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1. Summary. (i) In the case of the choice of the largest among k population
means (special case @ of the use of ranking methods) the assertion of Bechhofer’s
method ([1], [2], [3]) can be strengthened without decreasing the probability of
a correct decision (Sec. 3).

(ii) Bechhofer’s concept of the “least favorable configuration of the popu-
lation means” is studied (Sec. 4). The result suggests that the concept is not
always in accord with the underlying practical problem, but that it is in accord
in the important case Q.

(iii) An approximation is suggested for use in the case of normal populations
with a common unknown variance (Sec. 5).

2. Introduction. R. E. Bechhofer, in his pioneering paper [1], pointed out
plainly the inappropriateness of testing traditional null hypotheses in ranking
problems and stated the basic concepts of his multiple decision ranking methods.
These methods for ranking, or partially ranking, a group of populations on the
basis of an experiment are of great practical importance especially in connection
with the problem of selecting the best from a set of possible alternatives. It is
because of this importance that the following mathematically simple remarks
are offered.

Now we shall give a mathematical formulation of the problem which includes
the situations studied in [1], [2] and [3].

Let I ={1,2,---, k}, let £(¢ € I) be random variables satisfying the fol-
lowing condition of permutability:

(2-1) P{[Et'u Ein ] Et’k] €A} = P{[fly Eﬂ, R Sk] SA},

for every permutation 4;, 2, -+, ¢ of 1, 2, ---, k and every k-dimensional
Borel set A. Suppose the £’s are continuous.

For every p = [u1, wa, -+, ml in the k-dimensional Euclidean space Ei
let us define numbers [4, u] € I, random variables X, and random variables
(3, u) with values in I, such that

(2.2) Bl S pew S 00 = pew, [ 8] #= 04 for ¢ # j;
(2.3) Xipw = &+ s, iel,
(24) Xaww S Xeww S - = Xaww, G w) = §,n) fori =g

When there is no danger of confusion, we shall use the abbreviated symbols
[7’]’ X; ’ (1:> for [1” l‘]) Xim ’ <7'1 /‘)'
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Now let 0 = ko < k1 < -+ < ks = k be given numbers. By a ranking we
mean a sequence

(25) V=1[W,V,- -,V

where V, are disjoint subsets of I containing k., — k.—; elements respectively.
The experimenter who can study u by observing only the X’s, wishes to de-
termine a correct ranking, i.e., a ranking V satisfying the following implication:

(2.6) 1eVa,jeEVan,l1 S a<s=u; < pj.

Obviously the ranking Z = [Z,, Z,, ---, Z,] defined by
(2.7 Zo = {lkama + 1], [kas + 2], - - -, [ka]}
is correct.

Since, however, the experimenter does not know the [¢]’s, it is natural to
substitute for them the random variables () and choose the ranking S defined by

(2.8) Sa = {(kacs + 1), -+, (ka)) fora=1,2, - ,s.

ExampLE 1. Suppose k =3, s =3, ko =0, by =1, ke = 2, ks = 3, p =
[1’ 0, 10]' Then [1] = 2) [2] = 1’ [3] = 3, since py = pe=0< b =m=1<
ursr = ps = 10. There are six different rankings; among these only one, namely
Z = [{2}, {1}, {3}], is correct. The random variables (¢) are defined by (2.4)
almost everywhere since the £/’s are supposed to be continuous. If, for example,
the observed values of X;, X;, X; are 3, 2, 8, the observed values of (1), (2),
(3) are 2, 1, 3 and the (non-numerical) value of the random ranking S is [{2},
{1}, {3}1.

After defining S by (2.8) the question arises of the probability of a correct
decision, i.e., of the probability that S is a correct ranking. For a fixed goal,
i.e., for fixed s, ko, - - - , k. and for a fixed probability distribution F of the ran-
dom variables £; , this probability is a function of u. Let us denote it by P{CD; u}.
We do not know u; at most we know that x is in a subset M of E; . In such a
case we can guarantee that the probability of a correct decision is not less than a
prescribed number P*, if and only if

(2.9) p(M) = inf {P{CD; u}; ue M} 2 P*.

(If F is also unknown but we know that F ¢ &, u ¢ My, where M, C E; for
every F C §, we require that p(M,) = P* for every F ¢ §. In all our asser-
tions, however, we can limit our considerations to the case of a fixed F, the
generalization to an unknown F in some class ¥ being trivial.)

Now it is easy to see that p(M) says little or nothing about the properties of
the ranking methods if M is ample enough, for example if for every ¢ > 0 there
exists a u ¢ M such that 0 < uiyy — pi < efori=1,2, .. k — 1. In such
a case (we have supposed that the £/s are continuous)

p(M) = kal(ke — k) ! -+ (ke — ko) /K1
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which is the probability of a correct decision for the procedure that ignores the
observed values of the X.’s and selects the decomposition of I into S, entirely
by random.

