ON THE TRANSIENT BEHAVIOR OF A QUEUEING SYSTEM WITH
BULK SERVICE AND FINITE CAPACITY

By P. D. Fincu

Unaversity of Melbourne

1. Introduction. We consider the following queueing system. Customers arrive
at a single service station and are served in groups of exactly r-members (r = 1).
The service times of successive groups are identically and independently dis-
tributed random variables with common distribution function

Bz) =1—¢*, 2=0.

The system is of finite capacity, that is not more than Nr 4 r customers can be
present at any time, Nr customers waiting for service and r customers being
served. If a customer arrives to find Nr 4+ r — 1 customers present the input
process stops and does not restart until Nr customers only are present, that is
until the current service period is completed. In the terminology of Foster [4] the
1-input process, that is the arrival of customers, is a triggered input process, and
the 0-input process, that is the service mechanism, is also a triggered process.
The 1-input is triggered after an arrival if there are then Nr + r — 1 or less
customers present. If after an arrival Nr 4 r customers are present the 1-input
is stopped until the service then going on is completed, when it is retriggered.
When the 1-input is triggered the time to the next arrival is called the 1-input
time. We suppose that the successive 1-input times are identically and inde-
pendently distributed non-negative random variables with common distribution
function A(z) =1 — ™,z = 0.

The service mechanism, or 0-input process is triggered by the presence of r or
more customers. Groups of customers are served in the order of their arrival and
it is never the case that r or more customers are in the system and the server is
idle. If less than r customers are in the system the server is idle and service starts
as soon as r customers are present, service being given to those r customers as a
single group.

Some of the results of this paper apply equally to a queueing system such as
the above where either (a) the 1-input process is untriggered, that is customers
who arrive to find the system full depart never to return, or (b) service is per-
formed on groups of not more than r customers. The fundamental equations (2)
apply equally to these systems and hence also do the deductions from them.
Theorem 6 does not however apply to these systems.

A queueing system of the type (b) with infinite capacity, that is N = o, has
been considered by Bailey [1]. In Section 7 we relate the queueing system defined
above to the queueing system E,/M /1. We remark that general formula for the
queueing system GI/M /1 have been given recently by Takdcs [7]. The results of
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974 P. D. FINCH

Section 6 are a particular case of Takdcs general formulae but are new in the
sense that we obtain explicit formulae.

2. The fundamental equations. Let the system be said to be in the state K,
j=0,1,-++,Nr 4 r, if j customers are present. Define random variables
Nm , Em as follows. Let 7., be the number of customers in the system just before
the mth arrival, write Q7 = P(9n = 4),5 = 0,1, -+, Nr + r — 1. Let { be
the number of customers left in the system just after the mth service period,
write RF = P(¢m = J), BRj = liMmsu Ry ,j = 0,1, -+ N1.

Denote by %, the probability that there are n successive potential 1-input
times during a service period and write K, = > %nk;. Then

(1) k. = d'b, K, =a",

where a = A(A 4+ w) " and b = p(\ + p) .
It is easy to see that the probabilities R7 satisfy the following recurrence
relations

J .
> RMikis 4+ (R + Riy + -+ + ROk,

s=1

ym 1
R;

j=0,1,--- ,Nr—r,
@) B = 3 Rk (R + RE o+ RO,
j=Nr—r,--- ,Nr—1
Ryt = MZ_TR:".HKM_S + (R*+ R+ - + BD)EKwr.

s=1

Substitution from (1) into (2) gives after simplification

Ry = (R 4+ Rry+ -+ + RO)D

(3) R?-H = bR?+f + G'R?jll’ .7 = 1) 2: Tt Nr — Ty
aer—lr+s = sbijly 8§ = O, 1, cer, T = 1.

The process, {{n} is a finite, irreducible, aperiodic Markov chain. It follows
that the limiting distribution { R;} exists and is uniquely determined by equations
(2) and hence (3) with superscripts m, m + 1, suppressed.

In the next section we determine the limiting distribution {R;} and in Section
4 we determine the distribution {R7}. We do not determine the distribution
(@M explicitly since we show in Section 5 how this distribution may be derived
from the distribution {R7}.

