ON A GENERALIZATION OF THE FINITE ARCSINE LAW!

By GLEN BaXTER?

Aarhus University

1. Introduction. Throughout this paper {X} will denote a sequence of inde-
pendent, identically distributed random variables with continuous and sym-
metric distributions.

Among the neatest and most startling results concerning the behavior of the
partial sums S, = X; 4+ -+ + X,(Sy = 0) are those which are distribution
Jree, i.e., those which do not depend on the distribution of X;. For example,
if we define

0 N, : the number of positive sums among S;, Sz, -+, S, .
L, : the smallest k(=0, 1, ---, n) for which S; = maxi<;<. S;,
then Sparre Andersen [3, 4] showed that N, and L, have a common distribution
which does not depend on the distribution of X, :

(2)  P(N,=m} = P{L, = m} — (3;”) (22 - 2"’:’) (1/2™), 0=m=n.

We give here another distribution free result which generalizes (2) and which
includes in particular information about the joint distribution of N, and L, .
It is disappointingly easy to construct examples (even for n = 3) to show that
the total joint distribution of N, and L, is not distribution free. Yet, for the
special case L, = n we can find explicitly the distribution of N, , namely

(3) P{N. =mL, =n} = (1/2n) (2Z - fnm) 1/2"), 1=m=n

Our method consists of finding a pair of “differential equations” for the generat-
ing functions of quantities like those appearing in (3). These equations are
then solved and the generating functions inverted.

Before we can state our main result we must introduce more notation. Let
Ru Z Ruy = -+ 2 Rua be an ordering of the partial sums Sy, Sy, -+, S,.
Since the distribution of X is continuous, the probability that two Sy’s are equal
is zero. This means that with probability one there is a unique index m such that
R.. = Sn. We say L., = m in case R.,= Sn. , and we note that L, is well
defined with probability one. Darling [2] found the distribution of L, in terms
of products of binomial coefficients, but he gave no results for joint distributions.
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Our main theorem, which gives information concerning the joint distribution
of the L,;’s, is as follows.
THEOREM 1. For all0 = m,k < n 1),

J(nz
5(1/2n>( eI a, w<n

, m=k

0
2(1/2n) (zkk> (2: ~ Zm) (172" m > k.

We note that L., = 0 is equivalent to N, = m. Moreover if L., = n, then
there are exactly k partial sums greater than S, . Thus, Theorem 1 gives the
joint distribution of the number of partial sums less than So= 0 and the number
of partial sums greater than S, . This latter way of stating Theorem 1 has the
advantage of being more symmetric with respect to the “time” scale n. If N, =
n — N, , the substitution X = X.41- (reversing the time scgle) takes the set
{N, = m, L., = n} into another one of the same type, namely {N, = F, Loym = n}.

Using Theorem 1, we can find a generalization of the arcsine law for infinitely
divisible stochastic processes. In fact, let {x(f), 0 = ¢t £ T} denote a separable,
infinitely divisible process with continuous and symmetric distributions and
denote by V. the amount of “time” in [0, T that x(¢) is greater than z(7r).
Then, for0 £ o, 8 = T

(4) P{an=0,Lnk = n} =

%arcsin (g,)% — — [ﬂ(T @) ]%, B=a
(5) P{Vo<ao,Ve<fl =1, > -
—arcsm T[a(T"ﬂ)], BZa

2. Basic formula. Let N,.(z) denote the number of partial sums among
So, 81, -+, S, that are greater than = and let N, (z) denote the number less
than z. Then, there is the following basic formula.

FormuLAa I. Forz = Oandn = 1

- (i 28} - 00 25
EEE[ el

where we interpret as zero all terms on the right of (6) which involve L., = v for

k> vor N,(0)= m for m > v.
Proor. By symmetry we can rewrite the integrals on the right in (6) in the

form

(6)

. S, =y
Nn-—‘u(O) =K—Fk =
@ fo P {N,,_,,(—w =M- m} d”P{LN”f((B - } ’
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For fixed v, let Nn_v(x) and N,_,(z) be defined for the variables X; = X ..,

i=12 — v, according to the previously given definitions. Because the
Varlables {X k} are identically distributed, (7) can also be written

" o S, =y
(8) f P{]Zg,"‘”go_)y;E Mk_ m} d,PLa=v .

