TESTING APPROXIMATE HYPOTHESES IN THE
COMPOSITE CASE'

By JupaH ROSENBLATT
University of New Mexico and Sandia Corporation®

1. Introduction. One of the chief reasons for not using the Kolmogorov-
Smirnov tests is that, as originally presented, they were only suitable for testing
the simple hypothesis F = F, against all alternatives. In a previous paper [3],
the author investigated these tests, and extended them to eliminate the paradox
of almost sure rejection of the null hypothesis when too much data is observed.
Also Kac, Kiefer and Wolfowitz in [1], investigated extensions of the Kol-
mogorov-Smirnov tests for testing “‘larger”” null hypotheses by means of minimum
distance methods. Mention was made in [1] of the difficulty of computing the
test statistic. Due to this latter difficulty they suggested a test of normality in
which the composite null hypothesis is essentially reduced to a simple one by
replacing u and o® by their estimates X. and s> . Such a test suffers from the
disadvantage that distributions which are distance-wise “close’ to being normal
can lead to rejection of the hypothesis of normality with high probability (since
closeness of distribution does not imply closeness of their corresponding
moments) .

In this paper the basic theory for such tests is briefly developed, and then
attention is turned to the practical problem of performing the tests, with round-
off error taken into account. Two classes of tests of translation-scale parameter
families are presented. They can be performed in a finite number of operations,
and have the property that distributions in a “neighborhood” of some member
of the family will lead to acceptance of the null hypothesis with at least a specified
probability, while distributions at least a specified distance from all such neigh-
borhoods will lead to rejection of the null hypothesis with at least a given prob-
ability. Though not done explicitly in this paper, it is clear that the methods
developed could be extended to n-parameter families in certain cases.

Essentially, this paper is an extension of the work originated in [3] (which
did for the Kolmogorov-Smirnov tests what the paper [2], of Hodges and
Lehmann did for the chi-square test), to cases of richer null hypotheses.

2. Some theory of testing hypotheses based on the use of a metric. Assume
X1, -+, X, to be independent random variables with a common distribution
function, and let F, be the random process whose value is the empirical dis-
tribution function formed from the observed values of X1, - -+, X» . Let © be
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the set of all one-dimensional distribution functions. Let d be a metric on
D X D such that for some sequences lim,.o han = he, We have

Peld(Fn, F)/c(n) Z han} S ofc(n)}

and {he,.} with lim,.. c(n) = 0 and for every F ¢ ®. (Note that c(n) and h,.»
are not to depend on F.) Such conditions are satisfied for example, if d = d;
(the uniform metric), c(n) = n?, and han = hian as in [1]; ie., di(FiG) =
sup; | F(z) — G(z)], and for F continuous

Pelntdi(Fu,F) < hyon} =1 — .
For 5¢) any given subset of D, a test of 3¢ with useful properties is:

Rej 3¢F when X; (w), -+, Xa(w) are observed
& infreges d(Fa, H) (0) /c(n) 2 hapn .
Just how to carry out this procedure, which constitutes the major portion of
this paper, depends both on 3¢) and on the nature of the metric d.
THEOREM 2.1. Pg{rej 3¢} < a for all F in 3.

The proof is obvious.
TaEOREM 2.2. Let ] ¢ (0, 1) and n be an integer for which

l/c(n) - h'a,n g hﬁ,n .

Then Pgeirej 3¢5} = 1 — B for all F for which infg.es d(F, H) = 1.

Proor. We first note that under the assumptions previously made there is
an 7 satisfying the hypothesis of this theorem. Again from the previous assump-
tions, and the hypothesis,

1 — B8 = Peld(Fn, F)/c(n) < hpn}
S Pe{d(F,, F)/c(n) <llc(n) — han}.
It can easily be seen from the triangle inequality that.
2.2) d(F,H) = a, dG, F) <b=d(G H) =2a—0b.
For infgues d(F, H) = I, applying (2.2), (identifying Fn( ) (w) with @),
Peld(Fn, F) <1 — c()han} = Prlinfreges d(Fa, H) Z c(n)ha,a}
= Pplinfaeges d(Fn, H) /c(n) Z hana} = Prirej 3¢5}
Combining (2.3) and (2.1) proves the desired result. If » is sufficiently large
so that we almost have Pp{d(Fn, F)/c(n) = ho £ o, [or if he > han
for all n], we may replace the suggested test with the simpler, rej 3¢ <
infgeges d(Fa, H) (w)/c(n) Z ke, with n chosen to satisfy I/c(n) — ha = hg.
In this case, Theorems 2.1 and 2.2 hold asymptotically, [or conservatively].
The significance of asymptotic results on power is that as I — 0, the asymptotic

results tend to exact ones.
In the next two sections we construct some workable tests of the hypothesis

2.1)

(2.3)
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GC.’," that F is “approximately” in the translation-scale parameter family 3¢, .
Here 3¢ DO 3¢, is large enough for it to be “actually possible” that F is in 3C;.

