TWO-STAGE EXPERIMENTS FOR ESTIMATING A COMMON
MEAN!

By Donarp RicHTER

University of North Carolina?

Summary. Let =, w2 be two normal populations with common mean g and
variances o , o3 , where the parameter values are unknown. Suppose that it is
desired to estimate u, and that the experimental procedure is to take m obser-
vations from each population, compute variance estimates, and then take
n — 2m observations from that population with the smaller observed variance,
where n has been fixed beforehand. Let R.(0, m) = Vo E(4# — u)* be the risk
of the estimator &, where Vo = ™" min (¢}, ¢3) and where 8 = o3/0; . For a
class of “best” estimators, it is shown in this paper that supeR.(0, m) — l.as
n — oo if and only if m/n — 0 and m — « asn — o ; that min,, supeR.(8, m) ~
1 + Cntasn — «; and that the minimax sample size is m ~ Cntas n — .

1. Introduction. This investigation treats the problem of estimating the com-
mon mean p of two populations using a fixed number 7 of observations. If the
population variances were known, the most efficient procedure would be to
take all n observations from that population with the smaller variance. When
prior information about the variances is lacking or is too vague to be quantified,
it is natural to consider the procedure which consists of taking a preliminary
sample of size m from each population, computing estimates of the variances,
and then taking the remaining » — 2m observations from that population with
the apparently smaller variance. Since, if m is chosen too large or too small, the
advantage of the two-stage sampling scheme over the procedure of simply tak-
ing n/2 observations from each population will be lost, the problem arises of
determining for some good estimator an optimum choice of m as a function of =,
not dependent on the unknown variances.

As an example, we may suppose that we have available two devices for meas-
uring a physical constant, that each measurement is expensive or time consum-
ing so that their total number is limited, and that we wish to estimate the con-
stant as accurately as possible.

For related work on two-stage experiments with a fixed total sample. size,
reference should be made to Ghurye and Robbins [2], where it is shown that the
ratio of the variance of a certain two-stage estimator for the difference of two
means to the minimum variance tends to unity as the sample size increases, and
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ESTIMATING A COMMON MEAN 1165

to Putter [3], where an analogous result, among others, is obtained for a double:
sampling rule for estimating the mean of a stratified population. In neither paper-
is any indication given as to how the first-stage sample size might be chosen as
a function of the total sample size. For an introduction to the problems of se-
quential experimentation, see Robbins [4].

In Section 2 the problem will be formulated explicitly, and a suitable risk
function will be defined. In the remaining Sections, where the populations are
assumed normal, necessary and sufficient conditions for the risk to converge to
unity will be obtained, and the asymptotic minimax value of m will be derived;
these results will be seen to be, in a certain sense, estimator-free.

2. Formulation of the problem. In this section, the problem will be formulated
in an explicit and convenient manner.

Let Xy, Xp, X5, ---and Y1, Y;, Y, - - - be mutually independent random
variables with common mean u and Var X; = ¢} and Var ¥; = o3; write 0 =

a%/ o1 . Let
m m 2
; Xxi-(3x) /m
Sg m 2' . m 2 K

>ri-(Xv) /m

1 1
so that 1/R is the usual estimator of # based on 2m observations. Then our pro-
cedure is first to observe X;, Xz, -+, X, Y1, Y2, -, Y, , and secondly
to observe Xpq1, *+*y Xnem if R < 1, Youyq, » -+, Yyor otherwise.

