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1. Introduction and Summary. For any two finite sets U, V, a Markov matrix
s with row set U and column set V will be called a U, V channel. Thus a U, V
channel is any nonnegative function s, defined for all pairs (u, v), u e U,v e V,
for which

> s(u,v) =1 for all w.
The sets U, V will be called the input and output sets, respectively, of the channel.
We shall denote by M (U, V) the set of all U, V channels. A channel s may be
thought of as a random device which, on being given an input element » ¢ U, pro-
duces an output element » ¢ V, with the probability of a particular output »
given by s(u, v).

A U, V channel s may be used as a means of communication from one person,
the sender, to another person, the receiver. There is given in advance a finite set
D of messages, exactly one of which will be presented to the sender for trans-
mission. The sender encodes the message by an encoding channel s, ¢ M (D, U),
with s1(d, u) being the probability that input « is given to channel s when message
d is presented to the sender for transmission. When the receiver observes the
output v of the transmission channel s, he decodes it by a decoding
channel sy ¢ M(V, D), with s:(v, d) being the probability that, on receiving the
transmission channel output v, the receiver will decide that message d is intended.
The pair (s1, s2) will be called a (D, U, V) code. For a U, V channel s and a
(D, U, V) codec = (81, s2), the matrix e(s, ¢) = sssy, which is an element of
M (D, D) will be called the error matriz of code ¢ in channel s. Its (d, d’) element
is the probability that, when message d is presented to the sender, the receiver
will decide that message d’ is intended, when code ¢ is used on channel s. We
shall be especially interested in the average error probability over all messages
in the set D. This is the number

w(s,¢) = 1 — | D|™ trace (s, ¢),

where | D | denotes the number of elements in the set D.

A code ¢ = (81, s2) will be called pure if only 0’s and 1’s occur as elements of
s1, 82 . The (finite) set of all pure (D, U, V') codes will be denoted by C(D, U, V),
and a probability distribution k¥ over C(D, U, V) will be called a random
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(D, U, V) code. We define the error matrix (s, k) and average error probability
w(s, k) for a random code %k by
e(s, k) = 2, k(e) e(s, ¢), w(s, k) =1 — | D | trace (s, k).
ceC(D,U,V)

It was observed by Shannon [4] that every (D, U, V) code ¢ is equivalent to
some random (D, U, V) code k, in the sense that

e(s, k) = €(s,¢) forallse M(U, V).

The converse is not true. The greater generality of random codes lies in the
possibility, with random codes, of correlated randomization in the encoding and
decoding processes. This is a special case of the fact in game theory, noted by
Kuhn [3], that every behavior strategy (code) is equivalent to some mixed
strategy (random code), but the converse holds only in games of perfect recall
(which the communication game is not).

Shannon’s basic work in information theory [5], and most later work, has been
concerned with the question: for a given U, V channel s and message set D, is
there a pure code ¢ which makes the average error probability «(s, ¢) (or the
maximum error probability) small? For this question, the distinction between
pure codes and random codes is irrelevant (though even here random codes are
useful as tools [5]), since

(8, k) = Z k(C)?r(S, C),

so that there is a pure code whose average error probability is at least as small
as that of any random code. We shall be concerned with some cases in which
D, U, V are given, but the transmission channel is known only to be some U, V
channel in a given closed set S € M (U, V). We ask: is there a random code &
for which (s, k) is small for every s ¢ S? For this question, as we shall see, the
distinction between random codes and pure codes is essential, for some sets S.

Specifically, we shall be interested in D, U, V, S defined as follows. We are
given a message set D (only | D |, the number of elements in D, will be relevant),
an input set 4, an output set B, a closed set So of A, B channels, and a positive
integer N. The sender will be given some message d from D, and will then choose
a sequence ¥ = (a;, - -+, ay) of N elements of A. These inputs will be placed
successively into channels s;, ---, sy, s, € So, and the receiver will observe
the resulting output sequence v = (b, - - - , by). The receiver must then estimate
which message d was presented to the sender. Thus U is the set of all sequences

= (a1, - -+, ay) of length N of elements of A and V is the set of all sequences
v = (b, ---, by) of length N of elements of B. The set S of possible U, V
channels will depend on what restrictions we place on the sequences s;, -« - , sy .
We consider three cases.

CasE 1. Fized unknown channel. Here we are given that the same element of
So is the transmission channel for each period. There is then one U, V channel s
for each A, B channel s, ¢ Sy . The s corresponding to s, is defined by
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s(u, v) = :ﬁl s0(@n , ba).