3. A test based on the uniform metric d; .
DEFINITION.

3, = {G:G(x) = F.[(x — u) /o] all z, some u, ¢ > 0, F, a given continuous d.f.}
¥ ={FeD:dy(F,Q) £k, G e3)}.
The number k is determined from realistic considerations external to the mathe-
matics. For each G €3¢, let G¢ = {H ¢ D: di(G, H) = k}. f FeDand F £Gg,
we have, say, di(F,G) = k+ 1,1 > 0.
Lemma. If F* € Qg satisfies
infregq di (F, H) = dy(F, F*),

then di (F*, G) = k, di(F, F*) = L.

Proor. We note that in [3] the existence of such an F* was shown. The proof
is geometrically obvious from the construction of F* in [1]; since at the point z,
at which |F (z)) — G (%0)| = k + I, we have |[F*(z,) — G(%)| = k. Thus since
di(F*, @) = k, we have dy (F*, @) = k. The final assertion, dy (F*, F) = I, then
follows from the triangle inequality.

The proposed test of 3¢5 is:

Rej 3¢} when X;(w), * -+, Xn(w) are observed

& infrac,di (Fa , H) (&) Z k + hy,an/n,
where 7 is an integer for which
(3.1) nl — hiam Z hgon .
It is clear from the previous lemma and the theory of Section 2 that this test
satisfies
Pyirej 3¢¥} < awhen F e3¢} ;
(3.2) and
Peirej 3¢5} = 1 — f when infaues di (F, H) 2 1.

The only problem which arises is how to determine for each g, X; (w), «*+ , Xn (w),

in a finite number of steps, whether or not infzee, di(F» , H)(w) < q. The idea for

the computational technique employed is due to Professor T. W. Anderson.
DeriNITION. Let a;,, and b;,, be any numbers for which F.(a;,) = j/n — g,

F.(bjq) = G—1)/n+ qforj =1, ---, n. Let X;;;(v) stand for that X;(w)
which is jth in order of magnitude, i.e., if X{; (w) = X;(w), then X;(w) is greater
than or equal to at least j of the values X, (w), -+, X.(w), but does not exceed

more than j — 1 of these values. We may have X;j (v) = X[jy (@), - -+ where
. oJ

X () = Xi(w), Xijp(w) = Xo(w), ¢ = 1.

TaEOREM 3.1. infame, < q if and only if for at least one (u, 0), ¢ > 0,

(3.3) Xig(w) —w)/o <bjqe, Xin(w) —n)/oc>a;, foralj=1,---,n
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ORDINATE

6, 6lx)=Fe ([x-p] /o)

)b](u) X (w)  ABCISSA

Figure 1

Proor. In order that there be a G £ 3¢, for which d; (F, , @) < g we must have
for at least one (u, ¢), ¢ > 0

FlXu() —u)/el— G—-1/n<gq j/mn—FlXinw) —n/d<qg

forallj = 1, ---, n as illustrated in Figure 1. But this is equivalent to (3.3).

The significance of this theorem is that for each ¢, X;(w), - - -, X, (w) we can
determine whether or not there is a (u, o), o > 0 for which the inequalities (3.3)
are all satisfied, in a finite number of operations. This is accomplished geometri-
cally by looking at each inequality in (3.3) separately and blocking out those
points in the (u, o) plane for which each inequality can not be satisfied. Only
a straight-edge and graph paper are required for this. If there are any points
(i, 0), ¢ > 0, not blocked out for at least one of these inequalities, then we know
that there is a G in 3¢, for which dy (Fn, @) () < q. For ¢ = k + hyan/n if
there is a (u, ¢), ¢ > 0 for which (3.3) are satisfied we accept 3¢F .

