ON LINEAR ESTIMATION FOR REGRESSION PROBLEMS
ON TIME SERIES!
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1. Introduction. The purpose of this paper is to discuss, in a general context,
certain mean value problems of a single parameter nature. More specifically,
suppose one observes the family {Y (), t ¢ T} of random variables satisfying
Y() = m(t, 8) + X(t), t e T, where 8 is an unknown parameter lying in some
set A. Suppose further that

EgX(t) = 0, teT, B e A,
EgX(s)X(t) = K(s,1t), s, teT, = BeA.

(Assumptions will be imposed on the set T' and the kernel K where necessary.)
The problem of interest is that of estimating, on the basis of the observation, a
real valued function g defined on A under the criterion of squared error loss. This
model emanates from regression analysis on time series and our attention is
focussed in this direction. The estimators concerned will be linear only and we
shall be interested in problems for which the mean value function is not essentially
linear in B.

The results obtained proceed from the application of results from the area of
reproducing kernel spaces. The statistical results include a specification of prob-
lems in which linear estimation makes sense, a precise lower bound for the risk
function of a linear estimator, and a characterization of those problems which
admit consistent (zero risk) linear estimators.

As previously mentioned, the tools arise in the theory of reproducing kernel
spaces and consequently we begin, in Section 2, by listing the appropriate results
of this discipline. Section 3 is devoted to the properties of linear estimators, and
Section 4 is given over to examples and remarks.

As few assumptions are imposed as is feasible and specific problems are intro-
duced only for purposes of illustration.

This work leans heavily, for its emphasis, on the work of Parzen, [4] and [5],
in this same vein, as will frequently be noted in the sequel.

2. Reproducing kernel spaces. The theory of reproducing kernel spaces has
received an extensive exposition in the paper of Aronszajn [1]. The purpose of
this section will be to state succinctly the apparatus necessary to accomplish the
next section. For a much broader discussion of the role of this theory in the
area of time series analysis, the interested reader can consult [4] and [5].
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1078 N. DONALD YLVISAKER

Let T denote an abstract set and let &(7T) denote the class of real, positive
definite kernels defined on T X T, equivalently, ®X(T') is the class of real covari-
ance kernels on T X T. It is easily verified that 3&(T') is closed with respect to
pointwise addition, multiplication, and passage to limits. A partial ordering of
K (T) is accomplished by the relation << defined by

K, < K, ifandonlyif K; — K; e X(T).

To each K ¢ %(T) there corresponds a real Hilbert space of functions defined
on T called the reproducing kernel space with reproducing kernel K. This kernel
space will be denoted by H(K,T) and is determined by the conditions

(i) K(-,t) ¢ H(K,T) for each t ¢ T,

(ii) For each f e H(K,T) andeach ¢t ¢ T, (f,K(-, t))x = f(2).

(We shall persist in labelling the inner product according to the kernel K
associated with the kernel space in question.) Note that the family of functions
{K(-,t),teT}is complete in H(K,T). We shall assume throughout that H(K,T)
is a separable Hilbert space, this covering all normal situations. We proceed
directly to the general theorems which will be of use in this study.

The first theorem forms the basis for applying the kernel space results in the
next section.

TueoreM 2.1. If {fi,t & T} is a family of elements in a Hilbert space H, then
the span of {fi, t € T} in H, V[f., t ¢ T), is tsomorphic to the reproducing kernel
space H(K,T), where K(s,t) = (fofo)n, s, t € T, under the mapping ¥ for which,
i) = (f, for .

Proor. By assumption, (f,, f)z = (K(-,s), K(-,t))x and consequently, by
the basic congruence theorem of [5], there is an isomorphism between V[f:, t ¢ T]
in H and H(K,T) for which {¥f}(-) = K(-, t). Then, for f ¢ V[f,,t ¢ T1,

(f’ft) = (‘I,f’ \I,ft) = (\I,fy K(7 t))K = {\I,f}(t)y

which is the required result.

We shall require the effect on the kernel spaces obtained under addition of
kernels and the relationship between two kernel spaces where one kernel domin-
ates the other in the sense of the partial ordering <<. Proofs of these two theorems
may be found in [1].

TueoreMm 2.2 If K; and K, ¢ K(T), then K = K; + K, ¢ X(t) (pointwise
addition) and H(K,T) consists of all functions f = fi + fo, fi e H(K;, T), with

15l = ming,rprlll fo ey + 1152 (&)

Turorem 2.3. If K, and K, ¢ X(T), H(K,,T) € H(K,,T), #f and only if
A B > 0 3 K; < BK, . Note that the inclusion relation in the preceding theorem
is between classes of functions.

A slightly altered version of Theorem 2.3 is given next. A proof is supplied as
the theorem is not stated explicitly in [1].

