ON MOMENTS OF ORDER STATISTICS AND QUASI-RANGES
FROM NORMAL POPULATIONS

By ZakkurA GOVINDARAJULU!
University of Minnesota

1. Summary. The main purpose of the paper is to obtain the lower bound on
the number of integrals to be evaluated in order to know the first, second and
mixed (linear) moments of the normal order statistics (0.S.) in a sample of size
N assuming that these moments are available for sample sizes less than N.
Towards this, the recurrence relationships, identities, etc. among the moments
of the normal order statistics, which have appeared in the literature have been
collected with appropriate references. Also, these formulae are listed and stated
in the most general form wherever possible. Simple and alternate proofs of some
of these formulae are given. These results are also supplemented with new
formulae or relationships. It is shown that it is sufficient to evaluate at most one
single integral and (N-4)/2 double integrals when N is even and one single
integral and (N-3)/2 double integrals when N is odd, in order to know the first,
second and mixed (linear) moments of normal O.S. However, for these moments
of O.8. in samples drawn from an arbitrary population symmetric about zero,
one has to evaluate one more double integral in addition to the number of
integrals required in the case of normal O.8. Also, a possible scheme of computing
these moments which will be useful especially for small sample sizes, is presented
in Section 5. :

The lower moments of quasi-ranges in samples drawn from an arbitrary
population symmetric about zero are expressed in terms of the moments of the
corresponding O.S. Simple recurrence formulae among the expected values of
quasi-ranges in samples drawn from an arbitrary continuous population are
obtained. A modest list of references is provided at the end which is by no means
exhaustive.

2. Introduction. Order statistics (O.S.) have been extensively used in problems
on ranges, quasi-ranges, tolerance limits, estimation of location and scale-like
parameters, censored samples, selection and ranking problems. Many contribu-
tions have been made to the problem of O.S. in normal populations. Tippett
[50] gave the first, second, third and fourth moments of the extreme O.S. for a
few sample sizes. Hastings et al [19] gave the means, variances, covariances and
correlations of O.S. in samples of ten or less from normal populations. In his
expository paper, Wilks [53] summarized the results on order statistics and
listed all the references up to that time. Jones [24] obtained exact lower moments
for small samples together with some relations among them. Godwin [16] recog-
nized some recurrence relations among integrals leading to lower moments of

Received January 29, 1962; revised November 27, 1962.
1 Now at Case Institute of Technology.

633

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. RIKOIRS ®

WWW.jstor.org



634 ZAKKULA GOVINDARAJULU

0.8. and extended Jones’ exact moments to samples of size six and tables of
means, ete. of Hastings, et al, to samples of size ten, with more accuracy. Cole
[9] obtained a simple recurrence formula among the moments of ‘normalized’
0.8. Rosser [40] computed the first eight moments of O.S. for samples of size 20
or less from normal populations; provided an asymptotic formula for samples
of size more than 20 and furnished still more accurate asymptotic formulae for
the means and standard deviations of the extreme observations in a sample.
Ruben [41], considering a general class of integrals, showed that the moments of
normal O.8. are expressible as linear functions of the contents of certain hyper-
spherical simplices and tabulated accurately to eight significant digits, the first
ten moments of the extreme O.S. in normal samples of size 50 or less. Ruben [43]
also showed that the product moments of the extreme O.S. in normal samples
of even sizes are expressible as linear functions of the expectations of the extreme
0.8. Renyi [36] with the use of a property of the exponential order statistics and
the aid of probability integral transformation, studied the O.S. in a sample
drewn from an arbitrary population with continuous cumulative distribution
function (c.d.f.). He obtained a number of previously known results and test
criteria analogous to the Kolmogorov-Smirnov tests. Teichroew [49] computed
numerically the first, second and mixed (linear) moments of all O.S. for samples
of size 20 or less, up to ten decimal places and gave some relations among inte-
grals. Using Teichroew’s tables, Sarhan and Greenberg [44] computed the
variances and covariances of the O.S. in samples of sizes up to 20 accurate to ten
decimal places. Harter [21] presented a five decimal-place table of the expected
values of O.8. for samples of size 2(1) 100 and for sizes, none of whose prime
factors exceeded seven, up to 400. Having realized the considerable amount of
time Hojo [23] spent in evaluating numerically the integrals closely related to
the lower moments of normal order statistics in samples of sizes up to 13, K.
Pearson [31] and K. Pearson and M. V. Pearson [32], by expanding the abscissa
of a frequency distribution in powers of its c.d.f., obtained approximate formulae
for the lower moments of the normal O.S. By comparing his approximate values
with those given by Hojo, he inferred that many terms of the series have to be
included in order to have sufficient accuracy of the values and that for extreme
order statistics in small samples, the approximations are liable to give significant
deviations from the correct values. Modifying this idea, David and Johnson
[11] expand an order statistic in powers of the deviation of the c.d.f. from the
expected value of the order statistic in samples drawn from a uniform population
on the unit interval. This approximating series for the moments of order statistics
converges faster than the series due to K. Pearson and M. V. Pearson. Similarly,
Chu and Hotelling [4] obtained series approximations for the moments of the
sample median. In an analogous manner, Clark and Williams [7] derived series
approximations for the first four moments of any O.S. and the mean and variance
of the product of any two O.S. in a sample drawn from any population such that
the inverse of its c.d.f. can be expressed as a Taylor series. Plackett [33], defining
the logistic of any continuous distribution as L = In[F/(1 — F)] where F denotes
the c.d.f. of the population and expanding the sth order statistic in powers of
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L — EL (E stands for expectation), obtained approximating series for the
expected value of an order statistic. He also gave bounds for the error involved
in considering only a certain number of terms of this series. Saw [45], defining a
general class of integrals of which the moments of normal O.S. are special cases,
obtained approximations for the integrals using the results of David and Johnson.
He also tabulated the necessary coeflicients occurring in the series approximations
for certain integrals. Saw [46] obtained bounds for the error in the series approxi-
mations of David and Johnson. He also found that Plackett’s bounds are slightly
sharper than his, although these differences would be compensated by the
computational advantages of the David-Johnson technique over that of Plackett.
However, it appears that the series approximation of Plackett unlike that of
David and Johnson is applicable to all O.S. including the extreme order statistics.
Ludwig [28] obtained a distribution-free upper limit for the expectation of the
difference of order statistics in terms of the population standard deviation, the
sample size and ranks. He further showed that the expected value of any order
statistic in a sample of size N can be computed from the expected values of the
smallest value in samples of sizes up to N. The present author [17] studied the
O.S. in samples from the positive normal population and gave, besides other
results, some recurrence formulae among the moments, especially the product
moments of the O.S. in samples drawn from an arbitrary population having a
continuous c.d.f. Harter [21] and Srikantan [48] studied the cumulative error
propagated by using the recurrence formulae among the moments of O.S.,
repeatedly.