We shall denote the set of all such U, V channels by S; .
CASE 2. Arbitrarily varying channel. Here there is one U, V channel for each
sequence (81, *--, sy) of elements of Sy, defined by

N
s(u, v) = H sn(an ) bn)-
n=1

We shall denote the set of all such U, V channels by S .

CASE 3. Channel selected by jammer with knowledge of past inputs and outputs.
Here we suppose that the element s, of Sy which will be the transmission channel
during the nth period if selected by a jammer after he has observed the inputs

@1, -+, @, and outputs by, - - -, b,y during the first n — 1 periods. A pure
strategy f for the jammer is a sequence (f1, - - -, fx) of functions, where f, maps
every sequence &, = (@1, -, @u1, b1, -+, by_1) into a corresponding ele-

ment f,(x,) of So. There is then one U, V channel s; for each pure strategy f,
defined by

N
s7(u, v) = I] salan, ba), where s, = fn(2,).
n=1

We shall denote the set of all such U, V channels by S;.
Let us define, for 7 = 1, 2, 3,
w(| D |, N, So) = min max =(s, k).
k 885
The number =;(| D |, N, So) is the minimum average error probability which
can be guaranteed, by using a suitable random code, when there are | D | possible
messages, N transmission periods, the channel at each period is some element
of So, and the channel variation from period to period is as described in Case i
above. It is also the value of the following two-person zero sum game: Player I
(the jammer) chooses any U, V channel s in S;, and Player II independently
chooses a pure (D, U, V) code c. A message is then selected at random from D,
so that each d has probability | D [™ of being selected, and transmitted over
channel s using code ¢. If an error is made, Player I wins one unit; otherwise he
wins zero.
Since  is linear in s, we have
m(|D|, N, Sp) = min max (s, k),

k assi

where Sf is the convex hull of S;, i.e. the smallest convex set containing S;.
Let us for the moment denote by T' the convex hull of Sy, by T’; the set of U, V
channels defined by 7T in the same way that S; is defined by S, , and by T? the
convex hull of T';. It is not hard to verify that

Sy DTy, 8 O T;,sothat Sy = Ts, 8 = Ts .
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We conclude that
(1) 1r,~(|D!,N, S:)k) = Wi(|D|7N7 So) fori = 2, 3,

a fact which will be used later.
We shall call a number B = 0 an attainable rate of type ¢ for S, if

(2", N, So) > 0as N — «.

The upper bound of the set of attainable rates of type ¢ for S, will be called
the type 7 capacity of the set Sy and denoted by R;(S,). Thus if R is an attainable
rate of type ¢ we can, by random encoding in large blocks, transmit R binary
symbols per transmission period, with small error probability.

If, in the definition of 7; above, we had minimized over pure codes instead of
random codes, we would have obtained numbers 7;(\S;), which we shall call the
type © pure capacity of S, . The present authors in an earlier paper obtained a
simple formula for 71(Sy). The principal result of the present paper is that

Ri(S0) = Re(So) = Ri(S3) = r1(p),

where S; is the convex hull of S, . In addition we show that always R:1(Sy) =
71(Sp) and give an example in which R;{(S;) > 0, r2(So) = 7r3(Se) = 0. The
evaluation of r2(.Sy) and r3(Sy) for general S, remains unsettled.

We may already conclude from (1) that

(2) Ri(Ss) = Ri(S5) fori = 2, 3.

2. Direct half of principal result. For any random variable X with a finite
set of values z, we denote by I(X) the random variable whose value when X = z
is —log, P{X = z}. For any two random variables X, ¥, each with a finite set of
values, we define

IX|Y) =I(X,Y) — I(Y)

J(X,Y) = I(X) + I(Y) — I(X, Y)
=I(X) - I(X|Y)

I(Y) — (Y| X).

I(X) is usually called the information, entropy, or uncertainty in X, I(X | Y)
the information in X given Y, and J(X, Y) the mutual information in X, Y.
These concepts, introduced by Shannon [5], are basic in information theory.
Associated with each probability distribution s on A and A, B channel s is a
probability distribution P,; on the set A X B of pairs (a, b), defined by

Pas(a, b) = a(a)s(a, b).

Let X, Y be the input, output variables on 4 X B: X(a,b) = a, Y(a,b) = b
and define, for any closed subset S € M (A4, B),

Ha(S) = minEasJas(Xy Y)>
8&eS

Il
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H(S) = max H.(8S),
a

where the subscripts as indicate that expectation and mutual information are
with respect t0 Pas.