3. The limiting distribution {R;}. Write X; = Ry, j = 0, 1, ---, Nr.
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Then from (3), with the superscripts suppressed, we obtain
XNr = (XNr + XNr—l + e + XNr—r)b,
(4) X;=bX;r+ aXjp, j=mrr+1,.--,Nr—1,
=bX0, .7=1’27

It is easily verified that the first of equations (4) is implied by the second and
third equations together with the normality condition D 17 X, = > o R;=1.
Thus the X ; can be obtained successively from (4) in terms of X, which can be
obtained by normalization.

We prove
TureoreM 1. The limiting distribution {R;} is given by

R; = (Fyr—j — Fyr_j1) [Fx]™,  j=0,1,---,Nr — 1,

(5)
RNT = [FNT —17
where Fo = 1 and
[k/(r+1)] _
(6) Fi= % (—)“("' ] S”) b'a" ", k2,
8=0

and [k/(r + 1)] <s the integral part of k/(r + 1).
Proor. Define an infinite sequence {Y;} by the equations

anj=b, J=12 .-,
(7) .
aYJ'+1 = YJ' - be—Ty (YO = 1)7 JZ T,
then
(8) X_Y[ZY] , j=0,1,--- Nr.
Write Y(2) = 2 7 Y,2°. From (7) we obtain
(9) Y() = (1 —2)[1 —za (1 — b))

Expanding the right-hand side of (9) in powers of z for a suitable domain of 2,
for example |2| < a, we obtain

(10) Y() = (1 —2) Z F',

where the coefficients F are given by (6). Thus Y; = F; — F;,,j = 1, Fo = 1
and from (8) we obtain (5).
ExAMPLE. In the case r = 1 it is ea,sﬂy verified that

Ay sfl — 8\ s ot —1 —2 —k
Z(—)(S)ba =1l+p +po + - +0o, k

8=0

v

1

where p = a/b = \/u. Hence F, = (1 — p* ") (1 — p) " and equations (5) give
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Ri= (1 —p)p’/(1 —p"™),5=0,1, -+, N. This is the solution obtained by a
number of authors, for example, Morse [5] and Finch [3].

It is of interest to examine the behavior of the distribution {R;} as N — «. To
dosowritea — 2z + b2 = a(l — 2)(1— 47" -+ (1 — 47'%). It is easily
verified that the roots of @ — z 4+ b2’*" = 0 are distinct except when A = ry, in
which case z = 1 is a double root. When A = ru we shall suppose that y; = 1.
From (9) we have

(11) Y(2) = Z; A4;(1 — 2viH) 7,
where A; = Jlay(1 —vi") ™ Thus ¥, = D 51 Ay, “and

12 m=[Ea S an - e -]

=1

for k=0,1,---,Nr and A # ru. If A = ru the same expression is valid
provided we replace the indeterminate ratio (1 — 1™ ) (1 — 41" by its
limit at y; = 1, namely, (Nr + 1).

It is easily shown by means of Rouché’s Theorem that the equation ¢ — 2z +
b2t = 0 has only one root inside the unit circle 2| = 1, if A\ < 7 and no root
inside the unit circle if A = ru. Thus from (12) we obtain (i)limy..Rr = 0, if
A = ru, and (ii) limy.oRe = (1 — 7)v%, if A < ru, where v is the only root of
a — 2z + b2 = 0inside the unit circle.

4. The distribution {R7}}. The probabilities P {¢m = 7|6 = 1} =
Pl¢wn =7l =0,m>1,7=0,for¢ =1, ---,r — 1, since when {; < r the
second service commences as soon as r customers are present and the subsequent
values of ¢, are independent of the history of the process up to the instant the
second service commences. We shall determine the distribution {R7} subject to
the initial condition {; < 7, equivalently we can write

r—1
2 Ri=0, R;j=0j=r

‘—0

Because of the above remark it is sufficient to determine the distribution R} sub-
ject to the initial condition Ry = 1 and we shall suppose that this is so throughout

the present section.
Write R;j(w) = D ey RTw™". Then from equations (3) with R; = 1 we obtain

Ro(w) = 1 + bw{Ro(w) + Ri(w) + --- + R.(w)},
(13) R;j(w) = bwR; . (w) + aR;_,(w) — ad:;, 1=j=Nr—n,
0 Ryr—ris(w) = a’bRy(w), 0<s<rm,
where §;, ; is the Kronecker delta. Write
X7 = Ryr_j, Xi(w) = Byr—j(w).
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Then
Xnr(w) = 1+ bw k};} Xyri(w),
(14) XJ('“’) = bw X]'—r<w) + an+1(w) - aﬁNr—l,ia r é .7 < NT,

a’ X (w) = bXo(w).

