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A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES'

By Mever Dwass’
University of Minnesota

1. Statement of theorem. We shall call X;, --+, X, a cyclic set of random
variables (or simply cyclic) if P(X; < #, +++, Xa = tu) is constant for all n
cyclic permutations of the sequence 1, -+, t. . Loosely speaking, the random
variables are cyclic if their distribution law is invariant under cyclic permuta-
tions. Similarly, the set is called exchangeable (or symmetrically dependent) if
their distribution law is invariant under all permutations. Exchangeable sets of
random variables are cyclic, but the converse is not true. Let

Si=Xi+ -+ X, k=1,.-,n,
M = max(Sy, -+, S.),

z if z =z 0,
zt =

0 if z £ 0,
B z if z £ 0,
i e =z 0

The main purpose of this note is to prove the following.
TarorEM 1. Suppose that X, - -+ , Xa 1s a cyclic set of random variables. Then

(1.1) EM |8.=5s)=s/n

The proof will be given in Section 2.
ReMARK. By the conditional expectation in (1.1) is meant a measurable func-
tion of s, which, for any measurable set A on the real line satisfies

[ B 18, = 6) dP(S, < 5) = B(M; 8, in 4),

whenever this expectation exists. The assertion of the theorem is then that s™/n
is one possible version of this function. Of course, any other version must agree
with s~/n, except possibly on a linear set of probability zero.

An interesting special case of (1.1) arises where the X assign all their mass
to —1,0, 1,2, --- . Then under the condition that S, = u, a negative integer,
and M is negative, then M must equal — 1. Hence, in that case, (1.1) says,

(1.2) P(M <0|8,=u)=—u/n
A version of (1.2) that has been proved before, but only for exchangeable

Received December 15, 1961; revised May 2, 1962.
1 The study was supported by the Air Force Office of Scientific Research.
2 Now at Northwestern University.

1450

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. RIKORS ®

Www.jstor.org



CYCLIC RANDOM VARIABLES 1451

random variables, is the following. If Y5, - - - , ¥, are cyclic, and each ¥ agsigns
all its massto 0, 1, 2, -- -, then

(13) P(Yi+ -+ +YVi<kk=1 - ,n|Yi+ -+ Y,=1)=1—r/n,

if r is a possible valueof Y1 + --- + Y,,0 < r < n.

It is easy to verify that (1.2) and (1.3) are equivalent. The relation (1.3) was
proved before for exchangeable random variables in [1]. However, the method
of proof there uses the exchangeability in an essential way, and is not adaptable
to the proof of (1.1) or even to the special cases (1.2) and (1.3). The special
case of X; assigning all mass to —1 and 4-1, and exchangeable is discussed by
Feller under the subject of Bertrand’s “Ballot Problem,” ([2], pp. 66, 70.)

2. Proof of theorem. In order to motivate the proof, we give first a numerical
example which illustrates the method. Suppose (X;, ---, Xs) is equally likely
to be any of the six cyclic permutations of (—7, 1, —3, 2, —2, —3). (We choose
integer values only for simplicity.) Table I lists all possible values of the rele-

TABLE 1

Xy | Xo| Xo| Xy| Xs| Xo| S1 | S2| S5 | Sa | S5 | Ss | M-
-7 1|1-3] 2|-2|-3|-7|—-6]| —-9| -7 —-9|-12|—6 |k =2|—-7T+1= —6
11-3| 2|—-2 (-3 (-7 1] -2 0| —-2|-5(-12| 0
-3 2{—2 (-3 |-7 1|-3|—-1|-3|—-6|-13|-12|-1|k=2|-34+2=—1
2(—-21|-3|-7 11-3|( 2 0| -3|-10|-91(-12} 0