Writing X», = >.1' Xi/N1 and Py, = D>_1*Y;/N,, we will consider esti-
mators i of x which can be written in the form

(1) ﬁ’ = AX-N] + BYNg )

where Ny, N, A, B are random variables such that Ny = n — mif B < 1,
Ni=mifR=21,Ni+N,=1n0=4=<1,0=B=l,andd+B=1
with probability one; and, in addition, where 4 and B are such that

(1') EHXk = EXk 5 Ex?z = EY: ) EanYz = EHXk'EH?z 3
ExXi = EXi, ExY!=EY] forallk,l,

where Ex(-) = E(- |H) and H = (4, B, N,, N,). If the X; and the Y; are
assumed to be normally distributed, then, recalling that the sample mean and
variance are independent for normal populations, Assumption (1’) may be re-
placed by the assumption that 4 and B are functions of the sample variances
only. Restriction to estimators of form (1) seems reasonable since, if observa-
tions are available on X3, +--, X,,, ¥, -+, ¥,,, the variables are normal,
and @ is known, aX,, + bY,, is the uniformly minimum variance unbiased
estimator of u, where @ = m0/(m0 + ns), a + b = 1.

Next, let Vo = (1/n) min (o3, ¢3), which is the variance of the standard
estimator of u for the case when sgn (¢3 — 1) is known beforehand, and define

R




1166 DONALD RICHTER

Ra(8, m) = Vi'E(fi — u)’ to be the risk function associated with the estimator
f. That R,(6, m) = V' Var /i follows from the first part of the following theorem.
TrEOREM 1: For any estimator of form (1),

(a) Ejp = p,
(b) R.(6, m) = nmax (1, 1/60)E{A*/N, + 6B*/Nj},
(¢) R.(6, m) = nmax (1, )E{1/(N. + N:16)} = 1.

Proor. Since Exfi = AEaXy, + BEgYx, = p, B = u. Next, Ex(i — u)* =
Ex(AXy, + BYy, — p)* = A%1/N; + B’s3/N, which proves (b) since R,(6, m)
=V E{Ex(i — u)%. Finally, A’/N; + 0B*/N, has a unique minimum with
respect to A = 1 — Bat A = N:6/(N: + Ni6) so that E{A*/N; + 6B*/N3} =
0E{1/(N: + N:0)} which proves the left-hand inequality of (¢); since N +
N6 < nmax (1, 8), the proof is complete.

It will be instructive at this point to examine the risk function for the usual
one-stage experiment for estimating x, which would be to observe n/2 of the X;
and n/2 of the Y;. If we confine attention to estimators u’ such that Eu’ = pu
and assume the variables normally distributed, then Var u’ = 203/n(1 + 6),
since (X + ¥)/(0 + 1) is the minimum variance unbiased estimator with
variance 203/n(1 + 0) when the variances are known. Then, R(8) = (Var u’)/
Ve = 2max (6, 1)/(1 + 6) and 2max (6, 1)/(1 + 60) = 1 with equality if
and only if § = 1. Hence for each fixed § > 1, the risk function is bounded
away from unity independent of the sample size. One would hope that the risk
for the two-stage scheme would prove to be smaller, and we shall see-for large
samples at least—that this is in fact the case if m is suitably chosen.

Returning to the two-stage experiment, it is clear that, once an estimator is

specified, the only variable left at the statistician’s disposal is the quantity m.
Then, given an estimator of form (1), we may say that any real-valued function
m(n) which satisfies 4 < 2m(n) < nfor all n = 5 is a solution to the problem.
Can we find an optimum solution?
. With respect to an estimator of form (1), we shall call m(n) a uniformly
consistent solution (u.c.sol.) if supsR.(6, m(n)) — 1 as n — «; where they
exist, we shall restrict attention to such solutions. Further, if supeR.(8, m) < o,
. a solution which minimizes supsR.(8, m) will be called a minimax solution
(m.m.sol.). If there exists a u.c.sol.,, then a m.m.sol. is u.c. too. Hence, the
minimax principle affords a means of choosing one solution from the class of
u.c. solutions. :

3. A simple estimator. In this section an asymptotic minimax solution will be
derived for a particular unbiased estimator. In this and the following section,
we shall assume that the X;’s and the Y’s are normally distributed. Hence,
RO = Sio3/S301 obeys the F-distribution with m — 1, m — 1 degrees of freedom,
and we may write

