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1. Introduction. Let X;, X,, ---, Xx be a random sample of size N (inde-
pendently and identically distributed random variables) from a population with
distribution function F(z). It is known that the population can some-
times be characterized by the independence of a suitable statistic’ S =
S(X:, Xz, -+-, Xv) and the sample mean X = > 7, X;/N. If 8 is a poly-
nomial statistic then the independence of S and X yields a differential equation
for the characteristic function of F(x). In order to determine F(z) we must
study this differential equation and find all its positive definite solutions. In the
case of certain polynomial statistics, such as the k-statistics or quadratic poly-
nomials, it is comparatively easy to obtain all positive definite solutions of this
differential equation. In many cases however, this procedure is not feasible since
it is often very difficult to decide whether a given function is positive definite.
If we consider, for example, a normal population then any central sample moment
mp = D1 (X; — X)?/N and the sample mean X are independent. But, when
we investigate whether this property characterizes the normal population for
p > 3, then it is practically impossible to determine all positive definite solu-
tions of the corresponding differential equation.

In the present paper we prove the following theorem.

THEOREM. Let X1, Xo, - -+, Xn be a sample of size N from a certain popula-
tion. Let p be a positive integer such that (p — 1)! s not divisible by N — 1. The
population is normal if and only if the sample central moment m, of order p s
distributed independently of the sample mean X.

Remark. The condition that (p — 1)!is not divisible by N — 1 is satisfied
fN>(p-1)!+1.

For the proof of this statement we use a theorem which was recently derived
by Linnik [1] and Zinger [2].

In Section 2 we derive two combinatorial lemmas which are essential for the
proof of the theorem. In Section 3 we give some analytical results and deduce
finally the theorem in Section 4.

2. Combinatorial lemmas. Let x, ,‘xl , *++, %, be n + 1 real variables. Sup-
pose that v
(2.1) P=P®@,Z1, ", %) = Z* A,-oj,...,',,xg"xi" gl
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is a polynomial of degree p with real coefficients. Here and in the following the -
summation Y_*is extended over all non-negative integers jo, j1, - - - , j» Which

satisfy the condition jo + ji + -+ + j» = p. If we replace each zi* by »'¥% =

v(iv—1)--- (v —jy + 1) in the polynomial P, we obtain a polynomial

* Sy G
(2.2) Tp = Wp(l’) = Z Ajojl...j“ V"o)v(’l) A

of degree p in the real variable ». We write here »® = 1. The polynomial =,(») -
is called the adjoint polynomial of P. ‘ ’
In this section we study the adjoint polynomial when P has a special form.
LemMa 2.1. Let

P=Pm,z, o) =2 (m—8&7
. ' k=0
where & = Y moai/(n + 1). The adjoint polynomial of P is then
s ()62
Proor. We note that

23) (-2 = (( TS S (i - o) (=t

Here (p; jo, =+ 5 Jn) = PY(Jo! -+ jal) is a multinomial coefficient. It follow
from (2.3) that

P= (( _I_l)l)pEZ (Do -+« ga) (—n) el « -+ il

Therefore
- R () ()
™= (n+1),_12 (=m)® gn)
We write
—3 * — jo V o o o V
= e (5) -+ (7)
so that
(24) m = (—=1)%pley/(n + 1)7.
It is easy to verify that
(2.5) depa® = (1 —nx)’(1 + )",
p=0
Thus

w  eEer((r)

Lemma 2.1 follows immediately from (2.4).
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Lrmma 2.2. Let
P =P(xo, o1, ,%) = Z(xk - z)?,
k=0

where 8 = (n + 1)1 eo 2k . If (p — 1)!1s not divisible by n, the adjoint poly-
nomial m,(v) of P has no non-zero integer roots.

Suppose that for some integer v, » > 0, we have 7,(») = 0. Then, for that
~ value of », ¢, = 0 and, according to (2.6),

()= (G- ()G o)+ o)
Thus, multiplying by p! and cancelling the common factor ny, we find that
(v —1)(nv—2) - (mv—p+1)=0 (mod n)
so that (p — 1)! = 0 (mod n). Lemma 2.2 follows immediately.

3. Some analytical results. Let P(z:, Z2, --- , zv) be a polynomial of degree
p = 1. We say that it is an admissible polynomial if the coefficients of the terms
zf(j = 1,2, ---, N) are not zero.

We state the following lemma which is due to Zinger [2].

- Lemma 3.1. Let X, , Xz, - -+ , X be a sample of size N from a certain popula-

tion. Let P = P(Xy, X,, -+, Xx) be an admissible polynomial statistic and let
A= > Y,X;.If Pand A are independently distributed then the common charac-
teristic function f(t) of the X1, X, , -+ -, Xn is an entire function of finite order.

LeMMA 3.2 (Theorem of Marcinkiewicz). Let P, (t) be a polynomial of degree m
and suppose that f(t) = exp [Pn(t)] ¢s a characteristic function. Then the degree m
of P.(t) cannot exceed 2.

LemMa 3.3. Suppose that the conditions of Lemma 3.1 are satisfied and that the
characteristic function f(t) has no zeros in the entire complex plane. Then the
population is normal. ,

The function f(¢) is an entire function of finite order m without zeros. Ac-
cording to Hadamard’s factorization theorem, f(t) = exp [Pa(t)]. The state-
- ment of Lemma 3.3 then follows from the theorem of Marcinkiewicz.