It is easily verified that the first of equations (14) is implied by the second and
third equation together with the normality condition DV Xi(w) =
S ¥ Rj(w) = 1/(1 — w). Thus the X;(w) can be obtained successively from
(14) in terms of Xo(w) which can be obtained by normalization.

We prove

TeEOREM 2. If R} = 0, j = r, then the generating functions R;(w) are given by

Ro(w) = 1 4+ w(l — w) [Far(w) — Frra(w) [[Far(w)]7,
(15) Ri(w) = w(l — w) [Fyrj(w) — Frrj1(w)]Far(w)]7,
Ry:(w) = w(l — w)[Fa(w)]7,
where Fo(w) = 1 and

T/ (r41)] _
(16) Fw) = 5 (=) <’° ) 3’) bat ', k

8=0

v
J—‘

and [k/(r + 1)] is the integral part of k/(r + 1).
Proor. Introduce a sequence {¥;(w)} defined by the equations

YO(w) = 1)
(17) 'Y j(w) = bYo(w), l=sj=r,
aY¥jn(w) = Y;(w) — b, (w), jzr

Then X;(w) = Y;(w)Xo(w),0 < j < Nr, Xw(w) = Y (w)Xo(w) + 1. The
normality condition > Xi(w) = 1/(1 — w) gives

(18) Xo(w) = w(l — w)™ [;;0 Yi-(w):l_ ,
hence
(19) X;(w) = w(l — w)”'Y;(w) l;;ro Yi(w):l— .

Write Y (w, 2) = 2 50 Y ;(w)z’; then from (17) we obtain, for [¢| < @, |w| < 1,
(20) Y(w,2) = (1 —2)[1 —2a7"(1 — bwe)]™" = (1 — 2) 2 Fu(w)u',
k=0

where F;,(w) is given by (16). Thus Y ;(w) = F;(w) — Fj(w),j 2 1, and from
(19) we obtain (15).
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The special case of this theorem, when r = 1, will be studied in more detail
later in this section, (Theorem 5).

The generating functions B;(w) can be expressed also in terms of the roots of
the equation @ — z + bwz'™ = 0 and it is convenient to do so in order to obtain
limiting formulae for the probabilities.

Thus we prove

THEOREM 3. If R} = 0, = r, then the generating functions Ry(w),0 < w < 1,

are given by
Ro(w) = 1 — w(l — w)~ [; A;w) {1 — w(w)}'ﬁ"’(w)]
- [g A - 7w |

(1) ,
Ruw) = —w(1 — w)™ [g A {1 — w(w)}ﬁ”’”(w)]

A
=
IIA
=
>3

. [; A;(w)yi(w){l — ‘Y?N’"l(w)}]_l | 1

where yj(w),j = 0,1, -+, r, are the roots of a — z + bwz'*' = 0, and
Aj(w) = I#IJ {1 — vi(w)ys (w)} ™

Proor. Let
a—z+4bw? =a(l —zvo'(w) (1 — 297 (w)) -+ A — 2y (w)).

Then it is easily seen that the roots v.(w) are distinct (for a repeated root im-
plies that w = (ra )"{b(r + 1)1 2 1).
Thus from (20) we obtain

Y(wg) = (1 — 2) 2; A;) {1 = 2y i) ).
Thus Yo(w) = 1 and
(22) Yo(w) = ; A;(w0){1 — 7;(w) 77" ().