TueoreMm 2.4. If Ky and Ky e X(T), then H(K,,T) € H(K., T), if and only
i {2 NP ¢;ukKa( - tin)} is @ Cauchy sequence in H(Ks , T') implies that
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N(n)
{Z cinKi(-, tjn)}
Jj=1
s a Cauchy sequence in H(K, , T).

Proor. The necessity follows directly from Theorem 2.2. Suppose then that
(o) = (22X ¢;uKa( -, t;n)} is a Cauchy sequence in H(K, , T'). By hypothesis
(fin) = {27 ¢inKi( -, t;n)} is a Cauchy sequence in H(K, , T). Let g be an
element of H(K;,T) which is not in H(K,, T'). By the reproducing property
(ii) and weak convergence

N(n)
(g, fin)g, = Zl Cing(tjn) — limit as n — .
=
Now {fs} may be chosen with limit the zero function and with lim > 37 )
cing(tin) = a > 0, for otherwise -

N(n)
o(f) = ¢(lim. fo,) = ¢ <l.i.m. ; cin Ko+, tj,,)>

N(n)

= lim Z; Cin g(t]n)
=

is a bounded linear functional on H (K, , T') with ¢(Kz(-, £)) = g(t), a contradic-
tion. For this choice of {fa,}, let

. N odd
h2n = {fz

2fen, M even.

{h2} is a Cauchy sequence in H(K,,T') tending to the zero function and for the
corresponding Cauchy sequence {hy,} in H(K,, T),

lim inf(g,hm)xl = a, lim sup (g, hn)x, = 2a,
a contradiction.

3. Linear estimates. It is assumed that an observation is taken on the family
{Y(t), t ¢ T} of real random variables of the form Y (¢t) = m(¢,8) + X (),
teT, B e A, with

EgX(t) =0, o teT, BeA
EgX(s)X(t) = K(s,t), steT, B e A.

Given a real valued function g defined on A, we consider here linear estimation of
g subject to squared error loss. The first aim will be to establish conditions under
which the problem of linear estimation has a particular meaning to be described
below. Secondly, a precise lower bound is given for the risk function of a linear
estimate, and finally the class of problems admitting consistent linear estimates
is characterized.
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By a linear estimate of g is meant a random variable of the form
Z;ch(tj),cl, cee,coreal by, oot e T,
J=

or a limit in the mean of such random variables. The loss function being squared
error, the risk function for an estimator Z is given by EgZ — g(BY.

Since, in general, limits in the mean must be considered, a structural require-
ment will be imposed on the problem to insure that such estimators have mean-
ing. Specifically, we make

DeriNtrion 3.1. The span of {Y(t), ¢t € T} in Ly(dPg), VelY (t), t € T, is said
to be operationally independent of 8, if and only if a sequence of random variables
of the form { > ¢;,Y(t;»)} is a Cauchy sequence in Ly(dPs) for all 8 or no 8.

The requirement of operational independence imposes a condition on the
functions m( -, 8) and the kernel K and some intermediate results are necessary
in order to obtain the condition explicitly.

First of all, EsY (s)Y(t) = m(s,8)m(t,8) + K(s,t) = Ks(s,t), say. According
to Theorem 2.1, Vg[Y (), t ¢ T] is isomorphic to the reproducing kernel space
H(Kg,T) under a map ¥g 3

Thus VeV (¢), t ¢ T is operationally independent of 8, if and only if a sequence
of functions of the form { D11’ ¢;.Ks( - ,t;n)} is a Cauchy sequence in H(Kg, T)
for all 8 or no 8. By Theorem 2.4, this last condition is equivalent to H(Kg, T')
independent of 8 (that is, the class of functions H(Kg, T') does not depend on
B).

Let now Mg(st) = m(s,8)m(¢,8), st e T, B € A. Mg as defined is an element
of ®(T) and if m(-,8) # 0,

LemMa 3.1. H(Mg,T) consists of multiples of the function m(-, B) with

With the aid of Lemma 3.1, the condition that H(Ks, T) be independent of
B, and hence that V[Y(t), t ¢ T] is operationally independent of 8, may be
equated to a condition on the functions m(-, 8) and the kernel K.

TaroreM 3.1. H(Ks, T) s independent of B, if and only if, for every ordered
pair 8, N of A A da am(-, B) — dam(-,\) e H(K,T).

Proor. Suppose H(Kg, T) is independent of 8. By Theorem 2.2 (Kz =
Mg + K), the elements of H(Kg, T) are of the form

fC-) =dm(-, 8) + h(-), he HKK,T).

