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1. Introduction. Functions of a finite state Markov chain were considered by
Burke and Rosenblatt in [2]. They obtained, as a result of these considerations,
conditions under which the Chapman-Kolmogorov equation implies a process
is Markovian. In [8] Rosenblatt considered functions of Markov chains in some
generality but was not concerned with the Chapman-Kolmogorov equation
and its implications. This paper extends some results obtained in [2] to a de-
numerable state space with the Chapman-Kolmogorov equation in mind. Also
an example is given which shows limitations to this approach. The example is
one more counter-example showing that the Chapman-Kolmogorov equation
does not always imply a process is Markovian [5], [7], [10].

2. Collapsed Markov chains with any initial distribution. Let X (),0 £ ¢ < «
be a Markov chain having a stationary transition probability matrix P(f) =
(pi(8)54, 5, = 1,2, --), PIX(¢ + 7) = I X(7) = 1] = ps;(t) with any initial
distribution w = (w; > 0;7 = 1, 2, ---). The pi;(¢), 7,4, = 1,2, --- are as-
sumed to have the following properties

0 < pi(t) £ 1, ]Zpij(t) =1

1
W pii(t + 1) = k;lpik(t)pkj(f)

and w = (w; > 0) is such that D_; w; = 1. Consider now a new process Y (¢) =
f(X(2)) (called herein the collapsed process), where f is a given function on the
states ¢ = 1, 2, 3, - - - . The function f is a many-one function on the state space
of X(t) onto the state space of Y (t). The states ¢ of X(¢) on which f assumes
the same value are collapsed into a single state of the Y'(¢) process. We label
the states of Y (¢) S.,a = 1,2, - - -, for convenience [2], [9].

TaEoREM 1. Let X(£),0 = t < « be a Markov chain having stationary trans-
stton mechanism P(t) = (pi; (£);2,7 = 1,2, «+-) such that lim, o p:;(t) = 8
uniformly in 1. (Note that this is equivalent to requiring that g; < M < o
for all ¢, whereg; = lim; o[l — p:(2)/f], (see Doob, [3] p. 266).) Then
Y () = f(X(¢))7s Markovian, whatever the-initial distribution w = (w; > 0) for
X (), if and only if its transition probabilities satisfy the Chapman-Kolmogorov
equation. The schema of proof follows that given by Burke and Rosenblatt in [2].

Proor. We need not consider the necessity. Assume then that Y (¢) satisfies
the collapsed Chapman-Kolmogorov equations,
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where Q%Y = (B'D,B)"'B'D,P(t)B, B’ being the transpose of B. B is defined
as B = (bij),

1 for 7¢8;
0 otherwise

and D = diag (w;) [2].

We carry out the following differentiations formally; the required justifica-
tions are easily verified using the results in [1] and standard techniques. Dif-
ferentiating (2) with respect to = and evaluating at + = 0 we obtain:

(3) ) (B'DuwryB) "B'DuryGB = (B'D,B)'B'D,P(t)GB,

where @ is the infinitesimal generator having elements g; and g;; . Differentiating

(3) with respect to ¢ at { = 0 we have:

B'D.GB(B'D.,B)"B'D.GB — (B'DwB)"*B'DweBB'D.GB + B'D.«GB
= B'D.G"B.

Let w; = ush for ¢ S, and let h — 0. The first term on the left-hand side and

the term on the right-hand side of equality (4) both go to zero. The element-
wise expression of the remainder is:

(4)

(5) —Z wigisa‘us—al' Uifisg + Z Wi Z gagrsy = 0
1¢8y 1884 1¢8a keSy

where gis, = D jes, g:; . This is valid, if and only if

(6) gisa'u,il % Uifisg = MZS gixgrsg

for all 22 S, . The “if” portion of this remark is obvious; the “only if”’ portion
follows from the fact that both terms of (5) converge and (5) holds for all w; .
Since (6) holds for all u; we have for all j ¢ S, and 7 £ S,

(7) Gisiss = kZ; Girgiss -

Two cases must be considered
(i) gis, = 0 for all 128,
or (ii) gss, # 0 for some zgS,.

In the first case it is easily shown that giy = 0,» = 0, 1, 2, ---, and for all
128 4, and hence p;s,(r) = O forall 28, . In case (ii) we see that g5, =
Ks, s, for all j e S, . Again one can show that g5y = Ks, s, for all j & S, and
B = 1,2, ---, and we conclude in this case that pis,(¢) = Clg,,s.(¢) for all
ie8a,B=1,2, .
These conditions i.e., (1°) pis,(t) = Oforall 2 S,

or (2°.) pisy(¢) = Cls,.s54(t) for every i e S, and all g = 1,
2,3, -+, are sufficient to show that Y (¢) is Markovian. The proof of this
remark is immediate; this concludes the proof of the theorem.
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3. Example. In this section we show by counter example that one cannot
relax the condition “- - - whatever the initial distribution of X(¢).” in Theorem
1. To construct the example we need the following result. The ideas are based
on Feller [5], Rosenblatt [10] and Levy [7].

TaeoreMm 2. Let X,,, m = 0, 1, 2, --- be a stationary, discrete parameter,
denumerable state Markov chain with transition matrizc P = (p;;) and initial
dustribution vector p = (p;). Let N(t) be a continuous parameter, denumerable
state Markov chain, stochastically independent of X .. , and with a stationary transi-
tton mechanism Q(t) = (q:;(t)) where

I\
<

0

otherwise ¢ = (qi) 1s the initial vector for N(t). Then X (&) = Xww s a con-
tinuous parameter Markov chain.