Determining whether or not there is a (u, ), ¢ > 0, satisfying (3.3) can also
be programmed on a digital computer. However there is one difficulty which has
been glossed over, namely errors in any such procedure. (In the geometric solu-
tion these are measurement errors. On a digital computer they arise from the
restriction to a finite number of arithmetic operations.) In practice any such
procedure can usually at best guarantee that for any given ¢ > 0 if

(3.4) infaege, di(Fn , H) (0) 2 g,
no (u, o), ¢ > 0, will be found satisfying (3.3), and if
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(35) ian&'.'Co dl (Fﬂ ’ H) (w) < q— ¢
at least one such (u, ¢) will be found.

It can be shown that if F., satisfies a Lipschitz condition with known parameter,
then for given X; (w), - -+ , Xa(w), € > 0, one can satisfy (3.4) and (3.5) using a
suitable digital procedure. Intuitively we feel that for e sufficiently small, such
errors will have little effect on the test. The following theorem shows rigorously
how the desired results can be achieved even in the presence of (a sufficiently

small) round-off error.
TaeoreM 3.2. Let § ¢ (0, o),

nél - hl,a—&,n % hl,ﬂ,n ) q = k + hl,a—s,n/n*y € = (hl,a—s,n - hl,a,n)/n}.

Then a test procedure satisfying (3.4), (3.5) satisfies (3.2). This theorem states
that if round-off and other errors can be kept sufficiently small, their undesirable
effects can be overcome by increasing the sample size. We shall not prove this
theorem, because of the presence of similar more difficult ones in the next section.

If for all v, h1,yn < P1,y, then all of our results hold with Ay1,a,n, h1,a—s,» and
R, replaced by hu,a, h1,a—s and hy g respectively (for o, 8 < 3).

Anderson’s computational technique can easily be generalized to the case
3¢ = (F e D: Hi([x — pl/o) £ F(z) < Hy([x — u]/0) all 2, some p, some ¢ > 0,
lim,. _oH;(z) = 0, lim,.oH:(z) = 1}. Similarly to the previous case we define
a}, and b}, by

Hiy(af) =j/mn—q  Hi(bf) = G—1)/n+g
In order for there to be a G in 3¢ for which d; (F, , G) (w) < g, we must have for
at least one (u, o), ¢ > 0,

Hl(X(w) —w)/el— G—1)/n<q  j/n—Hl[(Xia(w) —u)/d]<g

forallj = 1, - -+, n. That is, for at least one pair (u, o), ¢ > 0, we must have

(X[ﬂ (w) - I‘-)/o' < b;‘.q; (X[i] (w) - I‘-)/"' > a;!:q; allj =1,.--,n
Then as before, it is easily seen geometrically, or digitally whether or not there is
at least one (u, o), ¢ > 0, satisfying the above inequalities.

4. A test based on the metric d;. Here do(F, G) = sup:| Pe(I) — Pq(I)],
when I is an interval. We let 3¢, = {G ¢ D: G(z) = F.([x — u]/0), all z, some
u, o > 0, F, continuous in D}, and

¥ ={FeD:do(F,Q) £k, G &30}.
From [4] and Section 2 of this paper we know that the test of ek
Rej HY when X;(w), -+, Xa(w) are observed
& infaae,da(Fa , H) (@) Z & + ha.an/n,
where I € (0, 1) and n and hs, 4, satisfy
(41) 73— haam = hapn, and Pentda(Fn,F) S hoan} =1 —a
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for continuous F, satisfies (3.2) (with d; replaced by d;). Unfortunately we know
of no way to compute infg.e,ds (Fn , H) (w), or even to determine whether or not
infrge,da (Fa , H) (@) = k + hz,a,n/n, in a finite number of performable opera-
tions. However, as we shall now demonstrate, a performable test of 3¢ with the
desired properties can be constructed. The test will demand more observations
than (4.1) would indicate.

DErINITION. Let K (r) = {G £ D:infgge d2 (G, H) < 1}.

DzeriniTION. Let ®(r, €) be a mapping on the set of possible empirical distribu-
tion functions based on X;, - -+, X, to {“rej 3¢ ,” “acc 3¢;"’};

w3 ®(r, €) (Fal 1(w)) = “rej 3¢, when Fo () (0) e X°(r + ¢),
4.2
®(r, €) (Fa[ 1(w)) = “acc 3¢F” when F, () (w) e X (r).