THEOREM 1. R3(So) = H (So ), where So is the convex hull o So.

Proor. We shall first suppose Sy ﬁmte It suffices to show that for any a and
any number ¢ with 0 < ¢ < H, (So), the number H; = H, (So) — o is an at-
tainable type 3 rate for S, . Let 6 be any number for which 0 < | B |§ < 1, where
| B | is the number of elements in B, and let s; be the B, B channel whose non-
diagonal elements are all equal to 4, so that its diagonal elements are all equal
to 1l — (| B| — 1)é. Finally, let ¢ be any probability distribution on the finite
set F of jamming strategies

Let us choose a sequence Xy = (Xi, ---, Xx) of N independent input vari-
ables, each with dlstrlbutlon a, and let L be a jamming strategy, selected inde-
pendently of X with distribution g. The input sequence Xy and j jamming

strategy L determine a sequence of output variables Yy = (Y3, ---, Yx). We

use Y, as an input varlable on the B, B channel s;, and let Z, be the resulting

output variable. Write Zy = (Zy, - -+ , Zn), n = 1, , N. Then
P{Yy=v|Xy=u =s(x,v), s= qusf,

(3) P{Z, = b| Xy, Yy, L} = ss(Ya,b),

P{(Xn,Zs) = (a,0) | X1, Yrs, Zns, L} = Pogsy(a, b),

where s* is the element of S, selected by L for the nth transmission period when
the previous input-output history is X»_; , Ya_, . From (3) we obtain

P{(Xa,22) = (&,0)| Xos, Zad} = Z PIYau =y, L =1 | X2, 20}
(4)
‘P{(Xn, Z,) = (a, b)] Xn——la Zn a1 Yn,l =4y, L = f} = Pau,(a, b),
where t = (X . , Z:_l) e Sy , the convex hull of S; .
We shall find an upper bound for P{J(Xx , Zx) < N(H; + v)}, where v is a
positive number less-than o. We write

M=

N
J(Xn, Zx) = 2 J(Xn, Zn) — J(Xna, Zaa)]l = 22 Jw,
n=1

I
-l

where
Jo = I(Xa) + I(Za|Za) — I((Xn, Za) | (Xnca, Zna)).

Let us fix z*, 2* and denote by u the conditional joint distribution of (X, , Z,)
given Xn_, = z*, Zn_, = 2* and by B the conditional distribution of Z, given
Z*_l = z* The condltlonal distribution of J, , given X¥, = z*, Z¥ = 2*is
then that of T = I(X) — logs8(Z) — I(X, Z), where X, Z are the input-output
variables on A X B and u is the distribution on 4 X B. Now

T = J(X,Z) + log:f'(Z) — log:p(Z),
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where B’ is the distribution of Z. Since
E(logf'(Z) — logB(Z)) = —2.p'(2) logs(B(2)/8'(2) = 0

(using convexity of —logz), we obtain ET = EJ(X, Z). From (4), u is a dis-
tribution Py, for some £ ¢ So , 0 that, denoting by S3 the set of all A, B chan-
nels of the form ts;, ¢ ¢ Sy , we have

(5) ET = H.(85) = h(3).

We next find an upper bound for | T’ |. We have T = —log:8(Z) — I(Z | X).
Now B(b) = dand iss(a, b) = 6forall a, b. Thus, since 0 < —log,8(Z) = —logs
and 0 < I(Z| X) £ —log, we have

(6) | Tl = —log25.

Using (5) and (6), we find a bound for the moment generating function of
the variable Ty = T — h(8) + N\, where XA is a positive number. From (5), (6)
we obtain E(T1) = N, [ T1| S N —logd = @ = Q(}, §). For £ £ 0, we have

e =1 4+ 1T + [(1Q)%/2]e'1°, so that ¢(f) = Ee'™ < 1 4+ M+ [(1Q)%/2]¢!"1°.
From now on, we restrict A, § to the set

(9) AQ = log(4/3).
With this restriction, and &, = —\/Q?, we obtain
(10) d(t) £ 1 — (A\/3Q@) = ;= p(}, 9).

Now ¢ is the conditional moment generating function of J, — h(8) + A,
given Xn_y = a*, Zu_y = z*. It follows that E(exp to(D_re1 (Jn — h(8) + N)))
< o1, so that
(11) P{J(Xx, Zx) S N(h(3) — M)} < o1 (5, 7).

