ON DEVIATIONS OF THE SAMPLE MEAN

By R. R. Bauabpur anD R. RancAa Rao

Indian Statistical Institute, Calcutta

1. Introduction. Let X, X., - - - be a sequence of independent and identically
distributed random variables. Let a be a constant, — o < a < o, and for each
n=12---let

(1) p,.=P(

It is assumed throughout the paper that the distribution of X; and the given
constant ¢ satisfy the conditions stated in the following paragraph. These condi-
tions imply that p, > 0 for each », and that p, — 0 as n — «. The object of
the paper is to obtain an estimate of p. , say ¢. , which is precise in the sense that

(2) go/Pn =1+ 0(1) as n— o,

Let ¢ be a real variable, and let ¢(¢) denote the moment generating function
(m.gf.) of Xi,ie,o(t) = E(e™),0 < ¢ < ». Define
(3) ¥(t) = e (t).
Let T denote the set of all values ¢ for which ¢(f) < «. We suppose
that P(X: = a) # 1, that T is a non-degenerate interval, and that there exists a
positive  in the interior of T such that ¢(+) = inf; {{(¢)} = p (say). These condi-

tions are satisfied if, for example, ¢(t) < o for all {, £(X:) = 0, ¢ > 0, and
P(X; > a) > 0. In any case, r and p are uniquely determined by

¢(r)
o(7)
where ¢’ = do/dt, and we have 0 < p < 1.

There are three separate cases to be considered.

Case 1: The distribution funection (d.f.) of X; is absolutely contlnuous, or,
more generally, this d.f. satisfies Cramér’s condition (C) [1, p. 81].

Case 2: X, is a lattice variable, i.e., there exist constants 2, and d > 0 such
that X, is confined to the set {xo + rd:r = 0, &= 1, = 2, -- - } with probability
one.

Case 3: Neither Case 1 nor Case 2 obtains.

We can now state

TurorREM 1. There exists a sequence by, by , - - - of positive numbers b, such that

X1+"'+Xn2a>
———-————n = .

(4)

=a and p=y(7),

(5) P = b, [1 + 0(1)], logb, = 0(1)

(2 @mn)t
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asn — . In Cases 1 and 3, b, is independent of n. This last also holds in Case 2
if P(X1 =a) > 0.

The proof of Theorem 1, and of Theorem 2 below, is given in Sections 2-5.
The present determination of b, is given by (4), (9) and (33) in Cases 1 and 3,
and by (4), (8), (37), (38) and (46) in Case 2. The following refinements of
Theorem 1 are available in Cases 1 and 2:

TuroreM 2. (Cases 1 and 2). For each j = 1, 2, - - there exists a bounded

(possibly constant) sequence c;,1 , cjz , - - - such that, for any given positive integer k,
_ p" Ci,n Ce,n Ck,n 1

(6) p"—(2—7rn)3b"|:1+_n_+ﬁz—+'“+_17]|:1+0(;1—m>]

asmn— .

The sequences {c;,.} are given explicitly for Cases 1 and 2 in Sections 3 and 4
respectively. It would be interesting to know whether (6) holds in Case 3 as
well, perhaps with the {c;,.} determined according to the formula for Case 1.

Estimates in the form (5) or (6) were first obtained by Cramér [2, pp. 20-21]
in the case when X; has an absolutely continuous component (so that Case 1
obtains). Cramér showed that in the latter case (6) holds for every k (with b.
and each c;,, independent of ), and determined b, . Our method of proof in the
general case (cf. Sections 2-5) is essentially a variant or extension of Cramér’s
method. Case 2 was treated recently by Blackwell and Hodges [3] by a different
method. It is shown in [3] that (6) holds for k£ = 1 in Case 2, under the restriction
on n and a that P(X; 4+ -+ + X. = na) > 0 for every admissible n, and the
requisite b, and ¢;,, (which are then independent of n) are determined explicitly.
Some other references bearing on the problem under consideration are [4], [5]
and [6].

In the following Section 2 it is shown that p, can be expressed as p" I, where
I, is a certain integral; 0 < I, < 1,and I, = O(n*) asn — «. I, can be esti-
mated by application of certain refinements [1], [7] of the central limit theorem.
This estimation of I, is carried out in Sections 3, 4 and 5 for Cases 1, 2 and 3
respectively. It may be added here that, as was pointed out in [2], direct applica-
tion of the central limit theorem (or refinements thereof) to p. defined by (1)
does not, in general, yield approximations g, which satisfy (2).