This inconvenience is a consequence of neglecting the differences in the prac-
tical importance of incorrect decisions for various u. There are two (among other)
ways of avoiding this situation. We may restrict the set M (this is what Bech-
hofer does) or we may modify the concept of the correct decision, which seems
to us to be a more straightforward approach.

In the papers [1], [2], [3], Bechhofer and his co-authors give sufficient condi-
tions for the inequality (2.9) in the case M = M, , where

A=[A1,A2,"‘,A,_1]£E._1, Aa>0
and
(2'10) My = {”'; u e Ey s Blkatl] — Hlkal = Aa for a= 1, 2) 8 — 1}'

The numbers A, are chosen by the experimenter as ‘“the smallest values of
the parameters 6. = pp,+11 — M@, Which are ‘worth detecting’ ” ([1], p. 23).

On this intuitive meaning of A we shall base a definition of a A-correct rank-
ing, thus proceeding in the second of the indicated ways. Any ranking can be
regarded as k classification-statements of the form ‘‘z belongs to the ath group”,
and we shall first give the definition of A-correctness of pairs of such statements.

In direct accord with the meaning of A, we say that

(i) the classification of < and j in the groups p and p + 1 respectively, is A-
correct if

B> pi— A,

Further, since the classification of 7 and 7 in the groups a and 8 with « <
P < B can naturally be regarded as stronger than the classification of these
indices in the pth and (p 4+ 1)th groups respectively, we say that

(ii) the classification of < and j in the groups « and g respectively, is A-correct,

if for every p = @, @ + 1, .-+, 8 — 1 the classification of these indices in the
groups p and p + 1 respectively, is A-correct, i.e., if
i > ”"i_min{AP;p= a)a+ 1) e, B - 1}'

Now we require that the & classification-statements of a A-correct ranking V
be A-correct in the sense of (i) and (ii). We do not add further requirements
and therefore we say that

(ili) a ranking V is A-correct, if for every 1 e V,,je Vs, 1 S a < B £ s,
the classification of 7 and j in the groups « and B respectively, is A-correct.

This definition is the weakest that can be derived from the indicated point of
view (and yet it is, in general, stronger than Bechhofer’s approach, see Theo-
rem 2).

Denote by P{A-CD; u} the probability of A-correct decision, i.e., the prob-
ability that S is a A-correct ranking. According to the definition, S is A-correct
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if and only if the following implication holds:

1= a<pB=s, 1€ 8a, jeSg=
(2.11)
;> ps—min{A,;p=aa+1,---,8—1}.
ExampLe 2. If, in Example 1, we have A = [11, 2], then the rankings V® =
[{1}, {2}, {3}, V® = [{2}, {1}, {3}] are A-correct, while the remaining are not.
Suppose, for a moment, that a formal analogy with (2.6) has led us to another
definition and that we have said that V is A-correct if the implication

(2.12) 1EVa,je€Vauu, 1 S a<s=u; > p — A,

holds. Then V® = [{3}, {1}, {2}] would be A-correct. But, if I would change
the ranking V® into a “better” one V¥ = [{1}, {3}, {2}], realizing that in fact
ps = 10 > y; = 1, this better ranking would not be A-correct since u; = 1,
us = 10, uo = 0 and 10 is greater than 2 = A,.

This is a very strong indication that (2.12) is a too weak condition; by strength-
ening it so that it would be free of such an inconvenience, we obtain our defi-
nition exactly. In fact it can be shown that a ranking V is A-correct' if and only
if it, together with every better ranking, satisfies (2.12). By a ranking better
than V we mean a ranking that can be obtained by a finite number of successive
changes consisting of transferring indices 7z and j — if they satisfy ¢ ¢ V. ,j ¢ Vs,
pi > pi,a < B —from V, to Vs and from Vs to V, respectively.

3. The special case Q. This case deals with the problem of selecting the greatest
among the numbers u; and is a special case of the general problem, characterized
by s = 2, ks = k — 1, so that the decomposition of I into the sets Z. and S,
is determined by the unique element up; and u() belonging to Z, and S, respec-
tively.

Now Ac¢ E,, = E; is a number and the relation (2.9) (with M = M,
defined by (2.10)), for which sufficient conditions are given by Bechhofer,
becomes

(3.1) Plpay = wm} = P* forevery ueEp suchthat pp = wp-y + A.

It is of interest, however, how the method behaves when u is not in M, . As it is
easy to show (we shall do it later), (3.1) is equivalent to

(3.2) Plug) > um — A} = P* for every u ¢ B .

This means that in case @, the infimum of the probability of a correct decision
for u restricted to M s equals the unrestricted infimum of the probability of a
A-correct decision. We shall show, however, that the assertion in brackets
{ } in (3.2) can be strengthened without any decrease of the infimum of the
probability.

TaEOREM 1. Put

(3.3) d =max {0, A — (X&) — X))},

From here on A-correctness is as originally defined.
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(o — d,nm) ford >0
3.4 I d == )
34 @ (w1 > Bwe) ford = 0.