Let 6 £ (0, ), let n be an integer satisfying

(4.3) 7 — hgaiin = Pagon,
and let

(4.4) r="k+ hyan/nt
and

(4.5) e = (ha,a-s,n — ha,am) /7.

The proposed test (which we shall show can be carried out in a finite number of
steps) is

Rej 3¢ when X;(w), - -+, Xa(w) are observed
& @(r, ¢) (Fal ](w)) = “rej 3657,

We shall show how to construct a mapping @ (r, €) after the following theorems.
TuEOREM 4.1. For this test Py{rej 3¢f} < a for all F € 3CF.
Proor. When F ¢ 3¢5

Pe{rej 5c¥} = 1 — Pg{acc 3¢5}
=1 — P{®(r, &) (F,) = “acc 3"}
=1— P ®(r, ¢) (F) = “acc H¥" | Fo ¢ K(r)} - Pe{Fn £ K (r)}
— Po{®(r, €) (Fa) = “acc 3¢5 | Fu 2 X(r)} - Pe{Fu £ X (r)}
S 1 — Pu{®(r, €) (Fa) = “acc 13”7 | Fo e K (r)}-Pr{Fn e X(r)}
1 — Pp{F, e X(r)}
1 — Pylinfrae,ds(Fa , H) < 1}
1 — Py{infuae,ds(Fn , H) <k + ha,an/n'}
= Pylinfage,ds(Fu, H) Z k + ho,an/n'} < a.
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TurorEM 4.2. For this test Prirej 3¢5} = 1 — B when infaeesde (F, H) = 1.
Proor. Assume infg.gesde (F, H) = 1. From [2], Theorem 3.2

infgggcadz(F, H) g k + l@infgggczdz(F, H) % l.

Thus
Pe{rej 35} = Po{®(r, €) (Fa) = “rej 3¢5}
= Pp{®(r, €) (Fn) = “1ej 30" | Fn e X°(r + €)} - Po{Fa e X°(r + ¢)}
+ Pe{®(r, ) Fn = “rej 55 | Fn g X°(r + €)} - Pe{Fr 2 X°(r + €)}
>

P Fn e X(r + €)} = Pplinfuge,ds(Frn, H) =1 + ¢
elinfage,ds(Fr , H) = k + hy,asa/n})
= Pplinfuuges do(Fa , H) = hgasn/n'} 2 1 — B.

This last step is justified by (4.3), and the results of Theorem 2.2, together with
Theorem 3.2 of [2].

The only remaining step is to define a particular mapping ®,(r, ¢) of type
®(r, ¢), and show that for »r > 0, ¢ > 0, X;(w), -+, X, (w), we can compute
®o(r, €) (Fu[ ](w)) in a finite number of operations.

We will assume that r is a multiple of e. Looking at (4.3), (4.4) and (4.5), we
see that if r is not a multiple of ¢ for the «, 8, I,  and n chosen, since A, o_; »
varies continuously with §, by decreasing é so that ks, .—s,s is sufficiently decreased,
we can insure that r is a multiple of ¢, i.e., hold «, 8, I and n fixed at the value
originally chosen and decrease § until r is a multiple of e. Then (4.3), (4.4), and
(4.5) will still be satisfied.

Let ®.(r, €) (Fal 1(w)) = “acc 3¢;” if and only if for some u, ¢ > 0, all z, at
least one of the following r/e 4+ 1 pairs of inequalities holds:

Fo(le — wl/o) —[r + (1 — m)e] < Fu(@) (@) < Fe(lz — ul/0) + me,
m=0,-,r/e

TuaeoREM 4.3. The mapping @, (r, €) just defined satisfies (4.2).
Proor. Suppose F,[](w) € X°(r + ¢), ie., infage, da(Frn, H) (¢) = 7 + «
Then from the definition of d; and 3¢, , for all u, ¢ > 0,

supo{F.([r — ul/o) — Fa(@) ()} + supo{Fa(z) (w) — Fe(lx — ul/o)} 2 r + e

Assuming these two suprema achieved at y; = 21(u, 0, @) and yo = 22(y, 0, w)
respectively, we have