3. Notation. Let X1,v < Xow =< -+ = Xu,» be the O.8. in a sample of size
N drawn from an arbitrary population having a continuous cumulative dis-

tribution function (c.d.f.) F(z). Set
hin(z) dz = [N/ (5 — 1)IN — ) WF 7 (2)[1 — F(z)]¥ " dF (z),
(3.1)
1=1,2,---,N.

Also, let X denote the r.v. having F(z) for its c.d.f. and f(x) denotes its prob-
ability density function if it exists. Setting

= Nt -1 _ j—i—1
(32) hejw(@) dedy = Gy = ? @OF) — F(@)]

J1 = F(y)" 7 dF(z) dF(y) x<y and 1<i<j=<N,

we have the well known integrals
(33) wf® = B(Xiw) = [ dhin(e)ds, 1SiSN, k=12,

and

pijx = B(Xin Xjn) = f_[ xyh ;v (z,y) dx dy,
0<z<y< 0

(34)
1<¢<j=N.
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It will be convenient to define iy by wicny = uin. Also define uj;x by
Kion = fgjn . Set

(3.5) oijn = BE[(Xin — waw)(Xin — usw)l-

Let ((us,;,v)) be the product-moment matrix of the vector of O.S. Hereafter,
by an arbitrary distribution we mean any continuous distribution for which the
corresponding quantities are meaningful. Results are true for all N unless other-
wise specified.

4. Recurrence formulae, certain relationships and the minimum number of
integrals. We are primarily interested in obtaining a lower bound on the number
of integrals to be evaluated in order to know the first, second and the mixed
(linear) moments of the normal O.S. Towards this, we list all the known recur-
rence formulae, relationships etc., among the moments of O.S. and give a few
new results, although some of them are extremely trivial, since they will be
pertinent for our discussion. Also, the previously known results will be suitably
referenced and they will be stated in the most general form and sometimes
simpler proofs of these results will be provided. The results of this section could
be used for checking numerical values from existing tables of moments of O.S.
and for computing some in terms of others. Towards the end of the section, we
consider the linear constraints among the lower moments of the normal O.S.
and obtain a lower bound on the number of integrals to be evaluated.

TaEOREM 4.1. For an arbitrary distribution, one has

’&.ﬂ@(’-?l.zv"' (N - 2)#5,?7 = N/hg.,;\)f—l
i=12 - ,N—1k=1,2 ---.

Proor. This is a variant of a result due to Cole [9] for the ‘normalized’ O.S.

CoroLLARY 4.1.1. If the arbitrary distributon is symmetric about the origin,
with i = N/2,k = 2 and N even, Theorem 4.1 gives use.x = usie.n—1 -

THEOREM 4.2. For an arbitrary distribution and for 1 < ¢+ < j = N, one has
(= Duijw+ (G — Dpir,iv + (N —F + Dpiaa, oy = Nuia,joa,n-r .

Proor. Multiply the integrand in the integral defining u;_y,;—1,5—1 by unity,
write 1 = F(z) + [F(y) — F(xz)] + [1 — F(y)] and split up the integral as the
sum of three integrals. If ¢ = j, Theorem 4.2 gives Theorem 4.1 with t = 2.
Teichroew’s [49] Formula 6 is equivalent to Theorem 4.2 for the normal O.S.

