ON THE ORDER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS¹

By D. L. Burkholder

University of Illinois and University of California, Berkeley

1. Summary and introduction. In [5], the concept of statistical sufficiency is studied within a general probability setting. The study is continued here. The notation and definitions of [5] are used. Here we give an example of sufficient statistics t_1 and t_2 such that the pair (t_1, t_2) is not sufficient. The example also has the property that, in a sense to be made precise, no smallest sufficient statistic containing t_1 and t_2 exists. In Example 4 of [5], sufficient subfields \mathbf{A}_1 and \mathbf{A}_2 are exhibited such that $\mathbf{A}_1 \vee \mathbf{A}_2$, the smallest subfield containing \mathbf{A}_1 and \mathbf{A}_2 , is not sufficient. Such an example is given here with the even stronger property that no smallest sufficient subfield containing \mathbf{A}_1 and \mathbf{A}_2 exists.

Let (X, \mathbf{A}, P) be the probability structure under consideration. Here X is a set, A is a σ -field of subsets of X, and P is a family of probability measures p on A. Let N be the smallest σ -field containing the P-null sets and let K be the collection of sufficient subfields of A containing N. (Restricting attention to sufficient subfields containing N is technically convenient. Note that any sufficient subfield is equivalent, in the usual sense, to one containing N.) Some of the properties of K can be described in the language of lattice theory as follows. Let L be the set of subfields (= sub- σ -fields) of A. Then L, partially ordered by inclusion, is a complete lattice. (Our terminology is essentially that of Birkhoff [4].) Example 4 of [5], mentioned above, shows that K is not always a sublattice of L. The example given below shows more: The set K, partially ordered by inclusion, is not always a lattice in its own right. Note, however, that if H is a finite, or even countable, subset of K, then the greatest lower bound of H relative to L exists and is in K ([5], Corollary 2). The difficulty is with the least upper bound. There is less difficulty if A is separable. Corollaries 2 and 4 of [5] indicate that if A is separable, then K is a σ -complete sublattice of L. This is about as strong a result as could be expected here. For even if $\bf A$ is separable, K is sometimes neither complete nor conditionally complete: Each of the nonsufficient subfields exhibited in Example 1 of [5] is easily seen to be both the greatest lower bound of a subset of K and the least upper bound of a subset of K. There is no difficulty if P is dominated. If P is dominated, then K is a complete sublattice of L. This follows easily from the existence in this case (Bahadur [2], Theorems 6.2 and 6.4; Loève [6], Section 24.4) of a subfield A_0 in K such that $K = {\mathbf{B} \mid \mathbf{B} \in L, \mathbf{A}_0 \subset \mathbf{B}}.$

The Annals of Mathematical Statistics.

www.jstor.org

Received October 30, 1961.

¹ This research was supported by the National Science Foundation under Grant No. G11382.

2. Example. Let X be the set of all ordered real number pairs $x=(x_1, x_2)$ satisfying $|x_1|=|x_2|>0$. Let A be the smallest σ -field containing each set $\{x\}$, $x \in X$, and the set $D=\{x \mid x \in X, x_1=x_2\}$. Let $P=\{p_x \mid x \in X\}$ where p_x is the probability measure on A putting probability $\frac{1}{4}$ on each of the points

$$x, (x_1, -x_2), (-x_1, x_2), (-x_1, -x_2).$$

Here $\mathbf{N} = \{\emptyset, X\}$; consequently, \mathbf{N} is contained in every subfield. This is the probability structure (X, \mathbf{A}, P) of Example 4 of [5]. The two sufficient subfields \mathbf{A}_1 and \mathbf{A}_2 considered in that example have the property that $\mathbf{A}_1 \vee \mathbf{A}_2$ is not sufficient. However, they do not provide a decisive answer to the question of whether a smallest sufficient subfield containing two given sufficient subfields always exists. For in this particular case, it is easily seen that such a smallest sufficient subfield does exist, namely, \mathbf{A} itself. Here we shall define \mathbf{A}_1 and \mathbf{A}_2 differently.

If x is in X let

$$a_{0x} = \{x, (x_1, -x_2), (-x_1, x_2), (-x_1, -x_2)\}.$$

Let S be a subset of X such that both S and S' are uncountable and such that if x is in S then $a_{0x} \subset S$. (We then have $a_{0x} \subset S'$ for each x in S'.) Here primes are used to denote complements relative to X. Let

$$a_{1x} = a_{0x} \text{ if } x \in S,$$

$$= \{x, (x_1, -x_2)\} \qquad \text{if } x \in S',$$

$$a_{2x} = a_{0x} \text{ if } x \in S,$$

$$= \{x, (-x_1, x_2)\} \qquad \text{if } x \in S'.$$

If i = 1, 2, let \mathbf{A}_i be the smallest σ -field containing each set a_{ix} , $x \in X$. Clearly, $\mathbf{A}_i \subset \mathbf{A}$, i = 1, 2.