0 n—v = N«U(O) =m

Using the independence property of the X;’s and the fact that the integrand in
(8) is a continuous function of y, we can evaluate the integral in (8), getting

<
(9) P {%p}ff’;: x: ZYn—v(O) =K—k } .

N«U(O) =m Nn—v('_sv) é M—-m
Now, the conditions which define the set whose probability appears in (9) can
be rewritten in a more convenient form. In the first place, S; = S;po — S, > 0
if and only if Sj > So(j = 1,2, -+ ,n — v). Thus, N,_,(0) = K — k means
that exactly K — k of the partial sums S,41, - -+, S. are greater than S, . But,
if Ly, = vand N,_,(0) = K — k, then there are exactly K partial sums among
So, S, -+, S, greater than S, ,i.e. L,z = v. In the second place, S; = S;,, —
8, < —8,if and only if S;1, < 0,5 = 1,2, -+, n — v. Hence, Nu—y(—8,) <
M — m means that less than or equal to M — m of the partial sums S, 41, -+, S»
are less than zero. In view of the condition V,(0) = m, there will be less than or
equal to M negative sums in all among Sy, S;, -+, S., ie., N.(0) < M.
From (9) and the previous argument, we see that the right side of (6) can be
written

K M n O<Svéx, L =9 n 0<Sv§x
ZZZP L'vk=v 5 ]\77:20)§M =ZP LnK=v

10 =0 m=0 »=1 N,(0) = m =t (N.(0) =M
i 0<£Bn;z§x =P{I§nx§x }_P{}Enxéo }
2 NMEO) L N.(0) £ M N.(0) = Mf "~

We finish the proof with the observation that R,x =< z is equivalent to N,(z) < K.

3. Generating functions and a pair of equations. We introduce two generating
functions which play an 1mportant role in the evaluation of the probabilities of
Theorem 1. Let

0<8S, =z
n n é k n
) U@ =P{pE SR @@ = P L= }
" = N.(0) =m
We also introduce the generating functions of these quantities

U(z) = U\, s, t;2) = Z USR (z)s™\",

n,k,m=0

a(x) = a(>\’ 8, t; x) = Z a(n)(x)smthn.

nm—

(12)
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We will first show that a(z) is left unchanged under the interchange of s and ¢,
ie., a(), s, t;2) = a()\ ¢, s;x). To do this, one considers the substitution X, =
X410 in the set whose probability is e (z) . Of course, S, = S, . On the other
hand, S; < 0is equivalent to S._; > 8, ,and 8;> S, is equivalent to S,_; < 0.
Thus, under this substitution

§0<Sn§:cl §O<Snéx
(13) Ly, =n ={Ilpm=mn

N.(0) = m ‘ N.(0) =k

* In other words, using the identical distribution property of the X;’s and (13),
(14) and (8) = aim (2),

which shows that a(z) is left unchanged if s and ¢ are interchanged.
Formula I can now be rewritten in terms of the notation introduced in (11),

ie.,
Uitx(z) — Uitx(0)

303> [ 0832 w) = UL an )] dy ei2(0).

k=0 m=0 v=1

(15)

Relation (15) is equivalent to an equation involving generating functions. In
fact, using the notation V(z) = V(A s, t;2) = U(\, 8, 8; ), i.e., interchanging
sand ¢t in U(zx), one has

(16) U@ — U0) = 1= 1) [ V) dyaw).

Interchanging s and ¢ in (16) gives a second equation involving U(z), V(x)
and a(x):

(17) V@) = V(0) = (1 =5) [ U@ dyaly).

Thus, we have a pair of equations, (16) and (17), from which we will eventually
determine a( ). Now, USfx(z) is uniquely determined by (15) in terms of
UL (0) and o (z),m < M,k < K,n < N. Thus, there is a unique solution to
(16) and (17) expressing U(z) and V(z) in terms of U(0), V(0) and a(x).
To find this unique solution, let us first assume that the distributions are ab-
solutely continuous. Differentiating (16) and (17), one gets

U'z) = (1 — ) (z)V(z)

Viz) = (1 — 8)d(2)U(z)’

But, (18) can be solved explicitly. If a = (1 — ¢) and b = (1 — s), then
U(z) = U(0) cosh (ab)la(z) + V(0)(a/b)? sinh(ab)a(z)
V(z) = V(0) cosh (ab)la(z) + U(0)(b/a)? sinh (ab)ia(z).

