THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF
TWO EXPONENTIAL DISTRIBUTIONS!
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The dissection® of mixed frequency distributions is often very complicated
([6], pp. 152-158). This is certainly true for a mixture of two normal distributions,
which was studied by Karl Pearson [9] in perhaps the earliest investigation of the
dissection problem. Pearson was led to an equation of ninth degree, the setting up
and solution of which involved a tremendous amount of calculation. This calcu-
lation could doubtless be performed rather expeditiously today if a high-speed
computer is available, but when his paper was published (1894) it was extremely
laborious.

In the present paper a mixture of two exponential distributions is considered.

In experiments in life testing it has been found that the life, z, may often be
reasonably described by a probability density function of the form

(1) f(z) = 67", >0 0=<2z< .

TFor example, there seems to be evidence, [2], [3], and [4], that the lives of elec-
tron tubes or the time intervals between failures of electronic systems are ran-
dom variables having, at least to a first approximation, the density function
given by (1). The parameter 8 is the mean life or the mean time between failures.

Suppose now that two populations of the type (1), with parameters 6; and
0. respectively, have been mixed in the unknown proportions p and 1 — p. The
resulting probability density function is

(2) @) = por'e™™ + (1 — p)y'e ™.

A simple method of estimating the three parameters p, 6, , 6; from the first three
moments of a sample is derived.

Mendenhall and Hader [8] have treated a related problem. They considered
the question of estimating the parameters of a population obtained by mixing
two exponential failure time distributions in unknown proportions, the popula-
tion model being based upon a sample censored at a fixed test-termination time.
They assumed that each unit of the population conceptually bears a tag that
indicates the component, or subpopulation, from which it came. This informa-
tion is available only after failure has occurred. Weiner [10] has also studied the
problem under consideration in the present paper and has given maximum likeli-
hood estimators of the parameters. He states that it is imperative to have the
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1 The author of this paper is deeply indebted to Professor Wassily Hoeffding for valuable
criticisms and suggestions.

2 “Dissection” here means point estimation of the parameters in a parametric mixture
model.
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calculations of the estimates programmed on a high-speed digital computer. His
paper gives formulas for the variances of the maximum likelihood estimates.

Gumbel [5] has discussed the general dissection problem and has shown how
the method of moments can be used to estimate the parameters of a mixed dis-
tribution. He applied the method to mixed exponential and mixed Poisson dis-
tributions, but assumed that the proportion p is known.

Let my , ms , ms denote the moments, about zero, of a random sample from (2),
and let p*, 67 , 65 denote the estimators of p, 6; , 8, respectively, obtained by the
method of moments. Then

(3) poi + (1 —p")ey = mi,

(4) pUO + (1= p5)ert = tms,

(5) P64+ (1 —p*)er’ = dms.
From (3) it is found that

(6) p* = (mi — 63)/(61 — 63).

Substituting this expression for p* in (4) and (5) leads to the following two
equations:

W) (mi — 62)(6F + 63) = 3 mz — 6,

(8) (my — 62)(67" + 6163 + 67°) = 4 mg — 65 .
Equation (7) may be solved for 67 (i = 1 or 2), the solution being

(9) 6 = (3 m — m6})/(mi — 67),

where j = 2 or 1 according as 7 = 1 or 2. When 67 from (9) is substituted in
(8) and the result simplified, the equation for 0;!‘ is

(10) 6(2my" — ma)r + 2(ms — 3 mimz)8F + 3 my — 2 mimg = 0.

The two roots of this quadratic are B’f and 0’; , it being immaterial which root is
designated 67 and which 65 . That is, the estimate p* of the proportion p, ob-
tained by substituting 63 and 63 respectively in (6), will refer to the component
having 6, as parameter and 1 — p* will refer to the other component.

It is possible that the roots of (10) will not both be positive, or even real.
For example, if every observation in a sample were equal to some constant ¢ > 0,
then it would follow that mj = ¢, ms = ¢, ms = ¢ and (10) could be reduced
to the form

(11) ¢'6(8 — 3e)* + 3¢’ = 0,

the roots of which are imaginary. From continuity considerations it is seen that
this may occur with positive probability.

However, if 6, > 6., the proposed estimators are consistent and the prob-
ability that o > 0,6 >0,0= p* =< 1 approaches 1 as n tends to infinity.
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This follows from the facts that, in this case, the estlmators regarded as func-
tions of (ml . my s ms), are continuous at the point (m s ,uz R Ma), Where the /.c. are
the population moments and that 6F > 0,0 < p* < 1if (my, ms, ms) is suffi-
ciently close to (u , 2, u3).

If 91 = f, = 6, the behavmr of the estimators changes radically. For in this
case puy = 0, yz = 26, us = 66°, and therefore

12 17
2u1’ — py = wy — 3uwuz = 3us — 2uaus = 0.