Substituting from (22) into (19) we obtain (21).
We prove now the following lemma.
LeMMa 1. For 0 < w < 1, the equation
(23) a—z+bwrt =0
has only one root z = v(w) within the unit circle |2| = 1. Further this root is given
explicitly by

(24) (v@)} = d + 3 ("’” Fotn- 1) Vo, Gzl
n=1 -
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Proor. On the unit circle |z = 1 we have |bwe’™| < b for 0 < w < 1. But
|z —al =21 —a="0, |¢| =1 and thus |bwe’™| < |z — a| on the unit circle
|z] = 1. It follows from Lagrange’s theorem (Whittaker and Watson [8]) that
equation (23) has only one root within the unit circle and that (24) is the case.

We prove next
TuEoREM 4. When N = «, R} = 0,j = r, the limiting generating functions

Ri(w), k = 0, are given by
Ro(w) = 1 4+ w(l — w) {1 — y(w)},
Re(w) = w(l — w) {1 — y(w)}{y(w)}",

where {y(w)}’, j = 1 4s given by (24). Further we have the following explicit for-
mulae for the limsting probabilities Ry .

1%

(25) 1

m—2

Ry =1- ) Ci, m=2,
=0
Ry = >, (i, mz=2, k>0,
=
where C§ = a, Cy = a*b, and
C(? = n_l (’nf’ + n) bnam‘+l’ "> 0
n—1
SO [’“ (m i 1) —(k+ Da (m e n)] :

n=1l k=1

Proor. Letting N — o« in equation (21), we obtain (25) where y(w) is that
root of (23) with smallest modulus within the unit circle. By Lemma 1 there is
only one root within the unit circle for 0 < w < 1 and this is given explicitly
by (24). Expanding (25) in powers of w by means of (24) we obtain (26). That
the coefficients of powers of w in these expansions are in fact the probabilities
corresponding to the case N = o follows from the fact that the generating func-
tions R;(w) are then uniquely determined by the equations (13) with N = .
It is easily verified that the generating functions given by (25) do in fact satisfy
equations (13). Thus the R} given by (26) satisfy the recurrence relations (2)
with Rj = 0,7 = r, and N = . They are therefore the required probabilities.

ExampLE. When r = 1 we obtain from (24)

v(w) = a |:1 + Z_l (n+1)" (217> (abw)”] .
In virtue of the binomial expansion

(l1—2z)}=1-2 20 (n+1)7" (i?) (z/4)"",
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we obtain
(28) v(w) = (2bw) {1 — (1 — 4abw)?,

and equations (25) become those obtained in Finch [3]. Formula (28) is the root
in the unit circle of (23) with r = 1. Whenr = 1 and N < o it is possible to
obtain expressions for the generating functions R;(w) in terms of the function
v(w) given by (28). These expressions are simpler than those given by Theorem
2 and give explicit formulae for the probabilities B} .

We prove

TuEOREM 5. Ifr = 1, N < o, and R; = 0,7 = r, then

(29) 2R(w) = w(l — w) @)L — (@)™l (w)
. [1 _ (a—lbw)N+1{7(w)}2N+2]~1,

where v(w) is given by (28) and {y(w)}’, j = 1, is given by the series expansion (24)
with r = 1. The probabilities R} can be obtained from the equations

N
SRr =T+ Ti+ - +T"" mz21=<j=<N,

k=i
(30)
N
Ry =1— YRy, m = 2,
k=1
where
Te/N+1] )
The Y (@) T
s=0
(31) [k+37/N+1] .
- 2 (@)™, k=0, j=1,

s=]

and the second sum in (35) iszeroif k 4+ 7 < N + 1 and the I, are given by

(32) T = (2“: jrj_ 1) a™ty", iz1, nz0.

Proor. From equations (15), with » = 1, we have

iRk(w) = w(l — w) " Fy_i(w) [Fx(w)]7, l1=j=N.

k=j

In order to prove (29) it will be sufficient therefore to prove (33).