Now h(8) — Ha(Ss) as 8 — 0. Choose 8, sufficiently small so that
h(50) > Ha(S5) — o +v = Hi + 2

and h(d) — Hy — v £ —log: & log(4/3), and set No = h(8) — Hy — v. From
(11) we obtain
(12) P{J(Xy,2Zv) S N(Hi+v)} £ 6" = p"(c = v)
where p = p1(\o, &) < 1 and depends only on ¢ — v and the modulus of con-
tinuity of the function h. Inequality (12) is the first, and most difficult, step
in our proof.

Now
PZy=v|Xy=1u} = 2 P{Yy =0 | Xy =uwP{Zy = v | Yy =} = ssa(w,v),

where s is the U, V channel defined in (3) and s; is the ¥, ¥ channel which
sends inputs Y into outputs Zn , with 8§ = & . We now apply a fundamental
inequality of Shannon [6], which asserts the existence, for any message set D
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with | D | < 2", of a pure U, V code ¢ = (s1, s:), whose average error prob-
ability, on channel ss; , is at most P{J(Xn , Zx) < N(Hy + v)} + 27". Thus,
using (12), we obtain «(ss;, ¢) < 2ps , where p; = minec,<; max(2~?, p(¢ — 7))
< 1. Now w(ss;, ¢) = w(s, ¢*), where ¢* = (s1, $:82).

We have now proved the

LeMMA. There is a constant p» < 1 such that, for | D | = [2¥%'] and any prob-
ability distribution q on the set F of U, V jamming strategies, there is a D, U, V
code c¢* for which

S aDnsr, %) S 21

We now consider the two-person zero sum game in which the pure strategies
for Player I are the U, V jamming strategies f, the pure strategies for Player II
are the pure D, U, V codes ¢, and the payoff to Player I for f, cis 7(ss, ¢),
the average error probability for code ¢ on the channel sf determined by the
jamming strategy f. The lemma asserts that, for any given mixed strategy ¢ of
Player I, there is a corresponding strategy for Player IT which makes the payoff
to I at most 2p3 . The minimax theorem then asserts the existence of a mixed
strategy for Player II, i.e., a probability distribution k over the set C of pure
D, U, V codes, for which Zk(c)w(ss,¢) = n(s7, k) = 2p3 for all jamming strate-
gies f, i.e., w(s, k) < 2p2 for all s ¢ S;. Thus

(2", N, So) = 208 —0as N — o,

H, is an admissible rate of type 3, and the proof of Theorem 1 is complete for
the case of finite S, .

The restriction to finite Sy was made only to avoid irrelevant details, e.g.,
measurability of jamming strategies. This restriction can now easily be removed
by approximation. For an arbitrary So, let T be any set which contains S, and
which is the convex hull of a finite set. Clearly R3(S,) = Rs;(T), and we have
shown that Rs(T) = H(T). Thus R;(S,) = supr H(T). It is not difficult to
show that supr H(T) = H(Sy), completing the proof.

3. Converse half of principal result.

TueorREM 2. For any closed Sy, Ri(So) = H(So).

Proor. It was proved in [1] that r,(Ss) < H(S,). The present proof is a minor
modification of the earlier one. Again, we shall use

Fano’s inequality 2], [7]. For any two random variables W, W',

EI(W |W') £ —[glogyg + (1 — g) logs(1 — 9)] + g log:(G — 1),

where g = Pr{W = W'} and G 1s the number of values of W.

We consider a random (D, U, V) code k, take any U, V channel s ¢ S;, and
suppose that a message is selected from D with a uniform distribution and trans-
mitted over s using k. We denote by W, X, ¥, W’ the resulting message, U, V
input, U, V output, and estimated message respectively. Let g = = (s, k) =
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Pr{W’ == W}. Let us denote by Z the pure code selected, so that Z is independent
of W and has distribution k. Then
EJ(X,Y|Z) 2 EJ(W,W'|Z)
= EI(W) — EI(W |W', Z)
= EI(W) — EI(W | W)
= (1 —glogg| D| -1,

(13)

where the last inequality is obtained from Fano’s inequality. Also
EJ(X,Y|Z)=EI(Y|Z)—EI(Y|X,Z)=EI(Y|Z) — EI(Y | X)

S EI(Y) — EI(Y|X) =EJ(X,7Y).
Combining this inequality with (13) yields

(14) EJ(X,Y) =z (1 —g)log|D| — 1,
ie.,
(15) g=rm(s, k) 21— [EJ(X,Y) + 1/logy| D [].