Hence the three coefficients in the quadratic equation (10), multiplied by =,
are normally distributed in the limit as n approaches infinity, with zero means
and ﬁmte and positive variances. This can be shown to imply that the roots o
and 65 have no constant limits in probability and their imaginary parts do not
become negligibly small as n increases. In particular, the estimators are not
consistent in this case.

Some discussion of the variances of the three estimators is of course in order.
It seems that the calculation of these variances, even in asymptotic form, would
not only be a difficult task but would lead to somewhat complicated expressions.
However to simplify matters and to give some idea of the reliability of the esti-
mators 85 and 65 , it will be temporarily assumed that p is known. With this as-
sumption, only two sample moments are needed to estimate 6; and 6, . Thus,
from equations (3) and (4) it is found that

(12) 67 = m1 % (¢/2p) (mz — 2 my’)},

where, as usual, ¢ = 1 — p. The upper sign is used if 6, = 8,, the lower sign
if 6 < ;. The estimator 65 may be found by interchanging p and ¢ and replac-
ing the sign &= by . The first pair of estimators is consistent when 6, = 6.,
the second pair when 6; < 6.. Thus, here the estimators are consistent when
6, = 6., but in this case the rate of approach to the limit is n¥ as compared
with n7 for 6, > 6, . Also, if 6, = 6, , the probability that the estimators are real
does not approach 1 as n approaches infinity, although the imaginary parts
converge to zero in probability. It is assumed that 6, £ 6, . If it is not known
whether 6, > 6, or 8, < 6., then it is also not known which pair of estimators
is consistent, that is, which pair may be expected to be close to the true value
when the sample is large. This admittedly is a real shortcoming of the method.
The asymptotic variance of 6y may be found by the use of a formula given by
Cramér ([1], p. 354, (27.7.3)). In the notation of the present paper, this formula
is
(13)  var 67 = pa(my) (:::) + Zun(mi, ms) ;721 ;01 + ua(ms) (aol)
here uz(mi1) and uz(mi) are the variances of m; and m, respectively, uu(ml , mz)
is the covariance of these two moments, and the partial derivatives are to be
evaluated at the point

(14) my = pb + bz,  my = 2(pb + ¢63).
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The values of the coefficients of the partial derivatives in (13) may be ob-
tained by using formulas given by Kendall [7, p. 206]. It is found that
(15) ue(m) = n~(2p — p')6i — 2pgbifs + (2g — ¢")63],
(16) pu(mi, ms) = 207'[(3p — p*)6} — pq6i6. — pgti6; + (3¢ — ¢,
(17) pa(ma) = 4n~'[(6p — )01 — 2pqbiti + (6 — ¢")63].

If 6, > 6. (in which case the upper sign holds in (12)) the partial derivatives
needed are

& 33/
(18) (20—17 =1- ?qml 72\1 0
am, pi(my — 2m;?)}
* 4
(19) a0 q

omj ~ 2ipi(m} — 2mi)}
At the point (14), these derivatives have the values

(20) oo __ b1
aml p(01 - 02) 6m§ 41)(01 - 02)

If 6, < 6, (in which case the lower sign holds in (12)), the signs of the frac-
tions on the right-hand sides of (18) and (19) are changed, and we again obtain
equations (20).

Substituting (15), (16), (17), (20) in (13) and simplifying give [1, p. 366] for
the variance of the asymptotic distribution of 67,

1

(21) 4np*6: — 6 [p(6 — p)6} — 4p(3 — p)6ise

+ 2p(5 — 3p)63s; — 4p(1 — p)663 + (1 — p*)6il.

The variance of the asymptotic distribution of 63 may be obtained by replacing
p by ¢ and interchanging 6, and 6, in (21).

It is-the personal opinion of the author that data should not be assumed to
have come from a mixed exponential distribution until it has been determined
that they have notcome from a simple exponential distribution (1/6) exp (—z/8).
That is, the parameter 8 of this distribution should be estimated, following which
a chi-square test should be made to see whether the data conform to this dis-
tribution. If the hypothesis that they came from a simple exponential is rejected,
a mixed exponential population may be assumed.

Of course the chi-square test may give the wrong conclusion, in which case it
would be impossible to find, by the method under discussion, an estimate of 6.
Even if the population is mixed and 6, and 6, are nearly equal, it might be diffi-
cult to obtain valid estimates of them. Unless further research reveals some way
of remedying the shortcomings of the estimators they are not recommended for
practical purposes.

Results for other types of mixed populations (Poisson, positive and negative
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binomial, and Weibull) have been obtained and will be reported later. However,
the estimators seem to be subject to the same deficiencies as the estimators
treated in this paper.
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