TueoreM 4.3. If the arbitrary distribution is symmelric about the origin,
KiN = — UN—i41,N, i=1,2, - [N/2], and Mi,j, N = MN—j+1,N—i+1,N ,
1=¢=j=N.

Proor. This result for normal O.S. has been given by Jones [24]. The general
result follows from the definition of u; ;» and F(—z) = 1 — F(x)

TurEorREM 4.4. For an arbitrary distribution we have Zi";l >¥ oijn=N-
variance X.

Proor. Consider the variance of (Xi1,v + Xax + -+ + Xw,») which is equal
to the variance of (Yy + Y+ --- + Yy) where the Y, are the unordered

Xin.
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THEOREM 4.5. For an arbitrary distribution and for r,s = 0,

N
() > uh = NEXY),
and
N—1 N N
(i) S > BXiy Xl = () BIXD Xl
i=1 j=i

Proor For (i). See Hoeffding [22] Result II.
Proor ror (ii).

N—1 N N'
LHS. = ; j;ﬂ G—=1DUj—7— 1N — !

[ eyrt@re) - Fa
I—0<Llr<ly®

11— F()I"7 dF(z) dF (y)

N—1 N'
- Z:; G— DN —i—1)!

.f/;<y xrysFi—l(x)[l _ F(x)]N—i—l dF(:L‘) dF('y)

- N =0 [ ev @ ar) = (§) i
=<y

CoROLLARY 4.5.1. For an arbitrary distribution and for r = 0

N—-1 N . . N a2

2 3 B X5l = (§) BCOT.

i=1 j=t+1 2
Proor. Follows from Theorem 4.5 and E[X] X3 2] = [E(X")]*.
CoROLLARY 4.5.2. Corollary 4.5.1 with r = 1 gives

N—1 N N .

> 2 ElXinX;al = (2) (EX)

i=1 j=i+1
CoroLLARY 4.5.3. For an arbitrary distribution having mean zero,
i1 win = 0 and if N is odd and the arbitrary distribution is symmetric about

zero, then uw4vy2,x = 0.
REMARK 4.5.1. Jones [24] gives the result

NZ_: i EXin XN = (g) E(X)E(X®) or

1=1 j=i+1

=1
i

ENI i E[X; v Xjn] = N(N — 1)E(X")E(X")

which is incorrect, because for N = 2 Jones’ result implies that E[X7 . X3 ,] =
E(X")E(X"), which is, in general, not true unless r = s. Consequently, the
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relationships D _u:v = NEX and > ui» = NE(X®) do not follow as special
cases (r = 0,s = 1) and (r = 0, s = 2) from Jones’ result.

REMARk 4.5.2. Theorem 4.4, Theorem 4.5(i) and Corollary 4.5.3 are special
cases of the general and very obvious theorem that if E|¢(Y1, -+, Yy)| < o,
then Ell/(Xl,N , Xz,N y Tty XN'N) = E‘l/(Yl , Y, y "y YN), where \l/( ) is
invariant under all permutations of its arguments, and the Y; are the unordered
observations.

RemARrk 4.5.3. Theorem 4.5 will not go through if one takes expectations
about central values for the order statistics (that is, if one replaces X; n , X; »
and X by Xiv — usn, Xjn — ujx and X — EX respectively).

TueoreEM 4.6. If g is any differentiable function such that differentiation of
g(x) with respect to its argument and expectation of g(X) with respect to an ab-
solutely continuous distribution are interchangeable, then o

Eg (Xin) = — ; Elg(Xin)f (Xiw)/f(Xix)],
i=1,2---,N,

where f denotes the probability density function of the distribution.

Proor. The method of proof adopted here is identical to the one used by
Seal [47]. (I thank Professor Wassily Hoeffding for drawing my attention to the
method of proof used by Seal.) For all real ¢ one has

Hy(Xow+ 0 =N [ o [ gt 0 T () sy

—00<z1< <zN<0

=w [ [ oo it — ) s,

—0o<y <+ - <yn<oo

Changing the y’s to &’s, one gets
N
Blg(Xiw+ 01 =Nt [ [ g I Gz = 0) dz;.
J=1

—00<21 <+ <N <0
Differentiating both sides of the above equation with respect to ¢ and setting
t = 0 one obtains

BXw) = N1 [ [ gtw {= 2 1 it} I fGan) do

—00<2 <"+ <z N<0
= —]_;1 E{g(X: U (X ) /f( X501

This completes the proof of the theorem.
COROLLARY 4.6.1. With g(x) = x, Theorem 4.6 gives

N
jZIE[Xi.NfJ(Xj,N)/f(Xj.N)] = -1,
i=1,2 - ,N.
CoROLLARY 4.6.2. Corollary 4.6.1 with f(z) = (2r)~* exp(—2°/2) gives
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Dimign=14=12 --- N (See also Seal). Also, since .2 pin =0,
it follows that Y 3 oi;x = O.

Corollary 4.6.2 follows directly from the well known property of the indepen-
dence of the sample mean and the deviations of the normal O.S. from the sample
mean. This independence property is given by McKay [29].