(18) U(0) and V(0) given.

(19)
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Of course, the solution given in (19) is also the unique solution to (16) and (17)
in general, as shown by direct substitution, and is completely equivalent to
(15), i.e., to Formula I.

The method demonstrated here of forming a pair of differential equations
through which the generating functions of two sequences of probabilities are
related was also used by the author in [1, Sect. 5] where the special case m = n
of (3) was given.

4. Generating function of () and inversion. To find a(«) we let 2 become
infinite in (19). This leaves only the problem of determining U( ) and U(0).
However, these power series are easily computed from their definitions and from
the known result of Andersen [3]

o0 0

(20) > 2 NSP{N, =} = (1 — N1 — )7

n=0 =0

On the one hand

Ulw) = > NP {%:E(;) ééhf}

m,k,n=0

o0

> N's"P{N.(0) < m)}

m,k,n=0
(21) = > M\s"'P{N, £ m}
m,k,n=0
=1 =871 —8)7 X X AS"P{N, = v}
n=0 v=0

=1 =71 =) =N =)
On the other hand

— > n_m,k Nn(O) é k
u) = m.k,znao NP {Nn(o) =< m}
= i Ns"EPin — m <

mk,n=0

"
=
A
=

(22) 3 NeE S PN = o)

m,k, n=0 v=n—m

=1 -0 -8 f: Zn: )J‘s”‘”t"i—"{N,. = v}

=1 =1 —9) 1 =) =)

If we substitute these expressions into (19) with x = o, remembering that
V(») and V(0) are formed from U(x) and U(0) by interchanging s and ¢,
and perform an obvious simplification, we find
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[(1 = A)/(1 — N = cosh (ab)}a( )+ (a/b)!sinh (ab)?a(=)
[(1 = As)/(1 — N = cosh (ab)ta(o) + (b/a)!sinh (ab)’a(=).
Solving (23) for cosh (ab)*a( ) and sinh (ab) 'a( ) and then adding one finds:

Jatae _ (L= M) + a'(1 — )}

(b + a1 — M}
In summary, we have found the generating function of the quantities i (@),
ie.,

(23)

(24)

YRRy PSR
(25) () = [(1 = (1 — ] 1og [ L LM A JU2 ],

A simple observation will enable us to invert the generating function in (25).
Let us write

_ o (1— 8 — M)+ (1 — ' — )}
P=1[(1—-s8)(1—2¢]"log [ T —of+ 1=ty :'
Q= —3I1 =81 =t log (1— ),

so that a(») = P 4+ Q. Now, all non-zero terms Pami\"s™* in the expansion of
P must have m + k = n. This follows simply because A appears in P only to-
gether with s or ¢. On the other hand o (0) = 0if m + k = n; for clearly,
if L. = nand 8, > 0, then there are at least k + 1 positive sums. Thus, o ()
is non-zero only if m 4 &k < n. The only contribution to the non-zero terms of

a( ) comes from Q. Thus, we find
0<8 <
» 1 [2m\[(2k 1

Replacing m by n — m in (27) yields

0< 8 <
(28) P{Lm:n }=%(k)<n_m>§mn, k< m,

(26)

N, =m

which is equivalent to the last line of (4) since S, > 0 is equivalent to k¥ < m
in (4). The first line of (4) follows by symmetry.

5. Limiting case. To find the distribution indicated in (5) we compute the
limit
lan/T] [Bn/T]
(29) limpow 2, 2. P{N, = m, Ly = n}.

m=0 k=0

It follows that (8 < «)



FINITE ARCSINE LAW. 915

[Bn/T] [an/T]
P{Vo < o, Vi < 8} = limgae (1/27) ; g;k (1/n)k(n — m)]™

[Bn/T] k

+ limp-e (1/27) I;) ,,.; (1/n)lm(n — )7
B/T al T
(30) = 1/2n) [ f (@1 — y))" dz dy

BIT ,z
+ (1/(2m) f f W — 2)) dz dy

_2 . (BY _2/(8 a\\
= ;arcsln <T) ;(T (1 - T)) 5 /3 < a.
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