By assumption m(-, \) ¢ H(Kg, T) for every A ¢ A and hence m(-, \) = dm(-, B)
+ h(-) and the conclusion follows. Suppose then, to every ordered pair 8,
of A there corresponds dsy 3 m(-,8) — dam(-, \) ¢ H(K,T). If f e H(Ks, T),
then

f(-) =dm(-,8) + h(-),he HK,T).
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Ifd =0,fe HK,T) < H(K»,T) for any A ¢ A. If d ¢ 0, then with m(-, 8) —
dﬂ)\m(")‘) = hﬂ)\(’) & H(K’T)y

f(-) = ddam(-, N) + [dhen(-) + h(-)]

and f ¢ H(K», T) for any A € A.

It may be seen from Theorem 3.1 that operational independence arises in two
distinct ways. The case of particular interest is the case m(-, 8) ¢ H(K,T) for all
8, here any choice of constants dg will suffice and in fact H(Ks, T) = H(K,T)
for all 8 ¢ A. The second case necessarily involves the condition m(-, 8) ¢ H(K,T)
for all 8 ¢ A. An example of the latter case is the one parameter regression model;

m(’ﬁ) =:3¢’(')7 IBSA:RI_{O}: ("ZH(K;T)y

here dg = B/A. In the second case of operational independence, the constants
dg\ are unique. ‘

The condition arrived at above for operational independence, is of the same
nature as that of Theorem 9A of Parzen [4]. There it is shown that under the
model of the present paper with {Y(¢), ¢ ¢ T} a Gaussian process, the measures
{Pg, B ¢ A} induced by the mean functions m(-, 8) are equivalent if and only if
m(-,8) — m(-,\) ¢ H(K,T) for all 8, (under some minor conditions on T
and K). Thus equivalence of the measures would imply operational independ-
ence but not conversely, the example mentioned above being an appropriate
counterexample.

Returning to consideration of linear estimators, we give now a precise (attain-
able) lower bound on the risk function of a linear estimate. The bound is given
for fixed 8 ¢ A, in the case of operational independence it may be regarded as a
functional lower bound.

TueoreM 3.2. If Z € V4[T(t), t € T}, then

[ §®

EdZ — g)F = EilZs — g(8)]' = 11*—+ (B L m ) e HIE,T)
0

ifm(-,8) g H(K, T).
Proor. Regarding g(3) as a random variable in L.(dPg),
BolZ — g(8)" Z EdlZs — ()T,
where Zs denotes the projection of g(B8) ‘onto Ve[Y (t), ¢t € T]. Now Zg satisfies
EpZpY (1) = Egg(B)Y (¢) = g(B)m(t,8) for teT,
and thus by Theorem 2.1,
EpZs = [l g(B)m(-, B)xs = 4°(B) | m(-, B) &,

Theorem 2.2 and Lemma 3.1 enable us to compute || m(-,8)[x; in terms of
[ m(-, B)||x when m(-,8) ¢ H(K,T). Indeed
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[m(-, B)llxs = ming, 4rpmmc ol f1 55 + [ £ [|%]

= min, [ | m(-, B)|%s + (1 — w)’ || m(-, B)&]

= min, [u* + (1= [ m(-, B) [&] = g H%B )ngll?r)'

2 _ 2 | m(-,B) ”?z _ 2 g*(8)

Thus 525 = G il ) i ¢ 242~ 90T = G5, 8) B
As is easily checked, if m(-,8) £ H(K, T), EsZs = ¢°(8) and EfZs — g"(8)" = 0.

Theorem 3.2 gives then a lower bound for the risk function of a linear esti-
mate, the bound being attained for the appropriate projection random variable.

We assume now the case of operational independence and characterize those
problems which allow linear estimates with zero risk for all 8 ¢ A. To avoid annoy-
ing though trivial difficulties, it is assumed that the function g in question has
no Zeros. :

TarorEM 3.3. Suppose Vg[Y (), t ¢ T is operationally independent of B. There
exists a linear estimator with zero risk for g(-), if and only if m(-,B) ¢ H(K,T),
for no B & A, and m(-, 8) —[g(B)/g(\)Im(-,\) e H(K,T), for all B, \ € A.

Proor. Suppose Z = lim. > X ¢;Y(t;) is a linear estimator with zero

risk, i.e.,

N(n)

E)‘[Z — g()\)]2 = limnw I:;l Cjn Ckn K,g(tjn , tkn)
Jik=
N(n) .
— 2900 3 el V) + 6OV |
J=

N(n) N(n) 2
= liMmgsw I:Z Cjn Ckn K(tjn y tlcn) + ( Z; Cin m(t,-,. , )\) — g()\)) ] = 0.
J=

Jk=1

Consequently { > 31’ ¢jnK (-, tin)}, which is a Cauchy sequence in H(K,T)
by Theorem 2.4, tends to the zero function and lim,.« T Cium(tin, N)
= g(\) for all A e A. By operational independence 3 constants da 3 m(-, 8)

— danm(-,\) = han(+) € H(K,T) and therefore

N(n) N(n)
g(B) — dang(\) = limg.e [ Z; Cin M(4n , B) — dp 21 Cin M(bjn X):l
i= j=

N(n)

= limye Z; Cin hen(tin) = liMaaw (22 cja K(-, tn), h)x = 0,
j=

or dan = g(B8)/g(\). The reverse implication follows immediately from Theorem
3.2 and the computation of the risk function above.