Both A_1 and A_2 are sufficient. To show this, it is enough, by symmetry, to prove that A_1 is sufficient. Suppose that f is a bounded A-measurable function. Let

$$g(x) = \frac{1}{4}[f(x) + f(x_1, -x_2) + f(-x_1, x_2) + f(-x_1, -x_2)] \quad \text{if } x \in S,$$

$$= \frac{1}{2}[f(x) + f(x_1, -x_2)] \quad \text{if } x \in S'.$$

Then g is constant on each set a_{1x} . Also, since f is **A**-measurable there is a real number c_1 such that the set $\{x \mid f(x) \neq c_1\} \cap D$ is countable and a real number c_2 such that $\{x \mid f(x) \neq c_2\} \cap D'$ is countable, implying that

$${x \mid g(x) \neq (c_1 + c_2)/2}$$

is countable. Thus g is A_1 -measurable. Let A_1 belong to A_1 . Let h be the charac-

teristic function of A_1 . Then h is constant on each set a_{1x} and

$$\int_{\mathbf{X}} fh \ dp_x = \frac{1}{4} [f(x) + f(x_1, -x_2) + f(-x_1, x_2) + f(-x_1, -x_2)] h(x)$$

$$= g(x)h(x)$$

$$= \int_{\mathbf{X}} gh \ dp_x \quad \text{if} \quad x \in S,$$

$$\int_{\mathbf{X}} fh \ dp_x = \frac{1}{4} [f(x) + f(x_1, -x_2)] h(x)$$

$$+ \frac{1}{4} [f(-x_1, x_2) + f(-x_1, -x_2)] h(-x_1, x_2)$$

$$= \frac{1}{2} [g(x)h(x) + g(-x_1, x_2)h(-x_1, x_2)]$$

$$= \int_{\mathbf{X}} gh \ dp_x \quad \text{if} \quad x \in S'.$$

Therefore, $\int_{A_1} f dp = \int_{A_1} g dp$, $p \in P$, implying that A_1 is sufficient.

Let $\mathbf{B} = \mathbf{A}_1 \vee \mathbf{A}_2$. Clearly, **B** is the smallest σ -field containing each set a_{0x} , $x \in S$, and each set $\{x\}$, $x \in S'$. Suppose that **B** is sufficient. Then there is a **B**-measurable function g such that

$$p(B \cap D) = \int_B g \, dp, \quad B \in \mathbf{B}, \quad p \in P.$$

Therefore,

$$p_x(a_{0x} \cap D) = \int_{a_{0x}} g \, dp_x = g(x) \quad \text{if} \quad x \in S,$$

$$p_x(\{x\} \cap D) = \int_{\{x\}} g \, dp_x = g(x)/4 \quad \text{if} \quad x \in S',$$

implying that

$$g(x) = \frac{1}{2}$$
 if $x \in S$,
= 0 or 1 if $x \in S'$.

Since g is **B**-measurable, $g^{-1}(\{\frac{1}{2}\}) = S$ must belong to **B**. This contradicts the fact that no uncountable set whose complement is also uncountable can belong to **B**. Accordingly, the subfield **B** is not sufficient.

For each x in S, let

$$C_x = \{A \mid A \in A, \text{ either } a_{0x} \subset A \text{ or } a_{0x} \subset A'\}.$$

It is easily checked that C_x is a sufficient subfield satisfying $B \subset C_x$, $x \in S$. Suppose that a smallest sufficient subfield C containing A_1 and A_2 exists. Then $B \subset C \subset C_x$, $x \in S$, implying that $B \subset C \subset \cap \{C_x \mid x \in S\}$. But

$$\bigcap \{ \mathbf{C}_x \mid x \in S \} \subset \mathbf{B},$$

as we show below. Consequently, C = B, contradicting the fact that B is not sufficient. This implies that no smallest sufficient subfield containing A_1 and A_2 exists.

Let A belong to the left side of (1). If $x \in A \cap S$, then $x \in S$ implies that $A \in \mathbb{C}_x$ and this together with $x \in A$ implies that $a_{0x} \subset A$. Accordingly, if $A \cap S$ is uncountable, then both $A \cap D$ and $A \cap D'$ are uncountable implying that A' is countable. Hence, in this case, A belongs to B. If $A \cap S$ is countable, then $A' \cap S$ is uncountable implying that A', hence A, belongs to B. Thus, (1) is true.

Let $t_i(x) = a_{ix}$, $x \in X$, i = 1, 2. Then t_1 and t_2 are sufficient statistics for it is easily seen that t_i induces the sufficient subfield A_i , i = 1, 2. Let $t(x) = (t_1(x), t_2(x)), x \in X$. Then the statistic t, it is not hard to see, induces B, a non-sufficient subfield. Consequently, t is not a sufficient statistic.

If u and v are statistics and there is a function F defined on the range of v such that u = F(v) then, for the purposes of this paragraph, we say that u is smaller than v and that v contains u. It is clear that if v contains u then the subfield induced by v contains the subfield induced by v. (For detailed information on the connection between statistics and subfields, see [1], [2], and [3]; particularly useful here is Section 2 of [3].) Is there a smallest sufficient statistic v containing v and v defined above? If so, v would contain v and in turn be contained in v where v is a statistic inducing v and v induces v are statistic containing v and v exists.

We note that the subfields A_1 and A_2 discussed in Example 4 of [5] are induced by statistics, also. However, the two statistics do not provide an example similar to the above. The resulting pair of statistics, in that case, induces A and therefore is sufficient.

REFERENCES

- [1] Bahadur, R. R. (1955). Statistics and subfields. Ann. Math. Statist. 26 490-497.
- [2] BAHADUR, R. R. (1954). Sufficiency and statistical decision functions. Ann. Math. Statist. 25 423-462.
- [3] BAHADUR, R. R. and LEHMANN, E. L. (1955). Two comments on 'Sufficiency and statistical decision functions'. Ann. Math. Statist. 26 139-142.
- [4] BIRKHOFF, GARRETT (1948). Lattice Theory, 25 Amer. Math. Soc. Coll. Publ., New York.
- [5] BURKHOLDER, D. L. (1961). Sufficiency in the undominated case. Ann. Math. Statist. 32 1191-1200.
- [6] LOÈVE, MICHEL (1955). Probability Theory. Van Nostrand, New York.