Fy_;(w) [FN(w)]“l _ {‘y('ll?)}j[l _ (a—lbw)N+l—j{7(w)}2N+2j]
(33 —1 N+l 2N +27—1
1= (@7 bw) "y ()T,

where F(w) is given by (16) with r = 1.
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By the definition of the Fy(w) we have from (16) with r = 1, with 2 =
(a ow) %z,

;;)Fk(w) (a7'bw)*?z* = (1 — 2zcoshd + )7,

where (abw)* = 2coshd. But

zsinhf(1 — 2zcoshd + z*) = > a’sinhk, lz| <1,
k=0
and hence
Fi(w) = (¢ "bw)**(sinh ) ™" sinh(k + 1)4.
Thus

(34) Fy_ij(w)[Fx(w)]™" = (a7bw) P [1 — 200 [1 — g2+

But ¢ = cosh § — (cosh’@ — 1)%. Substituting cosh 8 = (abw) /2 and
using (28) we obtain ¢’ = (¢ bw)? y(w). Substituting for ¢* in (34) gives (33)
and hence (29). Expanding (29) as a power series in y(w) and using (24) with
r = 1 we obtain (30).

5. The relationship between the distributions {Q7}, {R7}. In this section we
prove the following
THEOREM 6. For the queueing system of Section 1 we have

7 = RY 4+ RY+ - + R, mz1,1<jsmr
Nr Nr .
j —nt1 m—n i=4L2 - r—1,r
35 mr+1_] — Rm n _ R y ’ y 1y
( ) nrHd s=(1;1)r+i ’ s=§+i * m>n= 1y2y o 7N - 1;
Nr
+7 —N+1 .
?:+;'—1= Z R;n ) n>N’J=1y2"”7Ty
s=(N—=1)r+J

Proor. Denote by w., waiting time of the mth customer and by ¢., the length
of the time interval after the mth arrival that (Nr 4 r) customers are present.
If the mth arrival finds fewer than (Nr + r — 1) customer in the system then
¢m = 0. Let s, be the duration of the mth service period.

Congider the inequality

(36) Wim—nyr T Sm_n Z Gm—nyr T Tmnyrt1+ *** + Gmryj1 + Tmr4j 5

where the r; are successive 1-input times, and m > n =2 0,7 = 1,2, ---, r,
and 1 < nr 4 j < Nr. If (36) is the case, then on the (m — n)th departure
there are at least nr 4+ j customers present and on the (nr + j)th arrival there
are at least (n 4+ 1)r + 7 — 1 customers present. Conversely if either of these
events occurs, so does the other and (36) is the case. Noting that Q7" = 0

unless k¥ = (j — 1) mod r, we have
Nr

N
(37) Z ;”?":'J—l = Z R;n_”y m>n = O; ] - 1) 2,00,

s=n+1 s=nr+J
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From (37) we deduce the second and third equations (35). The first equation
is established as follows:

mr+a mr+J
=1- Z sr+j—1

=1- ZRZ‘,
s=J

because of (37) withn = 0

This proves the theorem. We remark that the proof applies equally to the:
bulk service queue of Section 1 with general distribution of 1-input and 0-input.
times. It is necessary however when N < o that the 1-input be triggered, that.
is stops as soon as (Nr + r) customers are present.

Write Qfl1;1 = liMpmaw Qrrti i, 1 £ j <70 = n = N, then from (35)
we have 5

n—1

;Fi.l = ZRS,

8=0

(38) i = Z Bavrtits s

r—3

.
Qnryi = Z Rv—yyraits -

In virtue of Theorem 6 the distribution {7} can be obtained from the distribu-
tion {R7} and the results of the previous sections can be formulated in terms.
of the distribution {@7} in an obvious way.

6. The queueing system E./M /1. The queueing system of Section 1 can be
interpreted as the queueing system E,/M /1 with finite capacity and triggered
1-input process. Thus if we consider every rth customer entering the system the:
input process can be regarded as a triggered E, process; that is, in the terminology
of Foster [4]. the 1-input time has an Erlang E, distribution with mean value
r/\, and the 1-input process stops as soon as (N + 1) customers are present and
restarts as soon as N customers are present. This process we call the imbedded
E, queueing process. We remark that this queueing system differs from that.
studied by Takédcs [6] who considered the process GI/M /s with finite capacity
and untriggered l-input process.

Denote by R}™ the probability that the mth departure in the imbedded E,
queueing process leaves j customers in the system. Then the following lemma
is self-evident.

LeMMma 2.