Theorem 3.3 contains the regression model m(-, 8) = Be(-) with 8 ¢ R' — {0}
and ¢ ¢ H(K,T) for the function g(8) = B. It is directly verified that adding the
parameter point 8 = 0 will destroy the operational independence but will still
allow a linear estimator with zero risk over R'. Consequently Theorem 3.3 is a
generalization of the corresponding results in [2], [3], and [4], see also [7].
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4. Examples and remarks. Numerous examples of specific reproducing kernel
spaces are known, that is, the norm structure is known explicitly (cf. [5]). Thus
the notion of operational independence and the computation of the lower bound
of Theorem 3.2 are not intractable. We turn to some examples.

Suppose T is a finite set, say T = {&, ---, t,} and let K denote here the

matrix
(K(t1 yh) - K(h, tn))
K(tl ) tn) cet K(tn ) tn)

When T is finite, the concept of operational independence is not appropriate as
any linear estimate is obtainable as a finite linear combination of the observa-
tions. The reproducing kernel space here consists of all functions on T in the
row space of the matrix K, consisting of all functions when K is nonsingular and
the dimension of H(K,T) corresponding always to the rank of K. When K is
nonsingular the bound of Theorem 3.2 is ¢*(8)/[1 + m(-, 8)'K'm(-, 8)] with
m(-,B) = (m(t,B), -+, m(t., B)). And when K is singular the bound is
(when non zero) ¢*(8)/[1 + ¢(B8)'Kc(B)] where c(8) is the vector solution of
Ke(B) = m(-, B) (cf. [5]).

We next suppose T to be an infinite set.

Exampre 1. T and K arbitrary, m(-, 8) = Be(-), 8 ¢ R'. The bound of Theorem
3.2 is trivial if ¢ 2 H(K,T), this corresponding to the situation in Theorem 3.3.
When ¢ ¢ H(K,T) and ¢g(8) = B8, the bound is 8°/(1 + 8 || ¢ ||x).

ExampLe 2. T = A = R', K(s;t) = k(s — t), and m(£,8) = o(t — B) =
©°(t). Here ¢® ¢ H(K,T) for all 8 or no 8 and in the former case || ¢ ||& is inde-
pendent of 8 (cf. [6]). In this instance the bound for g(8) = B is 8/ (1 + | ¢ |Ik)-

ExampLe 3. T = [0,4], A = [0, ©), K(s,f) = ¢ """ and m(¢, B) = cos .
For estimating g(8) = B, we find [5] that m(-, B8) ¢ H(K,T) for all 8 and

lm(-, B)|x = %[i (cos Bt — Bsin Bt)* dt + 1

4
2

1 1144
—21-(3+A+cos2ﬁA) §< 3
And the bound g*/[1 + || m(-, 8)|[z] is bounded in 8.

We turn then to remarks on the feasibility of linear estimates. The effect of
operational independence is indeed to insure proper structure for linear estima-
tion when T is infinite. The bound obtained has some application although more
largely in a negative direction. Thus in Example 2, even when T = R', any
linear estimator has an unbounded risk function and the situation is worse for
a smaller set of observations.

When linear unbiased estimators exist with finite risk, the bound of Theorem
3.2 will reflect this. Parzen has shown that these estimators exist if and only if
g ¢ H(M,A) where M(a,8) = (m(-,a), m(-,8))x (assuming m(-,8) ¢ H(K,T)

> sin 264 +
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for all B). If ¢ has this property, then by the Cauchy-Schwartz inequality,

gB) = (@M, 8)% = |l g% M®BB) = | gl m(-, B8
and for the bound

g'(8)/1L + [ m(-8)x] = {I g I* | m(-, )"/ + | m(-, )=l = Il g lI5,

which last quantity is precisely the variance of the best linear unbiased estimator.
In any event sups{g’(8)/[1 + || m(-, 8)||x]} is a lower bound for the variance of
a linear unbiased estimator, if one exists.

In general, when m( -, 8) ¢ H(K,T) for all 8, the risk functions for admissible
linear estimators (among the class of linear estimators) will be given by

((Fm(-, 8))x — g(B))" + |1 %,

where f ¢ V[m(-, 8),8 ¢ A] in H(K,T). This may be seen in the calculations of
Theorem 3.3.
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