TaEOREM 4.7. If g is a twice differentiable function such that twice differentiation
of g(x) with respect to its argument and expectation of g(X) with respect to an
absolutely continuous distribution are interchangeable then

Fg"(Xow) = [Eg<xi.y> > f”(Xj.zv)/f(Xj.N)]

+ B[ 0Ken) T, T Xyl Ken) HE)f Ki) |,

i=1,2,---,N.

Proor. Proceed in a similar manner to Theorem 4.6.

Remark 4.7.1. If X is a standardized normal variable or generahzed truncated
normal variable (in other words, f (z) = —zf(z)) and g(z) = 1, then Theorem
4.7 will take a much simpler form.

TueoreM 4.8. If g(x) and h(x) are differentiable functions such that differ-
entiation of g(x)h(x) with respect to its argument and expectation of g(X)h(X)
with respect to an absolutely continuous distribution are interchangeable, then

Elg (X:m)h(Xix) + g(Xon)h (X50)] =
- lecv=1 E[Q(Xi,zv)h(Xi.N)f'(Xk.N)/f(Xk.N)]-
Proor. Use a proof similar to Theorem 4.6.
ReMARK 4.8.1. By specializing g(x) and h(x) in the preceding theorem, one

can obtain identities among higher mixed moments of O.S.
THEOREM 4.9. For an arbitrary distribution and even N,

w2 i—1 (N—2)/2 N 2
M1,N.N = ; ( 1) ( )I-"z % MN—3,N—i + ( ) (—'1) (N/2> MN/2,N/2 -

Proor. The following method of proof is similar to the one used by Ruben
[43] for the normal O.S. Consider
waw =NV =1 [ lp(y) - F@P ™ aP() ar(y).
oo<a:<1/<oo

The integrand in the above integral is symmetric in z and y. Hence u; vy =
(B)N(N — 1) [2 [Zuzy[F (y) — F(2)]" > dF(x) dF (y). Now, expand [F(y) —
F(2)]"* in powers of F(y) and F(z), integrate on z and y and obtain

1\&E
M1, NN = (2> ;}( 1) (z + 1> Mi+1,i4+1 MN—i—1,N—i—1

(N—4)/2

;} ( 1) <2 + 1) Mi+1,i4+1 MN—i—1,N—i—1

1 . N
+ (§> (—1)w-20 (N/Z) BN/2.N/2 s
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after combining like terms. That is;

(N=2)/2
-1 (N 1 — N
M1,N.N = Z (_1) ! <2> Mi,i MN—3,N—3 + (é) (—1)(N 22 (N/2> }l,fv/z,zv/z.

=1

This completes the proof of the theorem.

For example, the formula for N = 4 and N = 6 respectively are u; 44 =
dpypss — Buse and piges = Ous 155 — 15usamas + 10u3 5. If the population
mean is zero, that is u1,; = 0, then the above formulae reduce to w44 = —3us.»
and pi 66 = 10p3 5 — 15us 0004 -

Remark 4.9.1. Theorem 4.9 for normal O.8. follows also from Teichroew’s
[49] Formula (5).

TaEOREM 4.10. For an arbitrary absolutely continuous distribution for which

f(x) = —af(x), (that s, for standard normal or generalized truncated normal
densities) one has
N! = 1 (N -3
= —-1)" i+m—1,itm,itm
wv =1+ e = i)x,fzo( D" m< m )“’*’" bk
i = 1(1)N

Proor. By definition 4
(6 = 1IN =) YN = | 2 @)F'(2)[1 — F(z)]" " da.
Writing zf(«) de = d[—jf(x)] and integrating by parts once, one obtains

G DN = DL@ = —af@P @)~ F@F [

+ [ r@0 — F@)P @) do
+ G =1 [ af@F @ — PP de
— (N —14) f_: () F ()l — F(o)* " do
G DV Z Dty o :2;0 (-1 (N,; ’) [ @ r ) o
rw-0's o (VI [Carere e

n=0 n

Since yf(y) dy = dl—f(9)], [7 uf(y) dy = f(x).
Therefore

_[: af*(z) F*(z) dz = [: af (z)F*(z) [f: yf (y) dyJ da

-J[ 2yf @)f (§) F*(2) de dy
0z<y<0

= [(k 4+ 1)(k 4+ 2)] w1 rs2.0t2, k

1,2, -
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Using the above result in the expression for wi , one obtains

(i — 1IN =) (t — 1DUN = 2)!