In Section 6 we describe certain numerical approximations to p, which are
suggested by Theorems 1 and 2 and their proofs.

2. Lemmas. Let Y; = X; — a, and let F be the (left-continuous) distribution
. function (d.f.) of Yy, F(y) = P(Y: < y). Let G be defined by G(2)
= [_wcy<sp € dF(y). Since E(£™) = y(r) = p, it is clear that G is a prob-
ability d.f.. Let Z; be a random variable distributed according to G.
Lemma 1. The m.g.f. of Zy exists in a neighborhood of the origin. We have

(7) E(Z) =0, 0< Var(Z) < .
Proor. Let £() denote the m.g.f. of Z; . Then £(t) = ¥(r + t)/p for all ¢,
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by (3) and the definition of Z, . Since ¢(f) < « in a neighborhood of ¢ = r,
it follows that £(¢) < e in a neighborhood of ¢ = 0. Consequently, E | Z, | < «
forr=1,2,3, - and E(Z1) = {d't/dt} .m0 . In particular, E(Z;) = {d&/dt} im0 =
¥'(r)/p = 0, since ¥(t) is minimum at ¢ = =, and = is in the interior of 7. It
remains to show that Var(Z;) > 0. Suppose to the contrary that Var(Z;) = 0;
then P(Z, = 0) = 1; hence P(¥; = 0) = 1, ie, P(X; = a) = 1, which is
contrary to our assumptions. This completes the proof.
Let Var(Z,) be denoted by o*. It follows from the preceding paragraph and

(4) that

2_<P”(T) 2
(8) T =0 a’.
Define
(9) a=o9gr, (0<a< »),

Let Z, , Z,, - - - be a sequence of independent and identically distributed random
variables. For each n, let

_ Zl + M + Zn
(10) U, = i
and
(11) H,(z) = P(U, < x), (—e0 <2< ),
LemMA 2. p. = p" I, , where
(12) I, =nta f ™ [H,(z) — Ho(0)] da.
0
ProoF. Let Y; = X; — aforj ='1, 2, «++ ,n. Then
pu=P(Yl+“’+Yn§0) by(l)
= [ [ are) - ar(un)
vite Um0
(13) =0 [ [ e age) - da)
21t o tzn 20
= [ e dn ) by (9), (10), (11)
0<a<0
=" I} say.

It follows by integration by parts that I defined in (13) is equal to I, , and this
completes the proof.
A theorem of Chernoff [4] states that p, < p" for every n, and that for any
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given positive po < p, we have p. = py for all sufficiently large n. A simple
proof of Chernoff’s theorem can be given as follows. Since 0 < H,.(x) —
H,(0)= 1 for every n and z = 0, we have I, < 1 and hence p, < p" for every
n, by Lemma 2. To establish the second part of the theorem, we note first that

limg.oHn(z) = ®&(x) for every z, where
(14) ®(z) = [ (2r) %M dt (—o <z < ),

by (7), (10), (11) and the central limit theorem. Let € be a positive constant.
Then

I,z2na fw ¢ ™" [H,(2) — H,(0)] dz

2H() — (Ol e [ ™ do

= [Ha(e) — Ha(0)] 6™,

Hence lim inf,,. {n? log I} = — ae. Since I, < 1 for every n, and since e is
arbitrary, it follows that n* log I, = o(1). Hence n™* log p. = log p + o(1),
by Lemma 2, and this is equivalent to the conclusion desired.

The preceding argument depends only on the central limit theorem. In the
following sections we estimate I, more accurately by substituting the expansions
of H,(z) due to Cramér [1] and Esseen [7] in the right side of (12). The remainder
of this section is concerned with preparations for this application of the Cramér-
Esseen expansions. Almost all the considerations of the following paragraphs
are well known, and we include them here only for the sake of completeness.

Let #(w) denote the m.g.f. of Z,/s. According to Lemma 1, n < « in a neigh-
borhood of w = 0. Forj = 2, 3, --- let A\; be defined by

(15) =% A= (Glo)Nd/d){log o)} e (G =3, 4, --).