' ) -1 pw
I(o’ m) = Pr{R g 1} = B (1n_-2___]:, 72?—_]:) ./; x(m-S)lz(l + w)l—'m d:L‘.
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We now define 4; = 4, Xy, + BiYw,, where 4, = 1 or 0 accordingas R < 1
or R = 1. This estimator has form (1) and, by Theorem 1, £, is unbiased and

R1.(8,m) = nmax (1,1/6) E{A}/N: + Bi6/N,}
= nmax (1,1/6) l:l :L 1(6, m) + 61(e, m):l

‘ - m n—m
= max (1,1/8)(1 — m/n)"* [1 4 (6 — 1) I (8, m)].

It is easy to show that R;.(6, m)\' = R1.(1/8, m) by using the fact that I(6, m) =
1 — I(1/6, m); thus, when considering supsR1.(6, m), we may restrict ourselves
to 6 = 1. Before continuing with the study of the risk of the proposed estimator,
we introduce some lemmas.

Lemma 1: For 6 = 1, 1(6, m) < [261/(1 + o)™

Lemma 2: Let 6 = 1 + 2rm™? Forr = 0 and T bounded, I(8, m) — &(—7) =
o(m™) uniformly in r asm — .

Proor or THE LEMMAS: To begin with,

I(6,m) = Pr{R0 = 6} = Pr{m;—l U.-/mZI:IV.- = 0} = Pr{Sn. = 0},

where Sy = Z1 + - + Zn, Zi = U; — Vi, and Uy, Uy, +++ , U
Vi, Va, -+, Vma are independent random variables, each obeying the chi-
square distribution with one degree of freedom. Then Z,,Z,, ---, Z,; are
independent and identically distributed random variables, EZ; = 1 — 6 < 0
since by hypothesis § = 1, and Var Z; = 2(1 + ¢) = 4.

The moment generating function of Z; is

M(t) = Ee'™ = [1 + 2(8 — 1)t — 46

Using the Chebyshev inequality, 7(8, m) = Pr {Sm_1 = 0} < Ee"*™* = [M ()™,
t = 0. Since M (t) is a2 minimum at ¢ = (6 — 1)/46, we obtain Lemma 1.

Next, let F.,—1(z) be the distribution function of the variable (8,1 — ES.-1)/
(Var Spy)? so that 1 — I(6, m) = F,i(z) when z = (8 — 1)
(m— D201+ AHifo=1+2m?, 7> 0and r = O(1), thenz = r +
¢(r, m) where e(r, m) = O(m™?) uniformly in 7. Noting that  bounded implies
6 bounded, and that

| Z; — BEZ; | < 8{ | Z:|° + | EZ: "} < 8{(U; + 0V.)* + (6 — 1),

we observe that E | Z; — EZ;|® is bounded. Then the Berry-Esseen Theorem
[1] states that

(2) | Fua(z) — ®(z)| £ CE{|Z: — EZ:[}/(Var Z:)}(m — 1)}

for all z where C is a constant. Since (Var Z,)! = 8 and (m — 1)} > ml/2,
we find from (2) that F,._i(z) — ®&(z) = O(m™) uniformly in . But ®(z) —
®(r) = O(m™*) uniformly in r since | ®(z) — ®(7)| < | e(r, m)| . Then Fpy(z)
— &(r) = O(m™) uniformly in r and, since 1 — I(6, m) = F,_i(x), the proof
of Lemma 2 is complete.
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Now let K(6,m) = (6 — 1)I(6,m) for 6 = 1 and take m = 4. Then K (6, m)
is continuous in 6, K(1,m) = 0, and K(6,m) > Ofor 1 < § < «. From Lemma
1, K(8, m) < 4(26"/(1 + 6))™*; therefore K(6, m) < 4 and K(§, m) — 0
as § — «. Hence K(6, m) has an absolute maximum with respect to 6, 1 =
0 < . Using the integral representation of I(8, m), straightforward differen-
tiation yields