Since the distribution of X is independent of s, we maximize (15) over s ¢ S;,
then minimize over k, to obtain

(16) m(|D|, N, S) = 1 — [H(S8:) + 1)/[logs| D |].
But, as shown in (1], H(S;) = NH(S,), so that
(17) n(2], N, So) = 1 — [NH(S,) + 1]/[log2(27)].

Thus if R is an admissible rate of type 1, limy.., [NH(So) + 1]/[log:(2%¥)] = 1,
i.e., R =< H(So). This completes the proof.

We summarize our results in

TueoreMm 3. For any S,

Ra(So) = Rz(So) = RI(S:) = 7‘1(83‘),

-where S is the convex hull of So. Also Ri(So) = r1(Se) = H(So).

Proor. That 7,(Sy) = H(S,) was shown in [1]. Since r1(Sy) = Ri(S,) and,
from Theorem 2, R;(Sy) < H(S,), we have Ri(Sy) = r(8S) = H(So). The
chain of inequalities

H(SY) = Rs(S0) = Ro(So) = R(SP) < Ru(SY) < H(SY)

completes the proof of Theorem 3.

An example and an open question. We have associated with a set So of A, B
channels six capacities, according as (a) we face (1) the same unknown channel
in Sy each period, (2) an unknown channel varying arbitrarily in S, from period
to period, or (3) an unknown channel in Sp, selected each period by a jammer
with knowledge of previous inputs and outputs, and (b) we are restricted to
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pure codes or are allowed to use random codes. Of these six numbers, we have
evaluated four: 7(S,) and R:(So), 7 = 1, 2, 3.

The evaluation of 7,(Sp), 73(Sy) remains unsolved. We conclude with an
example in which 72(S)) = 735(S0) = 0, while Ry(.S)) = Rs(Sy) = 4. This ex-
ample illustrates that, against an unknown arbitrarily varying channel, or against
a jammer, random codes are a real improvement over pure codes.

In our example, S, consists of two noiseless channels, labeled 0 and 1. Each
channel has two inputs, 0 and 1, and three outputs, 0, 1, and 2. Channel 7 trans-
mits input ¢ perfectly, but changes the other input 1 — 7 into 2:

Input Channel 0 output Channel 1 output
0 0 2
1 2 1

We shall prove that, for any number N and any pure D, U, V code ¢ = (s;, s2),
there is a channel s ¢ S, for which

(18) 7(s,¢) 2 (G — 1)/2G,

where G = | D | = number of messages in D.

Thus no set with two or more messages can be transmitted by a pure code
with average error probability less than 1 over every sequence of channels in
So, no matter how many transmission periods are allowed. It follows that
r2(80) = 0, and a fortiori r;(Sy) = 0. On the other hand, our formula

R3(Sy) = max min E,,J ..(X, Y)
@ se8)
yields R5(So) = 3, with @ = (3, 1) as the maximizing input distribution and the
channel s with matrix

30 3|
0 3 3|

the midpoint of the channels in Sy, as the minimizing channel in Sy .

To verify (18), let N be any positive integer, let D be any message set with
| D | = G elements, and let ¢ = (s;, s2) be any pure D, U, V code. Let z4, denote
the nth input specified by ¢ for transmitting message d, and let x4 denote the
vector whose coordinates are 4., n = 1, 2, ---, N: x4 is the vector in U for
which s,(d, ) = 1. Let us denote by s(d) that U, V channel in S, which trans-
mits z, perfectly: s(d) has channel number z,, as its nth coordinate. We note
that the output v corresponding to any input % and any U, V channel s ¢ S, has
for its nth coordinate the common vaue of the nth coordinate of « and the number
of the nth channel of s, if these numbers agree, and has 2 if they do not. Thus,
denoting this output vector by v(u, s), we have

v(za, 8(d')) = v(za , s(d)).

The probability p(d, d’) of an error in transmitting message d over channel
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s(d’) is 0 if v(za, s(d’)) is decoded as d, and 1 otherwise. If d’ > d, the vector
v(za, s(d")) = v(za , s(d)) cannot be decoded as both d and d’, so that p(d, d’)
+ p(d’, d) = 1 for d = d. Summing this inequality over all pairs d, d’ with
d # d yields

2G; 7(s(d), ¢) = G(G — 1),

so that, for some d, v(s(d), ¢) = (G — 1),/2G, and (18) is verified.
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