It should be noted that jI\; is the jth cumulant of the distribution of Z;/s. The
m.g.f. of U, , with U, defined by (10), is

[n(w/n)]" = exp [n 3 \s(w/n)’).
Clearly, [7(w/n})]" exp (—w?/2) is analytic in a domain independent of =,

and can be expanded there as a power series in w. By regrouping the terms of
this series according to powers of n we shall have

(16) brCoo/ )16 = 3 7Y P y(w)

where the P; are polynomials. P; is of degree 3j, and P; is even or odd according
as j is even or odd. The first few polynomials are
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Po(w) =’ =1,
Pi(w) = A,
(17) Py(w) = At %}\gws,
Ps(w) = M’ + A’ + 3, _
Py(w) = New® 4+ (3N + Mho)w’ + Nnw'™® + Fodqw”,

Write 8 (z) = ®(z) and 87 (z) = (d'/d2")®(x) for r = 1,2, -+ , where & is
given by (14). Let P;(—®) denote the function of x obtained by replacing w"
with (—1)"®"(2) in the polynomial P;(w). It is clear that each P;(—®) is
absolutely continuous and of bounded variation in (— «, ). It should also be
noted that P;(—®) is square integrable with respect to Lebesgue measure.

In the following, for any function K(z) of bounded variation in (— o, ),
we denote the c.f. of K by x(¢ | K), i.e.,

(18) X1 K) = [ 6 aK()

for every real t. If K is absolutely continuous, x is, of course, (2r)} times the
Fourier transform of K’. The reader may refer to [8, Chapters I-III] for such
elements of Fourier transform theory as are used in this paper.

LemMmA 3. For every g, t, and z

(19) x(t| Pi(—®)) = P(it) e
and
(20) Pi(—®) = (2m)~* f_ ¢ P;(it) do(¢).

Proor. As is pointed out in [1, p. 49], we have
(21) x(t]®7) = (=) e
for r = 0,1, - . Suppose, for given j, that P;(w) = > r a,w", where the a,
and N are constants (depending on 7). Then P;(—®) = > g a, (—1)" 3" (2);
hence the left side of (19) equals D _o a, (—1)"x(¢ [®7); (19) now follows from
(21). The relation (20) follows from (19) by the inversion formula for the
Fourier transform, since dP;(—®) = P;(—®) dz, and db(t) = (2r) e dt.

A probability d.f. K(z) is said to satisfy condition (C) if

lim sup) e | x(¢| K) | < 1.

In the following lemma the F; are arbitrary probability d.fs.

Lemma 4. If F, satisfies (C), and if Fy is absolutely continuous with respect to F ,
then F, also satisfies (C).

Proor. In this proof, for any probability d.f. K let K* denote the symmetrized
d.f. defined by K*(z) = [, K(x + y) dK(y). We then have

x(t] K% = [ cos (1) dK* = | x(t| K) |

—00

for all ¢.
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Suppose, contrary to the lemma, that there exists a sequence {¢; :j = 1,2, - -}
such that |¢;| — « and | x(¢; | F2) | — 1 as j — . It then follows from the
above paragraph with K = F, that [Z, cos(¢;x) dFf — 1. Hence cos(tz) — 1
in Fj-measure. Since Fy-measure dominates Fy-measure, it is easily seen that
F3-measure dominates Fy-measure. Consequently, cos(¢jz) — 1 in Ff-measure.
It now follows from the above paragraph with K = F; that | x(¢;| F1) |' — 1
as j — o, which is impossible. This completes the proof. :

We conclude this section with a description of the functions Si(z), Sy(x) which
oceur in the Euler-Maclaurin sum formulae, and which are required in the
analysis of Case 2. It is convenient to define S, as follows:

(22) Si(z) =1 —2 for 0<z=1; Si(z + 1) = Si(=).
Forj = 2, S; may be defined as

éilfl ;:l ____cos(fj;f 2) (j even)
(23) Si(z) =
1 < sin (27rz) (j odd).

21 (ar)i

Each S; is a bounded and periodic function; S; is absolutely continuous for
Jj 2 2; and at each non-integral z we have

(24) Si(z) = =1, Sjinu(z) = (-1)'8;(z) (G =12 ).