—2|-3|-7| 1|-3| 2|-2| -5 |—-12|—-11|—14 |—-12|—2 | ks =1 —2 = -2
-3|-7|1 1|-3| 2|-2|-3|-10| —9 |—12 (—10 (—12 |-3 | ks =1 -3 = -3
vant vaiiables. First observe that EM~ = —12/6 = Sg/6, which is the assertion

of the theorem. In the first permutation M is achieved in the second (%;) posi-
tion. The value of M~ in the permutations that follow up to but not including
the third (k; 4 1) is zero. In the third (k; 4+ 1) permutation, M~ is achieved in
the second (%,) position, and the value of M~ in the permutations that follow
up to but not including the fifth (k; + %» + 1) is 0. In the fiftth (k; + ko + 1)
permutation, M is achieved in the 1st (k;) position. In the sixth (k, + ks +
ks + 1) permutation, M is achieved in the 1st position (ks = 1). Since k; +
ky+ ks + ki =6 =n we stop the process. Thus 6EM~ = (=7 + 1) +
(=34+2) 4+ (=2) + (-3) = 8s.

We now proceed to the formal proof. It will be sufficient to prove the theorem
assuming all the mass is concentrated on the n cyclic permutations of a given
set of numbers, z;, -+, =, (as in the example), since the general situation
follows easily from this special case. Denote z; + - + = s, k=1, -+, n.
The cyclically permuted sequence z , - - - , Zz—1, Will be denoted by T'(k), and
the maximum of the partial sums in 7'(k) will be denoted by m(k). The idea of
the proof will be to show that each x; occurs exactly once in some negative m(k). We
first remark that there is no loss of generality in supposing that m(1) is negative;



1452 MEYER DWASS

for it is easy to verify that since s, is negative then m(k) must be negative for
some k, and T(k) could become the initial sequence, T'(1) under an appropriate
relabelling.

(a) For any k, the partial sums of T'(k + 1) are

(21) Sk41 — Sky " 3 Sn T Sk, Sp — 8k+81, Tty 8y — S+ Sk .
Since s, — 8 > Sn — Sk + 8:,% = 1, -+, k, this means that m(k) is achieved
for the last time by one of the n — k terms, sp41 — Sk, ***, 8 — Sk-

(b) Consider now the position in T'(1) where m(1) is last achieved. Call
this position &, . Since s, = s for k < ki, and sy, > s for £ > k; , it follows

from examining (2.1) for k = k,; that
m(k;+1) <0, and m(k) 20, if 1<k=k.

(c) Let k, be the position in T'(k; + 1) where m(k; + 1) is last achieved. From
(a), ks < n — k; . Applying the analysis in (b) once again, we have that

m(ky+k +1) <0, and m(k) 20, if khi+1<k=lk+k.

(d) The above procedure is continued for a finite number of steps until

k1+ e +k,=n
(e) Finally we have

m(k1) = Sk,

m(kz) = Skytky — Sky»
(3

m(kf) = Skyteectky ™ Skydecothpey s
and so nEM~ = m(ky) + -+ + m(k,) = s, , which completes the proof.

3. Additional results for independent random variables. If X, , --- , X, are
independent and identically distributed then of course they are cyclic and (1.1)
holds. But in this case somewhat more precise information can be given. Suppose
(X,) is an infinite sequence of independent and identically distributed random
variables. We now write M, = max (S;, -+, S.) to emphasize the dependence
of M on n.

TaeOREM 2. Under the above assumptions,

Bt — BREM-1 4 P(M, < 0) — E(t*; M, < 0),

g £ 1.
Proor. The proof follows by an elementary calculation using the facts that
M, = M; + M%, "% 4 ¢ = ¢ 4 1, and B™ = BBt
COROLLARY 1. If lim,.oP (M, < 0) > 0, then lim,.oM, = M is a well-defined
random variable and Theorem 2 implies, on going to the limit, that

_P(M < 0)(1 — E(*| M < 0))

32 B
(32) 1 - EtM




CYCLIC RANDOM VARIABLES 1453

- CoroLLARY 2. Suppose EX, exists and is negative. Since the left side of (3.2) s
1 jor ¢ = 1, then evaluation of the indeterminacy in the right hand of (3.2) gives that

(3.3) E(M;M <0) = EX, .

