2) is essentially the same as the first term of Webster’s
formula and the coefficient of [§ — a(r + ¢)]™ in the second term has the same
value as in Webster’s formula for o — g/(r + ¢). The third term of Webster’s
formula, however, is not asymptotically proportional to r*, nor does it indicate
in any obvious way the importance of the magnitude of ¢ — a(r 4+ ¢) as com-
pared with [rg/(r + ¢)].
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