Before proceeding further we introduce a special class of polynomials. Let

Jj JiN
Pz, @a, - ,an) = 2, Ajjytlt - ¥
i1t Finsp

be a polynomial of degree p. It can be written as the sum
P(x11x27 e ,Itzv) = Po(xlyx2’ e )xN) +P1(x1,x2, e 7xN))

where
N

Po(a:l,xz, e ,Z'N) = Z 1‘1]’,...1‘1\,@'{l e TN

1 FiN=p

is a homogeneous polynomial of degree p, while Py(2, 22, -+, xx) is a poly-
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nomial of degree less than p. We say that the polynomial P(z;, Z2, + -+, Zv)
is non-singular if the following two conditions are satisfied:
(i) P(x1, 22, -+, z~) contains the pth power of at least one variable.

(ii) The adjoint polynomial w,(v) of Po(x:, 22, -+, z~) does not have a

positive integer root.

For the proof of the theorem we need the following lemma.

LemMA 34. Let X, , X2, -+ , Xn be a sample of size N from a certain popula-
tion. Let P = P(X:, X2, -+, Xn) be a non-singular admissible polynomial
statistic and let A = Y 31 X;. If P and A are independently distributed, then the
population is normal.

Lemma 3.4 is due to Linnik [1]. In his paper Linnik made the additional
assumption that the population distribution function has moments up to a
certain order. In view of Lemma 3.1 (due to Zinger) this assumption is super-
fluous. Since Linnik’s artiele [1] is not easily accessible while Zinger [2] only
states (a somewhat generalized version) of Lemma 3 4 without proof we give
here its derivation.

Since P and A are independent, we conclude from Lemma 3.1 that the com-
mon characteristic function f(2) of the random variables X , Xo, o0, Xnis
an entire function of finite order. The relation

(3.1) - §(Pe™t) = g(P)8(e"™)

holds for all complex z(z = ¢ + v; ¢, v real). First we show that the function
f(2) has no zeros in the entire complex plane. We write

f(i) =f(j)(2)_= (d’/dz’)f(z) — ijS(Xjeizx.)
and note that f¥(z) = f(2) = f. We see from (3.1) that
(3.2) . 2 Ail‘---mf(m e fY = Clf ()T,

1t -+IiNSDP
where C = "8(P).

We give an indirect proof and assume therefore that the function f(z) has
zeros. Let the point z = 2, be one of the zeros of f(z) which are nearest to the
origin and denote the order of the zero 2z by »(» a positive integer). We show
that this assumption leads to a contradiction.

Since f(z) does not vanish in the circle | z| < | 20| , we may divide (3.2) by
[f(2)]" and obtain

(3.3) Ro+ R, = C,
where
ful) v f(iN)
(3.4) ' Ro = Z A.jl...jN e a—
it Tin=p f
and
, Gy L. U ‘
R, = Z : Ajl...jN Jf————f———-

ik Fin<p : Vit
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Let ¢ = ¢(2) = Inf(2). It is then easily verified that

(3.5) FOUf = +0i(e, ¢ ) G=1,2,00)
where 6; is a polynomial in ¢’, ¢”, - - - , . We also write ¢® = 1 and 6, = 0.
We substitute (3.5) into (3.3) and get, for 2| < |2],
(3.6) So+ 8 = C,
where
(3.7 So = Z Ajyenigle™ + 05] -+ [0 + 65]

J1te s Fin=p
and

8 = . E Ail'"izv[(o(jl) + 0] - [(o(iN) + 0yl

J1te+in<p
Since
(38) f(z) = (2 = 2)’g(2),

where g(z) is an entire function and g9(20) 5 0, it is easy to verify that
¢'(2) = /(2 = 2) + h(2),
and, in general, that
(39) ) = [(-D)F'G = DBz — )] + hi(z2) (G =1,2, ).

The functions 4,(z) are regular at the point z = z, . We substitute (3.9) into
(3.6) and see that

Vo Y1 Y1 _
(3-10) (z — zo)p + (z — Zo)"'"l + -+ (z—_—zo‘)‘ + H(Z) = C,
where H(z) is regular at the point z = z,. We show next that v, # 0 and note -
that relation (3.10) leads therefore to a contradiction.

We remark that v, depends only on » and on the coefficients of the homo-
geneous polynomial Po(X:, X», -+, X»). We see that v, is the coefficient of
(2 — 20)7" in the expression which we obtain by substituting (3.9) into S, in
(3.7). We get the same value for the coefficient of (z — 2,)”" if we substitute
(3.8) into R, in (3.4). Since f(0) = 1 we see from (3.8) that g(0) = C; = 0.
We note that v, is also the coefficient of (2 — 2,)”” in the expression obtained
by substituting ¢(z) = Ci(2 — 2)” instead of f(z) into the right-hand side of
(3.4). We get '

\t'(j)(z) = Cly(j)(z - 30)’_"’ (.7 = 0’ 1,2,---, V)'

Therefore
_ GO LGN
Vo= 2 Ajggy® o)W,
i1t +iN=p
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Thus v, = mp(v), the adjoint polynomial of P, . Since P is a non-singular poly-
nomial w,(v) does not vanish for any positive integer ».so that v, £ 0. This
leads to the desired contradiction in (3.10) so that f(z) has no zeros.

The proof of Lemma 3.4 follows then from Lemma 3.3.

4. Proof of the Theorem. We show first that the condition is sufficient. It
follows from Lemma 2.2 that the sample central moment m, is a non-singular
polynomial statistic if (p — 1)!is not divisible by N — 1. Hence the theorem is
an immediate consequence of Lemma 3.4. The necessity of the condition fol-
lows from the well-known fact that in a normal population any translation-
invariant statistic is independent of the sample mean.
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