N wilv = Nl
-0 D oo () e
7= 5 o (V) s
(Z - 1);\5{\/’ — ! + Mim1,i,i

& m Mitm—1,i4-m,i+m N —z .
+ 2, (=D (i-l-:r-b)(i—Jlr—n:—l)( m >(’_1+m)

_ (s — 1)]'\55\7 —1)! _l_:é:( 1)"‘( B ) (5 4 M) pitmet,itm it -

Hence

N' N—i m _ _
Wy =14 et s B0 (V) st

This completes the proof of the theorem.
Setting 7 = N gives
@)

(4.1) pvy =14 pv_inn.
Using Theorem 4.3 in Equation (4.1) one obtains
(4.2) piy =1+ pan.
Setting ¢ = N — 1 gives
(4.3) ity =14 Nuyoowaws — (N — Dpwoyww -

Setting ¢ = 1 gives

N—1

w2 =1+ N 0+ D7 (Y ) s

(44) =1+ 20", Y ) pmmsims
= 1+m2_2< 1)"‘"( ) Hmtmm

since wo,1,1 = 0.
CoOROLLARY 4.10.1. With the hypothesis of Theorem 4.10 one obtains

N
Mi2,N = MZJZ(“I)M—I (nN’l,) M1,2,m -
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Proor. It follows from Equations (4.2) and (4.4) that

N
M1,2,N = Z (—l)m_l <N> M1,2,m -

m=2 m

Corollary 4.10.1 is equivalent to

N = 1 (N
(45) 1+ D aw = 5, D7 (V) b
This completes the proof of the corollary.
IftN=2
(4'6) M1,2,2 = 0-

This together with Wy =1+ u1,2,2 implies that w® = 1.Put N = 4in Equation

(4.5), use (4.6) and obtain
(4.7) Mi24 = 2123 -

Put N = 6 in Equation (4.5), use (4.6) and (4.7) and get ui 2,6 = 3u1,25 —
5u1,23 , ete. For odd N the identity in Equation (4.5) leads to the same result as
the one for the immediately preceding even number, namely N — 1.

TuEOREM 4.11. For any distribution symmetric about zero the matriz ((ui,jx))
is doubly symmetric (i.e., symmetric with respect to the two major diagonals) and
the distinct elements in ((ui,;,n)) are those lying in any wedge-shaped region (say

Even N

M1, N

MNANN BN A(N+2) N,

Fig. 4.11.1

odd N
M1, N

MY (N-1)}(N-1), N PHN-1)1(N+3), N

BPYNADHNHN

Fi1ac. 4.11.2
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the upper one) bounded by the two major diagonals. Hence, the number of distinct
elements in ((ui,j.n)) @ N(N + 2)/4 if N is even, and is (N + 1)*/4 if N s odd.

Proor. From Theorem 4.3, it is clear that the matrix ((us,;x)) is doubly
symmetric. The distinct elements will be as shown in Figures 4.11.1 and 4.11.2.
Therefore, the total number of distinet w;;»v is N + (N —2) + (N —4) +
c+++2=N(N+2)/4 when N is even, and the total number of distinct
pijwis N+ (N —2)+ -+ +3+1= (N + 1)°/4 when N is odd.

CoROLLARY 4.11.1. From the consideration of the figures, one can obtain the
Table 4.11.1 for the number of distinct elements in the matrix ((u;,;.~)).

TaBLE 4.11.1
Even N Odd N
By N/2 (N+1)/2
wiiy (%) N*/4 (N2—1)/4
Total N(N+2)/4 [(N+1)/2]2

TueoreMm 4.12. For an arbitrary distribution symmetric about zero, the number
of distinct and independent constraints among the distinct u; ;x (7 # J) tmposed
by the recurrence formula in Theorem 4.2 is [(N — 1)® — 1]/4 if N is even and
(N — 1)*/4 4f N s odd.

Proor. The right-hand member of Theorem 4.2 is Nu;_;,j_1,v—1 . Hence it is
clear that for any N, the number of distinct and independent constraints among
the u;,;,» imposed by the recurrence relation in Theorem 4.2 is exactly the number
of distinct us ;v (7 # 7) in the matrix ((u;,;~n—1)). Now the theorem follows
after using the results presented in Table 4.11.1.

THEOREM 4.13. For the normal distribution, if the uiv_1 are all known, the
number of linear constraints among the distinct uin is N/2 if N is even
and (N —1)/2 if N ds odd. Also, if all wijn_y (i #37), mus for k=
1,2,---,N — 1 and w% are known, the number of linear and independent con-
straints among the distinct u; ;n (¢ ¥ J) and the number of linearly independent
wisn (27 J) are as shown in Table 4.13.1.

TaBLE 4.13.1
Theorem 4.2 Theorem 4.9 Theorem 4.10 Number of
(Equation 4.2) linearly
independent
sig.y (@G5
Even N N(N—-2)/4 1 1 (N—4)/2
Odd N [(N—-1)/2]2 0 1 (N—-3)/2

Proor.
N is even: uﬁ?,; pﬁ?r O ;.t,(f,)z,y are the distinct ul’y (See Figure 4.11.1). The
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recurrence formula of Theorem 4.1 with £ =2 and 7 = l 2 -, (N —2)/2
together with uye,y = us/e.n—, will mvolve the distinet uiy They constitute
N /2 linear constraints among the distinct u{% . From Theorem 4.12, the number
of independent constraints imposed by Theorem 4.2 on distinet w;,; » (7 # j),
is N(N — 2)/4. Recall that Theorem 4.9 expresses ui,nx~ in terms of wy,
k=1,2,---,N — 1. Also, Theorem 4.10 (Equation (4.2)) expresses ms.»
in terms of M{2]§)I . Obviously, one cannot hope to obtain either Theorem 4.9 or
(4.2) by a linear combination of the formulae in Theorem 4.2 with 7 # 5. Now,
since the relationship in Theorem 4.9 is linearly independent of (4.2), it follows
that the constraints given by Theorem 4.9 and (4.2) are linearly independent of
those constraints provided by Theorem 4.2 on distinet w;,;x (¢ # j). Thus,
the number of linearly independent and distinet w;;» (7 #j) is given by
GW' — NN - 2)] =2 = (N —4)/2