FK@,m) _ (m —3) 0™ %" —20(m +1)/(m — 3) + 1)
T 2060 + 1™ B((m — 1)/2, (m — 1)/2) '

Hence,

<0ifl1 =6<6
=0ifg = 6

> Oif‘0> 6o

where 6 = 1 + 2}(m — 1)/(m — 3) + 4/(m — 3). It follows that K(6, m)
has exactly one maximum w.r.t. 6, and that the maximizing value of 9 satisfies
the inequality, 1 < § < 6. Next, let 6 = 1 + 2:m™, 7 2 0, 7, = (60 — 1)mi2™
= 0(1), so that m! maxpcs, K (6, m) = max,,,271(8, m) = max,<, ,2r®(— r)
+ O(m™) by Lemma 2. The root of the equation ®(— 7) — r¢(r) = 0 gives
the r-value which maximizes +®(— r); call this root r’ (approximately .75) and
let ¢ = 27’®(— ') (approximately .6). We have proved the following result.

Lemma 3: For 6 = 1, (8 — 1)I(6, m) has a unique, absolute maximum with
respect 10 0 at 6 = 1 + 27'm™* + o(m™), and maxs(6 — 1)I(6, m) = em™ +
O(m™), where ', ¢ are positive constants defined above.

Returning to the expression for the risk, we find that maxR;.(6, m) =
maxy»1Ri.(6, m) = (1 — m/n)"*(1 + em™ 4+ O(m™)) by Lemma 3. Suppose
now that maxyRi.(6, m) — 1 as n — . Then of necessity (1 — m/n)™" — 1
and cm™ — 0 as n — «, implying respectively that m/n — 0 and m — o as
n — . Since the converse is obviously true, we have proved that m(n) is
u.c. if and only if

9’K(6,m)
a6°

* m(n)/n—0 and m(n) = o as n— w.

That is, (*) characterizes the class of u.c. solutions for #, . We can now deter-
mine the m.m. sol.

THEOREM 2: The minimax solution for fiy is m(n) = (en/2)* + O(n?) and
min, maxRi.(0, m) = 1 + 3(¢/2)* + 0(n7?).

Proor: For all u.c. solutions, and hence for the m.m. sol., maxsR;.(0, m) =
1+ m/n+ em™ + ewherem = m(n) and ¢ = emt/n + O(m*/n?) + O(m™) =
o(m/n) + o(m™). Both m/n and m™* converge to zero as n — <, one being
an increasing function of m, the other a decreasing function. Hence a necessary
condition for a minimum is that m/n and m™* be of the same order of magni-
tude. Hence maxeR.(0, m) ~ 1 + m/n + em™ as n — . The expression
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m/n + c¢m™* has a unique, absolute minimum at m = (cn/2)%, and finally,
taking into account the order of magnitude of ¢, we obtain Theorem 2.

4. A class of estimators. The estimator £, , though undoubtedly satisfactory
in some instances, is a relatively simple function of the observations, and one
may therefore ask if better (in the sense of smaller risk) estimators exist and—
if they do—if results like Theorem 2 can be found for such better estimators. We
shall see that the answer to both questions is in the affirmative.

We begin by defining f, = (N:6Xy, + N:¥w,)/(N10 + N3), whose risk is
R:.(0, m) = nmax (1, 0)E{1/(N:10 + N:)}; then R,.(8, m) is a lower bound
for the risk of all estimators of form (1) by Theorem 1(c¢). Though f; has form
(1), it is not in fact an estimator, except in the case when 6 becomes known
at the completion of sampling. If § — 6 in probability, a natural way to obtain
a bona fide estimator from f, is to replace 8 by 8. It is mathematically con-
venient to use a § based on the first stage only; we take § = 1/R, and define
ﬁs = (N1XN1 + NzRYNz)/(Nl + NzR).