The proof is merely a verification of the Markov property in the form
PX(t) = 41, -+ X(t) = 4] = PIX(4) = a]PX(h) = 4| X(t) = 4]
++ P[X(t) = tn | X(fn—1) = %n—1] and is omitted.

Assume that a discrete parameter Markov chain X,, = (Yuy1, Yu) m =
0,1,2, - - - is given where the random variables Y ,, assume values? = 0,1,2, - - -,
r — 1 (r < ). The transition probabilities are given by:

PlYmys = U | Yuy1 = w1, Y = w] = (1/r)[1 — cos (2m/r) (2us — w1 — uo)]
= P[Xm+1 = (u2 s ul) IXm = (ul ) uo)]

and initial distribution P[Yo = uo, Y1 = w] = 1/r* = P[Xo = (1, us)] where
U, us, 2 = 0,1,2, ---, r — 1. This example was constructed by Rosenblatt
[10] and he has shown that X,, is stationary and persistent in [9]. Moreover
Rosenblatt has shown that Y, as a function of X, is not Markovian and yet the
one-step transition probabilities

PlY(7) = u | Y(o) = us] = 1/ 1=e<71 07=0,1,2,.--

satisfy the Chapman-Kolmogorov equation.

Choose N(t), 0 =< t < o to be a Poisson process, stochastically independent
of X,,, with mean X = 1. Consider the chain defined by Xwx¢ = X(N(2)) =
[Y(N(t) + 1), Y(N(¢))]. Clearly X y(; satisfies Theorem 2 by its very definition
and hence must be Markovian.

Xnvw = (Yww+1, Yww) defines the functional relation between Xy and
Y . We restrict our attention to Yny = Y(¢) and show that it is not Mar-
kovian; we will then show that the transition probabilities of Y () satisfy the
Chapman-Kolmogorov equation.

To show Y (%) is not Markovian we show that

o PIY(7) = un | Y () = tm, Y(s) = w] # P[Y(7) = . | Y (¢) = unl,
® 0=s<t<7< o,
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Consider then
PIY(7) = tn, Y(8) = tm, Y(5) = wl
(9) _ e——ssk e—(t—a)(t _ s)m—k e—(f—t)(T _ t)n——m
kym,n k! (m - k)! (n - m)!
PlY, = U, Yoo = U, Vo = Un)

The computation of P[Yy = s, Y = Un , ¥ = u,] gives rise to seven distinet
cases summarized here for brevity; & is taken equal to zero by stationarity of
the Y} process.

I.n=m= 0; P[Yo = Uo, Yn = Um Y, = un] = auo’umaum“n/r

II: m =0,n = 1;P[Yo = u, Y = Um, Yo = U] = 6,401,,,,‘/7*2

I: m = 1,m=n;PYo =%, Ym = tUn, Vo= U] = bupu,/7°

IVim =1,n = 2;

PlYo = t, Ym = tm, Yo = u] = (1/7*)[1 — cos (2n/r)(2us — uz — uo)]
Vim=2,n=3;

PlYo= 1o, V= tUn, Vo= u] = (1/r")[1 + % cos (27/7) (—2us + 3uz — )]
Viim=1,n=m+2;PYo=12,Yn=tn, Yon=mu)=1/r
VI:m =3, n=m-=+ 1;P[Yo =, Yim = tm, Vo = us] = 1/7°
The exact expression for (9) is now

PlY(s) = w0, Y(¢) = um, Y(7) = ua]
= (1/1)bugundunue " 4 (1/7)8ugune "1 — 7]
+ (/") L = T
(10)  + (1/7%[1 — cos (2n/r) (2us — ur — wo)le” (¢ — 8) (7 — &)
+ (1/7™)[1 + & cos (2n/r) (—2us + 3us — uo)le”"2[(¢ — 8)%/21(7 — t)
+ (/") T = e = 6T = (7 — )¢ ]
+ 1/ T (=l — e = (t—8)e T — [(t — 5)*/21 7).

To compute the left-hand side of (8) we evaluate P[Y(s) = wy, Y(£) = Unm|
and divide it into (10):

PlY(s) = w0, Y (1) = un] = (1/)e" + (1/r")[1 — &7] i un = u
= (1/)[1 — ¢ i Um 5% up.

The right-hand side of (8) can be computed from

PIY(7) =, Y(8) = un] = (¢7/r") 4+ (1/)[1 — €]

(11)

if Um = Un
= (1/)[1 — ¢] i Um = Un

and P[Y(t) = uu] = 1/r, ie.
PlY(7) = us | Y(&) = um] = (1/r)(1 — € ") i Um 7= Un

(12) _ ey
=¢ + (/)1 =€) i Un = u,.
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A comparison of (12) and the ratio of (10) and (11) verifies the validity of (8);
we conclude Y (¢) is not Markovian. However the transition mechanism of
Y (¢) satisfies the Chapman-Kolmogorov equation.

Let P[Y(r 4+ ) = M| Y(7) = v] = pa(t), then the Chapman-Kolmogorov
equation states

r—1

(13) 2 pan(8)pu(t) = pun(s + 1).
fras
Consider the case when v = pu, then

(13) Pw(s + 1) = ¢ 4 (1/) (1 — ).
On the other hand for v = g,

r—1

22 Pa($)Pu(t) = Pon()Pn(s) + é (1)1 — (1 — )

=T+ (/1)1 — ),

hence (13) is satisfied for the case v = u. A similar computation shows (13) to
be satisfied for the case v # wu.

This then is an example of a Markov chain with a specific initial distribution
which is collapsed by a given function, where the transition probabilities of the
collapsed chain satisfy the Chapman-Kolmogorov equation but the collapsed
chain is not Markovian.

I would like to thank the referee for his careful reading of this paper and
pointing out appropriate corrections.
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