N is odd: uy s usy - , .u<N+1>/2 ~ are the distinct uiy . (See Figure 4.11.2.)
Theorem 4.1 with lc =2 for 1=12 -, (N — 1)/2 involves the distinct
uwy and constitutes (N — 1)/2 hnear constraints among the distinct ui’y .
Also, from Theorem 4.10 we have that the number of independent constraints
imposed by Theorem 4.2 on the distinet us;x (¢ 5% ) is [(N — 1)/2]°. Equa-
tion (4.2) gives one additional constraint: Hence the results of Table 4.13.1.

THEOREM 4.14. In order to find the first, second and mized (linear) moments of
0.8. in a sample of size N drawn from an arbitrary population symmetric about
zero, given these moments for all sample sizes less than N, one has lo evaluate at most
one single integral and (N — 2)/2 double integrals if N is even; and one single
integral and (N — 1)/2 double integrals if N is odd.

Proor. Assume first, second and mixed (linear) moments are known for all
sample sizes less than N. To compute u; x , consider

N! i1 N—i
wr = =1 | @ — F@I P @),

o k N! N -1 i1
=5 0 e (V0 ) @ dr ),

and all of these 1ntegrals for which the range of integration is ( — o, «), would
have been computed previously except the integral [ «F" '(z) dF(x). Hence,
one has to evaluate at most one mtegral when N is even and 0 integrals when N
is odd since pv4ny/2n = 0. To get uy where

2 N! 2 i1 N—i
W = e i)!fo (@)1 — F(o)I" dF (z)

N—1 o
k N! N—’t)fzi—uk
- F F(x)..
& (=1 1)1(N—i)!< g )] EF T @ dR@)
All of these integrals would be available except [ ’F"'(z) dF(z). Hence there
would be at most one integral to be evaluated when N is odd and none when N
is even, since pia.y = uy/e.n—1, when N is even (see Corollary 4.1.1).
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To obtain
pigw = C fj;q wyF 7 (2)[F(y) — F(2)7[1 — F(2)"~ dF(z) dF (y)
where C' is a constant depending on ¢ and j, we write

pisw = L X Cor [[ sl @) ) ar @) ar ),

and all of these integrals would be available except where r + s = N — 2.
Hence, at most, (N — 1) integrals are needed and of these, (N — 2)/2 when N
is even and (N — 1)/2 when N is odd, could be eliminated by symmetry. Also,
#1,v,v is available (See Theorem 4.9) when N is even. Hence, at most (N—-2)/2
double integrals when N is even and (N — 1)/2 double integrals when N is odd,
would be required. Thus, the proof of the theorem is complete.

b. A systematic procedure for evaluating the first, second and mixed (linear)
moments of the normal O.S. In this section, we will indicate how one can g0
about evaluating the first, second and mixed (linear) moments of normal O.S.
for any N given these moments of O.S. for all sample sizes up to and including
N — 1. We will also demonstrate the procedure by considering a few values for
N. N is even: ,

Evaluate 1~ and solve for the rest of u;,» using the u; y_, and the recurrence
formulae in Theorem 4.1 with k = 1. From Corollary 4.1.1 ps7e x is known and
the rest of u{% will be known using Theorem 4.1 with £ = 2. Also uy v v is avail-
able from Theorem 4.9. From Equation (4.2), namely u{%y = 1 + H1,2.8 , K12,
is known. Now evaluate any (N — 4)/2 of the rest of the distinct riin (2 5#7).
For example evaluate w13,y , 14,5, , 1,n2,v . Use the recurrence relation of
Theorem 4.2 with¢ = 1landj=2,3,--- N — 1;7 = 2 and

j=3’4)”')N—2;

i=3andj =4;5 -, N — 3;etec. until the total number of these relationships
is N(N — 2)/4 and solve for the rest of the distinet u;,;,» . Whenever one wishes
to use the recurrence formula of Theorem 4.2 with ¢ = 1 and j % N write the
formula with ¢ = N — j 4+ 1 and j = N. In the formula thus obtained, use the
relationships ui,jv = pjsnx and pijn = wv_ip1v—j41x, until the resultant
formula involves only those u; ;v that are in the upper wedge-shaped region of
the matrix ((ui,jn)). ,

N is odd: From Corollary 4.5.3, we have py41y/2.5 = 0. Using Theorem 4.1
with & = 1 the rest of u; x are known. Evaluate one u{%y , for example, evaluate
2% . The rest of uiy can be solved for by using Theorem 4.1 with £ = 2. From
Equation 4.2, u s~ is known. Now evaluate any (N — 3)/2 of the rest of the
distinet wsjn (¢ # j). For example evaluate u sy y MLAN , **° y B1, (VD) /2.8
using the recurrence relation of Theorem 4.2 with 7 = 1 andj = 2,3,---,N—1;
t=2andj=38,4,--- ,N—2;7=38andj=4,5 --- ,N — 3; etc. until the
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total number of these is (N — 1)?/4. Then solve for the rest of the distinct
wign (4 5#7).