The motivation for 4; may be seen in another way. As mentioned in Section 2,
for a one-stage experiment with 8 known, = (10X, + n:V.,)/(mé + ns)
is the UMVU estimator of x. When 6 is unknown, it is customary in practice to
use the estimator obtained from 5 by replacing 8 by 6. If one takes 6 to be the
usual estimator of 6 but based on 2 min (%;, n;) observations, and if one re-
places the numbers 7; , 7. in 7 by their values in our procedure, i.e., by the ran-
dom variables Ny, N., the result is g, .

Another estimator which might be considered is s, the grand mean of all
the observations: iy = (N1Xw, + N:Y»,)/n. Then

Rix(0, m) = (1/n) max (1, 1/0)E{N; + N6}
= (1/n) max (1,1/8)[(n — m + m8)[1 — I(8, m)] + [m + (n — m)611(6, m)]
= max (1, 1/6)[1 4+ (6 — V)[m/n + (1 — 2m/n)I(0, m)]]
50 that supsRu (8, m) > (m/n) supes1(8 — 1) which tends to « as § — «. We
conclude that for fi; there exist no u.c. solutions and no non-trivial m.m. solu-
tions. (Note that fs would be worthy of consideration if it were known a prior:
that 0 was close to unity, since Riu.(1, m) = Rs.(1, m) = 1 and since it can be
shown that Ry.(8, m) > Ru(0, m) forz < 6 < 2.)
Before discussing the proposed estimator fi;, it will be convenient to study
first fi. and R..(8, m). By evaluating the expectation,
Rzn(o, m) .
= nmax (1, 9)[[L — I(6, m)]/[(n — m)8 + m] + I(6, m)/(mb + n — m)]
= max (1, 1/0)[1 + (6, m/n) + r:(0, m/n)I(0, m)],

where (8, m/n) = (m(6 — 1)/n8)/(1 — m(6 — 1)/n8) and r(8, m/n) =
(1 — 2m/n)(0 — 1)/[1 + (m/n)(1 — m/n)(8 — 1)*/6]. As for Ry.(0, m), we
have Ry.(0, m) = Rs.(1/68, m).
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Now let i be any estimator of form (1) such that supeR.(0, m) <
maxoR1.(6, m) + o(1). If m/n — 0 and m — o« asn — oo, then maxeR;,(6, m)
and hence supsR.(6, m) tend to unity as n — o. If on the other hand
supeR.(6, m) — 1asn— oo, then, since Rz.(0, m) < R.(0, m),supsRen(6, m) — 1
as n — . But supeR2.(0, m) = supsz1Re.(0, m) and, for = 1, R,,.(6, m) =
1 + 1 + rl is the sum of three positive terms. Therefore, (i) supsxir1(6, m/n) —
Oasn— o, and (ii) supszira(8, m/n)I1(0,m) — 0 asn — oo. Since r,(6, m/n) =
m(9 — 1)/n6, (i) implies that m/n — 0 as n— «; for any fixed ¢ > 1,
r2(6’, m/n) is bounded away from zero, so that (ii) implies that I(6’, m) — 0
asn — o, and so m — o asn — . We have proved the following result.

THEOREM 3: For any estimator of form (1) whose risk satisfies supeR.(0, m) <
maxsR1.(6, m) + o(1) as n — o, m(n) is u.c. if and only if condition (*) holds.

At this point we introduce a lemma.

Lemma 4: Let 6 = 1 + 2rm ™t and let C be a positive number. If 2r > C, then
(8 — 1)I(6, m) < m 2 for m, C sufficiently large.

Proor: Let L(0,m) = m*(6 — 1)1(6,m) = 271(0, m) < 2+(26%/(1 + 0))™!
by Lemma 1. Since 26'/(1 + 6) = 1 — (1/8)(6 — 1)* 4+ 0((6 — 1)), there
exists a number 6; > 1 such that log (26*/(1 + 6)) < —(8 — 1)*/16 for 1 <
0 <6,.Thenforl <0< 6,

log L(8, m) < log 2r + (m — 1) log (26'/(1 + 6))
<log2r — (m — 1)(6 — 1)*/16 < log 27 — (27)%/32.