Then (3.1), (3.2) and

(3.5) Pluw e I(d)} =z P* for every u & Ey
are mutually equivalent.

Remark. The assertion pqy & I(d) is stronger than the assertion wmqy >
up — 4, since d £ A. The surplus in the information can be considerable if

M@ — Bp-1 is large, in which case the assertions in (3.1) and (3.2) are un-
necessary weak.

Proor. Since d < A, we have {ug) £ I(d)} < {ug) > pwy — A} and hence
(35) = (32) If weM, , i.e., if Bi—1] = pp — A, we get

{bay > po — A} C {ppy = pw}.

Thus (3.2) = (3.1) and it remains to prove (3.1) = (3.5).
If (3.1) holds, we have for every u e M,

k-1
P* < Plugy = s} = P{(k) = [k]} = P{OI{XU:] > X}

k—1

= P’_‘Jl{flkl > & — (Bw — pm)}

(the equality of the third and fourth terms follows from the continuity of the
E."S).
Especially for upm = -+ = pp—y = 0, ppy = A we have ue E, and
' k—1

PQI{Em > g — A} = P~

Hence and from the condition of permutability (2.1) we get
(3.6) P N {&>8— A = P* for every j e I.

TeI—{j}
Now let us choose an arbitrary u ¢ Ej , which determines the values of [{] =
[#, u]. We have

k—1 k-1

N{tm > &a — A} = nl{X[k] — pm > X — pa — A}

]l L)
c {k) = KB U (X — v > Xy — py — 4}
C {uw = wa} U {ow > —Xw + X + sm — 4)
C {uw = v} U {pw > wpa — d} C {up € I(d)},
which with (3.6) implies (3.5). Thus (3.1) = (3.5) and the theorem is proved.

4. The general case. Let us denote by pa the infimum of the probability of a
A-correct decision, i.e., denote

(4.1) pa = inf {P{A-CD; u}; p € Ei}.
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THEOREM 2. For every A = [Ay, + -+, Aea) € Eoy, Aa > 0 we have
(4.2) pa < p(Ma);

with equality holding in case G but not in general.

Proor. To prove (4.2) it suffices to show that for u e M4, A-correctness
implies correctness and for this it suffices to show that if S, - - -, S, are A-cor-
rect, then S, = Z, for a = 1, -+ -, s. Suppose that this is not true and that
(2.11) holds but 8y = 2y, -+, Sy21 = Zy1, Sy #* Z, . Then there are two
indices ¢ and j such that

(4.3) 1eZ,, JjeZs for By > v
and
(4.4) je Sy, 1 8Sg, for B2 > 7.

However, from (2.11) and (4.4) it follows that u; > u; — A, and from (4.3)
and the relation u ¢ M, it follows that u; = ps + A, . This contradiction proves
(4.2).

That the equality pa = p(Ma) holds in the case @ has been proved in the
preceding section and it remains to give an example in which this equality does
not hold.

Let us choose k =3, s =3, ko=0, k=1, k =2,k =3, A= [A, 1],
let &, &, & be independent normal (0, 1) random variables. The infimum
p(M,) is attained for p = [—Ar, 0, 1] so that p(M,4) = Pl — A< &<
& + 1} and we see that

(4.5) ' p(M,) — Ple < & + 1} for Ay — + .,

On the other hand pa < P{A-CD;[0,0,1} = Pl <&+ 1, &4 < & + 1} <
P{t < & + 1}, whence for sufficiently large A; we get

(4.6) p(Ma) > pa,

which completes the proof.

This result can be reinterpreted as follows: According to the definition of
A-correctness, derived in Section 2, the least favorable configuration of means
pi (for which inf P{A-CD; u} is attained) does not necessarily lie in the set
M,. Thus this least favorable configuration can be different from that of Bech-
hofer, who limits his considerations to Ma. (For u & M4 both P{A-CD; u}
and P{CD; u} coincide.)

5. An approximation. In [2] and [1] one of the sufficient conditions for
p(M,) = P*

is of the form N = «(k, f, P*)a, where &* is an estimate of the unknown vari-

ance ¢°, derived from a x’-random variable with f degrees of freedom and N

determines the size of the experiment necessary to guarantee that the prob-
ability of correct ranking be at least P* for case @ with u e Ms C E;. The
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values k(k, f, P*) can be determined ([1], [2], [5]) from existing tables for k = 2
and 3 and various f and also for k > 3 and f = + « (the last case correspond-
ing to the exact knowledge of o). The approximation

(6.1) k(k, f, P*) = k(k, + 2, P*)qes(1 = P*)/qr,1=(1 — P¥)

where gy,;(r) is the (double sided) r-critical point of the Studentized range for k
variables with f degrees of freedom, was found to give good results even for
small f in the cases where it could be checked by existing tables, i.e., for k = 2, 3.
A more detailed numerical study for k¥ > 2 seems to be worth-while.
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