8. I, in Case 1. Suppose that the d.f. of X; satisfies (C). Since ¥, = X, — q,
it is plain that F, the d.f. of Yy, also satisfies (C). It is easily seen that F and G
(the d.f. of Z;) are absolutely continuous with respect to each other. It therefore
follows from Lemma 4 with F; = F and F, = @ that G also satisfies (C).

Let & be an arbitrary but fixed positive integer. It follows from the conclusion
of the preceding paragraph by Cramér’s theorem [1, p. 81] that H (z) =
K.(z) + R.(z); where

(25) Ka(z) = gn-“ P;(—®)
and R.(z) is of the order n~**"" uniformly in . It follows hence from (12) that
(26) L= e [ ™ (Kae) — Ka(0)] do + O(n7),
We have
(21) Xt K2 = o pat)

by (19) and (25). Let f.(z) = exp (—ntaz) for z = 0 and fu(z) = O other-
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wise. Then [*y e"“fu(x)dz = 1/(n*a — it) = ga(t) say. Consequently, by
first using integration by parts and then Parseval’s formula, it follows that

n%a j‘” e_nia::: [K,,(:L‘) _ Kn(O)] dz = fw e-—-n!azK:‘(x) dz
(28) ) °
= [ n@K@ &=L [ GOxl K b

It follows from (26), (27) and (28) that
2 2rn)} I —fw 1+ BN (S n pyin)) dot) + 0
(29) a(2mn)’ I, = L\t 2 i(it) ) d®(t) + O(n™).
Define
(30) Hrs = '/;w ("t)r Pa(Zt) d‘I)(t) (T, 8§ = 07 1, 27 e ) .

Since P, is an even [odd] polynomial if s is even [odd], and since %, #*/1' d®(t) = 0
forj=0,1,2, -, it follows that each u,, is a real constant, and that

(31) ure = 0 if r + sis odd.

Now, (1 + inta™)™ = Dograr (—itna™)" + 0¥ 1* w,(¢), where || is
bounded in 7 and ¢. Since ® has finite moments of all orders, it therefore follows
from (29), (30) and (31) that

(32) a(2m)t I, = o;f;;k n {,g'_:z,- (— é)' um} + 0(n7¥),

- Since pn = p" I, and since po,0 = 1, it follows by replacing k¥ with 2k + 2 in
(32) that (6) holds for any given k, with

(33) by =

and

(34) Cin = Z . (_ '];) Hr,s (j =1,2--)
r+8=2§ o

for every n. This establishes Theorem 2, and hence also Theorem 1, in Case 1.
It follows from (17) and (30) that the coefficients u.,. required to compute
¢1,» according to (34) are

oo = —1
(35) 1 = 3Ns
1
doz = BN — D,

2
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where the \; are given by (15). Similarly, ¢;,» can be computed from

papo = 3
sy = —15);
(36) pza = —15N + 105\3 -
e = =15 + 1053A — 208
Hog = — 15N + 105(37i + Nads) — 9%{, AN+ l(;ifé A5

We conclude this section with a remark concerning the role of Cramér’s
theorem [1, p. 81] in the preceding argument. Suppose that H, is absolutely
continuous, and that H » s square integrable over (— «, «). It then follows,
by integrating (12) by parts and using Parseval’s formula, that

(29%) a(2mn) I, - [ : (1 + %yl {[n(:—;t;)]"ew} d(t)

where 7 is, as before, the m.g.f. of Z;/o. (The square integrability condition is
imposed here for the validity of Parseval’s formula, and can be replaced by
others, e.g., that (1 4+ *)™* | 5(4f) | be integrable). According to (16), the func-
tion in curly brackets on the right side of (29*) can be expressed as
> 5 n¥P;(it). By comparing (29) and (29*) it is seen that, from a technical
point of view, the role of Cramér’s theorem in the present special case is to
guarantee that when Y i n¥P; is replaced by D_i—s n *’P; on the right side
of (29*), the error introduced is indeed of the order n**. The same remark, but
with (29*) replaced by a rather different formula for I, , applies to the role of
Esseen’s theorem in the argument of the following section.