For 27 > C and C larger than some constant, log L(8, m) < —(27)2/64 <
—C/64 which proves the lemma for 6 < 6, . If we now require m! > 27//(6, — 1),
then, by Lemma 3, (6 — 1)I(6, m) is a strictly decreasing function of 6 for
60 = 6, , which completes the proof.

We want next to determine the minimax solution for 4, . For this purpose, we
may assume with no loss of generality that = 1 and (*) holds. Then, Ry,(6, m) =
1+ (8, m/n) + r2(8, m/n)I(6, m), where

0.5 (o, m/n) = 3= (m(0 — 1)/n8)’ < 2m(0 — 1)/m < 1,

r2(8, m/n) < 6 — 1for 6 = 1and (6, m/n) = (6 — 1)[1 + O(m/n)] uniformly
in any bounded 6 interval. We will employ a four-fold dissection of the set of 8
values in order to find supeR;.(6, m).
Case 1: {6:1 < 6 < 1 + Cm™* where C is a large number. Since r1(0, m/n)
< 2Cm?*/n, one finds from Lemma 3 that
maxpRya(8, m) = 1 + em™ + O(m™) + o(m/n) = py, say.
Case 2: {0:6 > 64n/m}. Since

Rou(0,m) > (1 = m/n) =1+ m/n + m’/n> + - = p,,

say, as § — o, and since (1 — m/n)™ — 1 — (0, m/n) > m/nb, we have
pz — Ron(0, m) > m/nb — r:(6, m/n)I(6, m). From Lemma 1,

r2(8, m/n)I(6, m) < 4(4/6)" ",
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80 that, for m = 7, po — R.(0, m) > m/no — 4(‘4/0)2 which is positive for

6 > 64n/m. Hence, supeR2.(0, m) = px. _
Case 3:{6:1 + Cm™ < 6 < 6’} where ¢ is a number satisfying 4 < 6’ < 128.

Then, ‘
(6, m/n) < r (0, m/n) = m(0' — 1)/n8" 4+ (m(¢’ — 1)/n6')* + ---
and
r2(6, m/n)I(0, m) < (8 — 1)I(6, m) < m e /%
by Lemma 4. Suppose m/n = o(m™?); then
‘Roa(8, m) < 14 m e % 4 o(m™)

which is smaller than p; for C, m large enough. Otherwise suppose mt = 0(m/n);
" then

Rea(8,m) < 1+ m(8' — 1)/né' + e %% O(m/n) + O(m*/n?)
which is less than p, for C, m sufﬁciently large.
Case 4: {0:6' < 6 < 64n/m}. Then,
r(0, m/n) < m/n + (63/64)m’/n® + O(m’/n®)
and
ro(0, m/n)I(6, m) < 4(4/6)" 0% < 45™°

where 8 = 4/’ < 1. Suppose 6™ = o(m’/n’); then Rs.(6, m) < 1 + m/n +

(63/64) m’/n® + o(m’/n’) which is smaller than p;. Else suppose m’/n’ =

0(8™%); then Rsn(8, m) < 1 + O(8 ") which is smaller than p; .
Combining the results of the dissection, we have

(3) Sl‘:p RZn(oy m) = max [Pl ) P2]

for sufficiently large m. To minimize (3), we equate p; and p , obtaining
(4) 1+ cn™t 4+ 0(n7),
(5) m(n) = (en)? + O(n')

as the m.m. risk and m.m. sol., respectively, for R».(8, m). Moreover, if we let
e > 0 be any function of n which is O(n™?), the results (4), (5) will hold for
any R.(8, m) such that Rs.(0, m) < R.(8, m) £ R:(6, m) 4+ €. ; Theorem 3
will apply also. We summarize these results as follows.

THEOREM 4: Let fi be any estimator of form (1) whose risk satisfies R.(6, m) =
R2n(8, m) + e, where e, = O(n™Y). Then for , the class of w.c. sols. is character-
ized by (*), and the m.m. risk and the m.m. sol. are given by (4) and (5) respec-
tively.