In the'sequel, let us demonstrate the procedure by considering N = 4 and 5.
Assume that these moments are available up to and including N = 3.

N = 4: Evaluate p;,4 and obtain us,4 from the equation, 3u;,s + pes = 4ur 3 .
That is pss.= 4m13 — 3urs. Also, from Corollary 4.1.2 one gets usi = uss .
Also, from Theorem 4.1 and the preceding result, one gets 3ui%d = 4uis — uss .

Theorem 4.10 (Equation 4.2) gives 124 = ui2 — 1 and Theorem 4.9 gives
s = —3uis . The distinet mije (5 57) are o, pros, mes and pogs.
But, w124 and p;,44 are already known. Hence, use the recurrence formula of
Theorem 4.2 N(N — 2)/4 = 2 times, in order to involve w34 and us 3.4. Using

the recurrence formula with ¢ = 2,5 = 4 and ¢ = 2 and j = 3 one obtains

<M1.3,4> <1 1>_1 <4ﬂ1.2,3 - 2#1.2.4)
- 2
H2,3,4 10 2u1,3.3 + Buss /.
. 2

That is s = 2w+ 3uis and wsse = dures — 2u1e3 — 2100 — s .
Now, one can write down the matrix ((u;,j,4)).

N =5 ws =0, Jos = (Buzs and w5 = (Pua — (Ppes = (2')2[M1.4 -
(3)ue.4]. Evaluate u%¥ and obtain w25 from the equation a5 = uie — 1.

Evaluate py,3,5 and solve for uya , p1,6,5 , M2,3,5 and uz .4, from the following equa-
tions:

0010 M1,4,5 Su1,24 — 3u1,25 — K186
2 001 M1,6,6 | _ Su1,3.4 — 2p1,3,5
2300 M2,3,5 B Su1,4,4

00 41 M2,4,8, Suz2,3,4

In order to find the first, second and mixed (linear) moments of O.S. in
samples drawn from an arbitrary population symmetric about zero, one can use
the above computational scheme keeping in mind that one has to evaluate one
more double integral, perhaps uizx, since p2,nx will not be available from
Equation (4.2) which holds only for the family of normal populations. The
computational scheme presented is useful especially if it is possible to evaluate
exactly the lower moments of some O.8. for each N. However, for some distribu-
tions, especially the normal distribution, it will be difficult to evaluate these
exactly except for small sample sizes. Also, as noted by Harter [21] and Srikantan
[48], repeated application of the recurrence formulae of Theorems 4.1 and 4.2
for working “upwards” (that is, going from a smaller N to a larger N) causes
loss of accuracy of 1 to 3 units in the last decimal place. Hence, the above scheme
for numerical evaluation of these moments is feasible for small sample sizes due
to the serious.accumulation of round off errors. However, as Harter [21] and
Srikantan point out, if the recurrence formulae are written as

pina = (3/N)pipan + {(N — 2)/N}pin , 1=1(1)N -1
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and
#it,imtv—1 = {(¢ — 1)/N}psjo + {(G — 2)/N}pi,in
+{(N -7+ 1)/N}pis,jan, 1<i=j=N-1,

then, they can be used for working “downwards” (that is, going from a larger
N to a smaller N) with no serious accumulation of rounding errors. For this
“downward” procedure one has to evaluate numerically all the first, second and
mixed moments of O.S. in an arbitrary large sample size N, which may not be
possible especially when one is using the series approximations for these moments
suggested by David and Johnson [11], Clark and Williams [7] and Plackett [33].

6. Quasi-ranges. The ith quasi-range in samples of size N from an arbitrary
population is defined as the range of N — 27 sample observations omitting the 4
largest and the ¢ smallest observations. Cadwell [2] developed a method of
evaluating the probability density function of the 7th quasi-range in a sample
from a normal population. Mosteller [30] proposed a sample quasi-range as a
useful “inefficient” estimate of the population standard deviation. Ruben [43]
expressed the odd moments of the normal sample range when N is odd and its
even moments when N is even, as linear functions of the expectations of the
extreme O.S. Chu and Hotelling [4] and Chu [5] gave some uses of quasi-ranges.
Carlson [3] obtained a recurrence formula for the mean range when N is odd in
terms of the mean ranges for sample sizes up to and including N — 1. Harter
[20] discussed estimates in terms of sample quasi-ranges, of the standard deviation
in rectangular, exponential and normal populations. In order to obtain the best
linear unbiased estimates of population standard deviation by means of sample
quasi-ranges, one needs to know the expected values, variances and covariances
of the quasi-ranges. Harter [20] has tabulated the expected values and variances
of sample quasi-ranges for ¢ = 0(1)8 and N = (2¢ + 2)(1)100 accurate to five or
six decimal places. Rider [37] obtained formulae for the cumulants of these
quasi-ranges from the exponential population. Leone et al [25] used sample
quasi-ranges in setting up confidence intervals for the population standard
deviation. In this section the expected values, variances and covariances of
quasi-ranges in samples from any population symmetric about zero have been
expressed in terms of expected values, variances and covariances of order statistics
in the sample. Simple recurrence formulae among the expected values of sample
quasi-ranges from an arbitrary population are obtained. For numerical evalua-
tion, these formulae can be used for working “downwards” with no serious
accumulation of rounding errors. We further need the following notation.