- " = B, o5i<w,

km m
N7
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Thus, in particular, D j—¢ Ry = 1 implies Re' = 1, and conversely.
Denote by Q3™ the probability that the mth arrival in the imbedded
B, queueing process finds j customers in the system. Then we have

(40) = QP 0<j=<N.

We remark that Theorem 6 is valid also for a queueing system such as that of
Section 1 with general distribution of 1-input and 0-input times. It applies there-
fore to the imbedded E, queueing process which is a special case obtained by
putting r = 1 in equations (35). Thus we have

km+1 *:
QOm = R0m7

*mtl = *m1—j < sm—j .
(41) 3 = ZRs - Z s m > j,

s=7 s=j+1

*m+1 *m+1—N
QN = Ry .

Equations (41) may be obtained also by direct substitution from (39) and (40)
into equation (35).
Write QF = liMuaw QF", R} = lim,.,. RF™, then from (41) we obtain

(42) Qf = R, 0<j=<N.
We state now some theorems concerning the distribution {R}™}.
Turorem 7. If RY" = 1, limiting distribution {R}} for the imbedded E, queueing
-process 1s given by
R} = [Fo—-ir — Fovej—pd[Fad ™ 0=j<N,
Ry = [Fv]7,
where Fy, is given by (6).
TureoreM 8. If Ry = 1, then the generating function R} (w) = > o, Ri™w™!
for the tmbedded E, queueing process is given by
Ri(w) = 1 4+ w(l — w) ' [Frr(w) — For—syr(w)][Fr(w)] 7,
(44) Ri(w) = w(l — W) [Faweps(w) — Fovejcpye(w)][Far(w)]™,
Ry(w) = w(l — w) '[Fy(w)] ™,

where F\,(w) s given by (16).
Theorems 7 and 8 are immediate consequences of Lemma 2 and Theorems

1 and 2.
Similarly from Theorem 4 we obtain

TueoreM 9. If N = « and Ry = 1, then the generating functions R} (w) of
the tmbedded E, queueing process are given by

RBi(w) =14+ w(l — w)7[1 — {y(w)}],
R (w) = w(l — w){y(w)}'[1 — {y(w)}7], J

(43)

(45)

v
-
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where {v(w)}’ is given by (24). Further probabilities R}™ are given explicitly by

m—2
Rakm =1— Z m—l (m‘ +;’:/ + I - l)bnam‘-f—r’ m é 2’
n=0 -
(46) s
R;km=ZD?’ jz2lmz2,
n=0
where D = a”(1 — @),j = 1, and
D(A _ n—lrbnanr‘i-ir [j (nr + jr + n — 1)
T n—1
(47) |
—(j+1>("’"+]r,j'_rf"“l)a’], nzljz1

Proor. Equations (45) follow immediately from equations (39) and (25).
Expanding the expressions (45) are power series in y(w) and using (24) we
obtain (46). A general expression for R*(w, z) = 25 R} (w)2’ for the queueing
system GI/M /1 has been given by Takécs.

We remark (c.f., Foster [4]) that the queuing process dual to the imbedded E,
queueing process is the queueing system M/E,/1 with finite capacity. If R}
denote the probability that the mth departure in the dual of the imbedded E,
queueing process leaves j customers waiting, then R} = Q¥"; . Similarly if Q7
denotes the probability that the mth arrival in the dual of the imbedded E,
queueing processes finds j customers present, then Q7 = Ry"; . Thus Theorem 7
gives the limiting distribution @; (and also R; in virtue of (42)). Theorem 8
gives the generating functions Q;(w) = Y m—1 QF w™ " under the initial condi-
tions @y = 1, that is the system is full just after the first arrival. It is possible
to obtain an analogue of Theorem 9 for the dual of the imbedded queueing process
when N = o under the initial condition Q5 = 1, but the expressions for the
generating functions @;(w) depend on all the roots yz(w), &k = 0, 1, --- , 7 of
the equation (28). These expressions are very complicated and will not be given
here. We remark that the transient behavior of M/G/1 with infinite capacity is
studied in Finch ([3].

Acknowledgment. This paper was written under a grant from the Ford Foun-
dation while the author was a member of the Research Techniques Division of
the London School of Economics.
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