Let us return now to the estimator g; = A;Xy, + B:¥y, where 4; =
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N1/(N:1 + N:R), whose risk by Theorem 1 is
R3.(6, m) = nmax (1,1/6)E{A3/N, + 6B3/N,}
= n max (1, 1/0)E{(N; + N.R*9)/(N, + N:R)%.

Let Z = R0 so that Z obeys the F-distribution with m — 1, m — 1 d.f.; denote
by F(z) the distribution function of Z, so that F(z) = 1 — I(z, m). Then,
R3.(6, m) = max (8, 1)E{(N:6/n + N.Z°/n)/(N:18/n + NsZ/n)%, or

R3.(8,m) = max (6,1) _/: T,dF(z) where
(6)
2 2 m/nifz < 6,
T,=((1—-&)0-*—&2)/((1—*&)0-]—0:2), a={1_m/nlf320,
or
- *(1 —m/n) 6 + (m/n)d
gy em @D L i r

® (m/n) 6 4+ (1 — m/n)2*
v (i) 6+ (L = mma (z)]’

where dF (z) = [B((m — 1)/2, (m — 1)/2] 2™ ®2(1 4+ 2)* ™ dz. By substi-
tuting w = 1/zin (7), using the fact that dF (z) = —dF(1/z), and simplifying,
one shows that R;.(0, m) = Rs.(1/60, m).

Next, write Ty = 1/((1 — )60 + a) so that Ry,(8, m) = max (8,1)foT: dF (z2).
Using (6), define D,(6, m) = R3.(0, m) — R2.(6, m) = max (6, 1)foU, dF(z)
where U, = T, — Ty = o(l — a)8(z — 1)*)/[((1 — )8 + a2)*((1 — a)6 + a)].
Obviously D.(6, m) = 0 and D.(8, m) = D,(1/6, m) by the properties of the
risk functions; moreover, D,(0, m) > 0 for 0 < 6 < o« since U, > 0 except
when z = 1, an event of measure zero. And since U, £ (m/n)(1 — m/n)™"
(2 — 1)*/6 for all z and for § = 1, we have D,(6, m) < (m/n)(1 — m/n)™"
[e(z — 1)* dF(z) forall 6. But [§(z — 1)’ dF(z) = 4(m + 1)/(m’ — 8m + 15) <
56/m for m = 6. Since (1 — m/n)™" < 2, we have proved that

(8) D,.(8, m) < 112/n, forall 6and 6 < m < n/2.

Therefore, the solution for the proposed estimator f; is specified by Theorem 4.

The last result implies that the m.m. risk for f; is ~1 + ¢!n™ and from
Theorem 2 the m.m. risk for f; is ~1 4+ 3(¢/2)*n ™. Since ¢! < 3(c/2)}, this
provides one reason for preferring f; to 4; ; an additional reason is given by the
following result: Given any 6, 0 < 6 < o, one can find an my such that
R;.(0, m) < Ry.(6, m) for m = me. This is easy to see since Ry,.(6, m) —
R:n (8, m) = [§(W — 6T:) dF(z), where W =(1.— m/n)"if 2 < 6, W =
6(1 — m/n)"" if z = 6, and where we assume with no loss of generality that
6 = 1. Noting that W — 671 > m/6n for all 2z, and introducing (8), one ob-
tains the desired result.
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We see then that the main result of this paper is embodied in Theorem 4
where it is shown that the solution (5) holds throughout a certain class of best
estimators. Moreover, by the inequality (8), it is shown that {; is a member of
this class and that, if there exists an estimator of form (1) with uniformly smaller
risk than that of @, it has the same large sample solution.

The author is deeply indebted to Professor Wassily Hoeffding for suggesting
this problem, and for his advice and encouragement throughout the course of
the work. The author is grateful to editor W. Kruskal and the referee for their
helpful comments.
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