4. I, in Case 2. Suppose that X; is a lattice variable. Let d be the maximum
span of X ,i.e.,d > 0is the g.c.d. of the differences between consecutive possible
values of X; . Let 2o be the number such that ¢ < 2y < a + d, and such that
the possible values of X; are included in the set {20 + rd: r = 0, £1, £2, ---}.
Let '

(37) 8 = d/o, vy = 7d, k= (o — a)/d
It should be noted that 0 < « < 1. For each n, let
(38) 8, = nk — [n«], 06,<1,

where [2] denotes the greatest integer contained in z.
Let & be an arbitrary but fixed positive integer. It follows from Esseen’s
theorem for the lattice case [7, p. 61] that H.(z) = K.(z) + L.(x) + R.(z),

where K, () is given by (25), R, is of the order n~*™2 yniformly in z, and L,



DEVIATIONS OF THE SAMPLE MEAN 1023

is defined as follows. For any j = 1,2, --- let h; = 1if = 1 or 2 (mod 4) and
h; = —1if j = 0or 3 (mod 4). Then

k k
(39) Lu(z) = X a7 h; 7 8,(n'87'z — 6.) K () = X M;a(2) say,
j=1 j=1
where K\ is the jth derivative of K, . It follows hence from (12) that

I, = nla f " s K. (z) — K.(0)]ldz
(40) ' k o
+ e [ D) = Min(0)] d + O(n7 ),

The first term on the right side of (40) is (cf (28)) equal to [5 e""“’K(l’(x) dzx.
We observe next that, forj = 2,

wa [ My (@) — MO do = [ 0 (0) da
0 0

= w7y [ ) K()
(41) + (=178 8j11(ya) K ()] do

=nVh g f ™8 (yn) K (2) de
(]

w0 g [ () K (@) da

=Nijn — Njn (say).
In (41), we have put n*ﬂ z — 0n = ¥a, and used integration by parts, (24),

and the identity (—1)" ; = h;_;. In order to evaluate the contribution of
M .. to the right side of (40), suppo’se for the moment that 0° < 6, < 1, and let
(42) =0, &=(—1+6)8n (r=12-).

Let A, denote the open interval (§,, ¢r41). Then S;(y,) is hnear in z over each
A, ( cf. (22)), and its derivative there equals —n!g™". By writing

= 2% [4,, and applying integration by parts to fa,, 1t follows without
dlﬁiculty that

n*af ¢ M, . (z)dz = — f e e KP(z) da
o
(43) ' .
+ Niw + M1,0(0) + B 3 e 7RO (¢,
r=1

where ¥y = o = 7d (cf. (37)). Now, Si(z) is a left-continuous function of z.
It follows hence that, for given n, the left and right sides of (43) are right-



1024 R. R. BAHADUR AND R. RANGA RAO

continuous in 6, . Since (43) holds for each 6, in (0, 1), we conclude that (43)
is valid for 6, = 0 also.

Since S and K™ are bounded functions, it is plain from the definition of
Njn (cf. (41)) that Ny, is of the order n % It therefore follows from (40),
(41) and (43) that

(44) I" = ﬂn—fz e—'y(r—1+0'.) K,(,l) (g.r) + O(H—%k_*),
r=1
Now, according to (20) and (25),

(45) K9, = (2m) [ e (Z n‘*"Pjat)) 0

for every r. Let us write
(46) z=¢" b, =[8/(1 — 2))™
It follows from (44) and (45) that
® (1 — 2) exp [—it60,/n’]
Lo (1 — zexp [— tp/ni])

(Z:) n ¥ P,~(z’t)) d®(t) + 0(n%).

bt (2wn)I, =

(47)

For any fand any j = 0, 1,2, --- let

oy L& (1 —2)e™\|

(48) 1) = 57 (m)m.

It then follows easily from (31) and (47) that

(49) ' 2m) o= 3 w3 B 6(6) mea + O(nH).

0<i<k/2 r48=2j

By replacing k& with 2k + 2 in (49) we see that (6) holds for any given k, with
b, given by (46), and
(50) Cin = Z ’ﬁ' £(0n) pire -

r48=2j

This establishes Theorem 2 in Case 2, and hence also the first part of Theorem 1.
To complete the proof of Theorem 1 in Case 2, we see from (37), (38) that
P(X;+ .-+ + X, = na) > 0 implies 6, = 0. Consequently if P(X; ='a) > 0
then 8, = 0 for every =, and hence b, = 8/(1 — 2) for every n.