4.7) Fo(ly — #l/o) — Fa(yr) (@) + Fu(y2) (0) — Fe(ly2 — ul/0) Z 7 + e

Clearly we can not have both

48) Fe(lyr—pl/o) = Ir+ (1 —m)e] < Fu(y) (0) < Fe(lyr — wl/o) + me

{

{
Po{@(r, €) (Fa) = “rej 3¢5 | Fa e X°(r + €)}Pp{Fa e X°(r + €)}
Py
Pl

(4.6)



APPROXIMATE HYPOTHESES, COMPOSITE CASE 1363
and
(4.9) Fe(lyz — #l/o) +[r+ (1 = m)e] < Fa(ye) (w) < Fe(lye — pl/0) + me

for even one m = 0, - - -, r/¢, for then multiplying (4.8) by —1 and adding to
(4.9) we would obtain

=+ ¢ <F(lyr — bl/e) — Fa(yr) ()
+ Fa(ye) (@) — Fe(ly2 — ul/0) <r+¢

which would contradict (4.7).

Thusif F,( ) (w) eXR°(r + €) (4.6) can not be satisfied foranym = 0, - -+ , 7/,
ie., if Fu() (w) e RS(r + €), we reject 3¢5 .

Now suppose Fp() (w) € X(r). Then infgmge,de(Fn, H) (w) < r, ie., for at
least one (uo, 00), 00 > 0
SUpA Fo ([ — mol/o0) — Fa(z) ()}

+ Sup.{Fa (z) (0) — Fe(lx — pol/00)} <.
Choose m; to be the smallest integer exceeding
Sup{ Fr (z) (0) — Fo([z — mol/00)}/e.

(Note that due to (4.10), 0 < m; = r/e.) Then

(4.10)

(4.11) (my — 1) e < supf Fn (@) (w) — Fe([x — pol/o0)} < mye.
Utilizing the left hand inequality and (4.10) we obtain
(4.12) supz{F.([x — m)/o0) — Fa(z) ()} <7 — (m1 — 1)e.

From (4.11) we have that for all z, Fa(z) (w) < Fe([xt — po/c0) + mie, while
from (4.12) we have that for allz, F.([x — po)/o0) — [r + (1 — m1) €] < Fp(z)(w);
ie., for m = my (4.6) is satisfied, and 0 < my = r/e.

Thus if Fa() () € K (r) we accept 3¢;. Therefore ®,(r, €) satisfies (4.2) and

the theorem is proved.
We now show that ®,(r, €) can be applied in a finite number of steps.

DEeFINITION. Let @;,m,c and b;,m,. be any numbers for which
F(ajme) =3i/m—me  Fe(bjme =7+ (1—m)e+ (G—1)/n,
form =0, ---,r/e.
TureorREM 4.4. (4.6) s satisfied by some (u, o), o > 0, if and only if for some
m=0,---,r/¢,forallj=1,---,n,
(4.13) Xy —w)/o>aime, (X)) —u)/o <bjme.

The proof is obvious from the definition of Xj; ‘(w) as that X;(w) which is jth

in order of magnitude.
The significance of this theorem is the same as that of Theorem 3.1, namely
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that determining whether or not there is a (g, ¢), ¢ > 0, for which (4.13) can be
satisfied, (for all j and at least one m), can be done geometrically. This can also
be programmed on a digital computer, where it takes 7/¢ + 1 times as much
computation as in the d; case. Given today’s high speed computers, we can keep e
small enough so as not to substantially increase the sample size, yet not so small
as to make the computation too lengthy.

The question of the effects of vanous round-off errors arises here too. Suppose
these errors introduce an error of ¢, i. e., we do not really reject 3¢} for observed
w if ®(r, €) (Fa[](w)) = “rej 3cr ”, but rather if C[®,(r, €)](Fa[ ] (w)) = ‘“rej

ey where C[®,(r, €)], the computed mapping is really a ®,(r — ¢, ¢ + ¢),
Wlth ¢ fixed. Then it is seen that in our computations we should use

e[(Po(T'i- exe_ e)]y

where n and r satisfy (4.3) (4.4) but é may have to be decreased sufficiently so
that Rz a_s,» is smaller, in order that » + ¢ be a multiple of ¢ — €. Note that in
this case the sample size is unchanged, but the amount of computation is greater.
As usual, if Ag,a,n = ha,q for all @ € (0, 3] we may replace hz,as.n , h2.6.n , h2,an DY
ha,a—s , hag, , h2,« Tespectively and all of the theorems proved remain valid.
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