This result can easily be obtained from (1.1) by a limiting argument. As before,
if the X; assign all their mass to —1,0, 1, - -+, then

P(Sk<07k= 1727"') = —EX,.

4. Relation to a known formula. It has been proved by Kac [3] and Spitzer [4]
that if the random variables X, , - -+, X, are exchangeable, then

(4.1) EM} — EM}_, = ESt/n.

We wish to point out here that (4.1) is true also in the cyclic case, and is easily
deduced from (1.1). Conversely, (4.1) follows from (1.1). To verify these
assertions, notice that M5 — M7 _, is zero unless S, exceeds O and S, , - - - sy Sa1,
and therefore equals [min (8., S, — S, -+, S, = S,y)]™. Hence,

E(m - m—l I Sn) = E'[\nzin Sn; Sn - Sl y " Sn - Sn—l)+ I Sn]
= E[(min Ty, Te, --+, T.) V| T4,

where Ty = X,, T: = X, + Xuu, -+, T. — 8S.. Since the cyclicity
of (X1, Xz, --+, X») and (X5, Xp1, -+, X;) are equivalent, then the last
expectation equals S/n by Theorem 1, (replacing the original random variables
by their negatives). Thus (4.1) holds if (1.1) does, and conversely, if (4.1) holds,
the same argument shows that (1.1) does.

The form of (4.1) that was proved in [3] and [4] is
(4.2) EM; = ES{/1 + ES§/2 + --- + ESt/n.

For exchangeable random variables (4.1) and (4.2) are obviously equivalent,
because a subset of exchangeable variables are still exchangeable. On the other
hand, if Xi, .-+, X, are cyclic, then X;, ---, X, for k < n, are in general
not cyclic, and thus (4.2) will in general not hold for cyclic random variables,
though (4.1) will be true.

A numerical illustration might be in order at this point. Suppose the random
vector (X1, Xz, X5, X4) assumes for its values the four cyclic permutations of

TABLE II
Possible values of Possible values of
X 1 Xz X 3 X 4 Sl Sz S 3 54 M r M ;’
—6 -3 10 11 —6 -9 1 12 12 1
-3 10 11 —6 -3 7 18 12 18 18
10 11 —6 -3 10 21 15 12 21 21

11 —6 -3 10 11 5 2 12 12 1
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(—6, —3, 10, 11). Table II provides the necessary data. EM{ — EMF = 3
= 8,/4. The computation for the right side of (4.2) gives (1/4) (21/1 + 33/2
+ 36/3 + 48/4) = 63/4 = EMY .
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DETERMINING BOUNDS ON EXPECTED VALUES OF CERTAIN
FUNCTIONS

By BErRNARD HARRIS

Unaversity of Nebraska

1. Introduction and summary. Let § be the collection of cumulative distribu-
tion functions on (— », ©) and F, 5 that subset of §F all of whose elements
have F(a — 0) = 0Oand F(b) =

Let g2 40 (glegke w0y he the class of cumulative distribution functions
on (—o, ) ([a, b]) whose first £ moments are u1, u2, - -, ux respectively.
We will suppose throughout that ui , pe, - - - , sz is a legitimate moment sequence,
i.e., that there exists a cumulative distribution function F (z) & F (F(45) whose
first £ moments are w1, po, * -, Mk -

Let g(z) be a continuous and bounded function on [a, b]. Then, we wish to
determine F*(z) £ Fgi*¥ with

(1) fb g(z) dF*(z) = min (max) g(x) dF (x).

F:SFE“‘ itz ~~~~ Be) Ya

Any F* () satisfying (1) will be called an extremal distribution with respect to
g(z).

Let g[a » be the set of continuous, bounded, and monotonic functions on
[a, b], whose first k derlva,tives exist and are monotonic in (a, b). In addition,
we further require that gt contam only functions not linearly dependent on
the monomials 1, z, 2%, -+ - , 2".

This paper characterlzes the extremal dlstrlbutlons for g(z) £G{ty; . The
results are extended to & {42 ¥ and F*1** in that we investigate
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