It may be worthwhile to note that in the present case b, can be expressed as
o ye™ " /(e” — 1)], which shows that, in general, b, oscillates about the
value o (cf. (33)) as n — oo through the sequence 1, 2, - - - .

An alternative formula for the coefficients £; required in (50) is

G 40 =(-1)f L a-2 (za‘iz)’u—z)‘l .

rts=j T Is!
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From (51) it is easily seen that, with v = z/(1 — z),
h=1
h=—(0+u
(52) &= 3{(0+ u)® + w(l + u)}
f= =30+ u)® + 3u(l + u)0 + w(l + u)(1 + 5u)}
b= 7{(0 + u)* + 6u(l + u)6 + 4u(l + w)(1 + 5u)0
+ 23u* + 36u’ + 14u® + u}.

The coefficients ¢;,, and ¢z,» can be computed from (35), (86), (50) and (52).
The formulae for b, and ¢;,» with 6 = 0 agree with the results of [3].

6. I, in Case 3. If X, is not a lattice variable, then neither is Z;. It follows
hence from a theorem of Esseen [7, p. 49] that H, (x) = () + n () +
n ¥, (z), where f(z) = (const.) (1 — 2°) exp (— yx %), and r,,(x) — 0 uniformly
in z as n — . The contribution of n7%f to I, is n 7 ¢ —(miazer (x) dx, which is
easily seen to be of the order n~ %, It follows that

I, =nla lwe—”*“ [®(z) — <I>(O)] dz + o(n™?)

(53) = f: M & () de + o(n™h)

=™ [1 — &(n’a)] + o(nh)

= (2rn) a7 + o(n7H).
In (53), we have used integration by parts, a linear change of variable, and the
leading term of the asymptotic formula [9, p. 179]
(54) 1 —&(z) = 2m) ez — 2 + 3270 + 0@z )} as z > .

It follows from (53) that (5) holds, with b, = a " for every n. This completes
the proof of Theorem 1.

Since ®(z) + n ¥ (z) = K.(z), where K, is defined by (25) with k = 1, the
conclusion of the preceding paragraph is also available from the argument of
Section 3. We have used a direct calculation instead because this calculation
suggests the form of the numerical approximations described in the following
section.-

6. Concluding remarks. Suppose, in a given case, and for given n and a, that
it is required to compute the numerical value of p, defined by (1). In this section
-we consider approximations of the form

(55) | gn = p" (1 — &(vn)),
where p and ® are defined by (4) and (14), and v, is a suitably chosen number.
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We shall describe four ch01ces of v,, called on , v, o, and o).

(0)

The resulting

values of ¢, are denoted by qn , Gn , €te.
First consider
(56) vn = nla

where « is given by (4), (8) and (9). This choice of », amounts (cf. (53)) to
approximating I, by replacing H, with ® on the right side of (12). It therefore
follows from the Esseen-Berry theorem that we always have

* pn E | Z] |3
(57) . Ipn - Qn | é 2077* 0_3

where C is a universal constant. Wallace [10, p. 637] states that ¢ < 2.05.
Next, consider

(58) o = /b,
where b, 1s defined by (33) in Cases 1 and 3, and by (46) in Case 2. (Of course, -
¥ q,. in Cases 1 and 3) Then ¢.” satisfies (2), and the o(1) term in (2) is

known to be of the order n™" in Cases 1 and 2. Finally, let ¢;,, be defined accord-
ing to Section 4 in Cases 1 and 3, and according to Section 5 in Case 2. Define

(59) va) = v [1 — (b + c1,a)/n]
if the expression within the square brackets is positive and »}’ = 0 otherwise;and
(60) v =0 [L 4+ (bn + el — biern — C2.0) /7]

if the expression in square brackets is positive and »® = 0 otherwise. Then
¢ also satisfies (2), and o(1) = O(n™"™?) in Cases 1 and 2 (G =1,2).
The stated theoretical properties of the approximations ¢ are easy conse-
quences of (5), (6), (54), and (58).

Although (unlike g») the approximations ¢i” are derived from asymptotic
expansions corresponding to the case when n — « and a is held fixed, the useful-
ness of these approximations may be wider than is suggested by the derivation.
Some evidence to this effect is prov1ded by the fact that, if X; is normally dis-

tributed then p, = ¢&” = ¢ = ¢ for every admissible a and every n.
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