Let

Wi,N = XN—-i,N - Xi+1.N (Z = 0, 1, Tty [(N - 2’)/2]),

Wi, N = E(Wi,zv) = MN—{,N — Mi41,N
(i = 0’ 1; Tty [(N - 2)/2])'
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W will be the sample range and wo,» will be its expected value. Also let
aijn = E(WixWin), 0=4i=j=[(N—2)/2]
ai(,212'= @i, (1’= 0’ 1’ e )[(N—z)/2]))

and let p; ; ~ be the correlation between X;» and X, » (1 £ ¢ =<j < N). Then
we have the following results, some of which are extremely trivial. However,
they are included for the sake of convenience.

TureoREM 6.1. For an arbitrary distribution symmetric about zero, w; v = 2un—_i,n
(7’ = 0’ 1’ Tt [(N - 2)/2])

Proor. Follows from the fact uip1,y = —prv—in -

TueoreM 6.2. For an arbitrary distribution one has (N — $)wiy,n + twsy =
Nwi iy, = 0,1,---, [(N - 2)/2]

Proor. Theorem 4.1 with\k =1 gives tuipy + (N — Dpiw = Nuina
(¢=1,2,---,N — 1). Changing ¢ to (N — 7) in the preceding equation one
obtains (N — @) uv—it1,v + tun—iny = Nuy—iy—1 (¢=1,2,---, N — 1). From

the above two equations one gets

(N — %) (uv—ivrw — san) + (uv—ixn — tizrn) = N(uv_iv1 — pin-1)-
Using the definition of w;x, it now follows that (N — f)wiiwx + twiy =
Nwiyn_y, for :=1,2,--+,[(N — 2)/2]. This completes the proof of the
theorem. '

TuEoREM 6.3. For any distribution symmetric about zero the distributions of
X and —Xn_;n are identical, and the distributions of Xiyiv-Xjnn and
Xn—_inXn_jn are identical.

Proor. Follows from the symmetry of the distribution.

COROLLARY 6.3.1. For any disiribution symmetric about zero and for

0=i=j=[(N—2)/2

(1) @ijw = ki 41,0 — Bitr,nj.]
and
(2) var(W;y) = 2 var(Xy—in)[1 — piv1,n—in)-
Proor. Write W, W, » in terms of X;,»’s, take expectations and use Theorem
6.3. Result (2) follows from (1) with ¢ = j and Theorems 6.1 and 6.3.
TrEOREM 6.4. For distributions symmetric about zero,

Cov(Win,Win) = 2ACov( X1 , Xitin)
—Cov(Xip1w, Xw—jw)l, 0=i=j=[(N—-2)/2]
Proor. !
Cov(Win , Win) = Cov(Xn—iny — Xivan, Xn_in — Xinn)
= Cov(Xw—in, Xn—jw) — Cov(Xw—in, Xjp,n)
—Cov(Xipn, Xy_jn) + Cov(Xinw, Xiyn)
= 2[Cov(Xsy1v , Xjsrw) — Cov(Xipw , Xuosw)l,

on using Theorem 6.3.
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THEOREM 6.5. For distributions symmetric about zero

Pi+1,j41,N — Pi+1,N—j,N
P(W‘,N W',N) =
R (1 — Pz'+1,1v—i.1v)(1 - Pj+1.N—j,N)]*’

0<7:=j=[(N-2)/2]
Proor. Using Corollary 6.3.1 one obtains

Cov(Xip1w, Xj1w) — Cov(Xiprn, Xn—jn)

Wi, Win) =
pWiw, Win) [Var(Xy—:,v) Var(Xy—jx)(1 — pirrv—in)(1 — pist.n—sn)]}

— Pi+1,j4+1,N — Pi+1,N—j,N
(1 — piyrv—in)(1 — praw—jm)}

This completes the proof of the theorem.

The recurrence formula in Theorem 6.2 after dividing both sides by N, can
be used for working ‘“downwards” in numerical evaluation of the expected
values of the sample quasi-ranges, without serious accumulation of rounding
errors. The results of Theorems 6.1, 6.3 and 6.4 will enable one to prepare tables
of the expected values, variances and covariances of quasi-ranges in samples
drawn from populations symmetric about zero, provided tables of these for the
corresponding O.S. are available.
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