AN ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN FOR
COMPARING SEVERAL EXPERIMENTAL CATEGORIES
WITH A CONTROL

By CuarrLes DEWitt RoBERTS!

Unaversity of North Carolina

Summary. The basic problem is to decide none of % experimental categories
is better than the control or decide a certain category is better. For this problem
three sequential procedures are examined with specification of how procedures
are carried out in practice. With a definite loss function and a cost ¢ > 0 per
observation the three sequential procedures and fixed sample size procedures
are compared in a certain asymptotic sense as ¢ — 0. In particular, one of the
procedures is shown to be optimal in this asymptotic sense. By appealing to
asymptotic results a discussion of the relative merits of the three sequential
procedures as considered in practice is given.

1. Introduction and statement of results. Let X “ be the random variable
resulting from an observation on the jth category, j = 1, 2, --- , k. We denote
the probability density of X by g(X, r,). For simplicity it is supposed here
that the larger the value of 7, the more desirable the category is. We say 6 = 0
whenr = rm=--- =7n =randsayd =jwhenrn = --- = 7,43 = 7Ty = -~
=7, = mpand r; = 70 + A where A > 0, as described in the following table
[where go(X) = ¢g(X, 1) and ¢:(X) = g(X, 70 + A)]:

0 X(l) X(2) X(3) . X(k)
0| g o go e go
(1.1) g1 do go cee Jo
2 do g1 do ce do
k| go do do s g1

The decision Dy is preferred if ¢ = 0 or if none of the experimental categories is
better than the control [that is, 7, £ 7o for s = 1, 2, , k] in the model (1.1).
The decision D; is preferred if § = j or if the jth experlmenta,l category is better
than the control [that is, 7; > 7] in the model (1.1). This formulation is that of
Paulson [4].

The three sequential procedures to be considered are denoted by &, 8, 8
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and are described as follows: Let b < 0 < a, X{” be the th observation on X
and

28 = log [(X) /(X)) for j=1,2,-- k.

Define W after n; observations on X to be the integer for which

nw nj .
7" = ma,x,-{ 2 A } .
1=1

=1

[If W is not unique because max; { Y 1% Z{”} is assumed for more than one
category, select W by a random choice of those 7 for which the maximum is
attained.]

Procedure 8, . Take one observation on each of X, X® ... X% Then select
after each single observation a category on which to sample next. The selection
rule is to take one observation next on X",

Procedure 6, . Select at random an order to examining the categories, and
then one-by-one decide if a category is better than the control. If an order of
(41, %2, -+, 1) is chosen, sample first on X“’, then on X“?, ...  then on
x4 (so) that once sampling is begun on X“+" no more observations are taken
on X7,

Procedure 85 . Sample in k& (or less)—tuples of one observation on each category
beginning with a k-tuple. After each observation decide a category is better
than the control and stop further sampling or continue sampling after (possibly)
eliminating categories that appear no better than the control. This is the pro-
cedure suggested by Paulson [4].

Finally for 6, , 8; , and 85 the following three rules apply:

(i) Stop sampling on X” as soon as b < D14 Z{P < a is violated for some
n;.

(ii) If for some n;, Y .r2 Z{” = a stop further sampling and make decision
DW .

(iii) As soon as ».r% Z{™ < b and observations have been taken on all &
categories, stop further sampling and make decision D .

In Section 2 it will be shown for the three procedures how to choose one of
the & 4 1 decisions (Dg, D1, ---, Di) so that the probability of selecting D,
when 6 = 0 is at least 1 — «, and the probability of selecting D; when 6 = j
isat least 1 — Bforeachj,j =1,2,---,k.

Now assign a cost of ¢ > 0 per observation, a loss which equals 0 when a
correct terminal decision is made and 1 when an incorrect decision is made, and
a prior distribution that assigns probability & > 0 to 6 = j with
L+ H4 &+ - 4 & = 1. For 0 the state of nature [#isoneof 0, 1, 2, --- , k],
8 a procedure, and N the total sample size required let L(8, §) equal the expected
loss with procedure §, EsN equal the expected sample size required, and r(6, §) =
L(6, 8) + cEsN be the risk of procedure § when 0 is the state of nature. Define
7(8), the expected risk with procedure 8 by 7(8) = Do £(j, 8). Define p(s),
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the price of procedure 8§, by p(8) = lim supe.o[—7(8)/c log c]. Finally it is
supposed that I, = —E.Z{" and I, = E,.Z{" exist (finite) and are positive.

The price of a procedure is a type of measure of its desirability where the
more desirable procedures have smaller prices. It is shown in Theorem 1 that
there is a certain minimal price possible for procedures which operate in a
measurable fashion. Also Theorem 1 gives lower bounds for the prices of &
and &; which show that both §; and §; could not achieve the minimal value and
hence could not be asymptotically optimal. We state now

THEOREM 1.

(1) Any procedure & has p(8) = ké/Io + (1 — &)/I . With any choice of a, b
[possibly depending on the cost cl,

(ii) p(8) = k&/Io + (1 — &)[1/1, + (k — 1)/2I] and
(iii) p(8) = k&/Io+ (1 — &)[1/I + (b — 1)/(Io + I,)].

With the choice of @ = —b = —log ¢ it is shown in Theorem 2 that procedure
6; has the minimal price and hence we would say that §; is asymptotically opti-
mal. With the same choice of ¢ and b it is shown that §, attains the lower bound
for procedures of the form of 8, . Also with the choice of ¢ = —b = —log ¢
an upper bound is given for the price of 8; . More precisely we have

TueoreMm 2. Witha = —b = —loge

(i) p(&) = k&o/Io + (1 — &)/11,
(i) p(d) = k&/Io + (1 — &)1/ + (k — 1)/2@4],

(iil) p(8s) = kéo/Io + (1 — &)[1/L 4 (k — 1)/max (Lo, I)].

An experimenter may feel that the asymptotically optimal procedure &;
is troublesome or undesirable in practice. Thus one may prefer to perform pro-
cedure &, or & . By making use of Theorems 1 and 2 we see that procedure d,
is better than 8; if I; < I, and procedure 6; is better than 6, if 27, < I, . From
Theorem 2 we see that if I /I, or Io/I; is small then §; is approximately optimal,
and if 1;/1, is small then §, is approximately optimal.

It is of interest to compare the three sequential procedures with fixed sample
size procedures. It is shown by Theorem 3 in view of Theorem 2 that 6;, 6.,
and §; are each strictly better than any fixed sample size procedure. Although
the proof will not be given here, the following theorem is shown by Roberts [5].

TuroreM 3. Any fixed sample size procedure § (whose sample sizes may depend
on the cost ¢) has p(8) > k/min (Lo, I;).

For discussion about the sequential design of experiments and general asymp-
totic results see Chernoff [1]. In particular, asymptotic optimality is in the same
sense. More recent results are obtained by Kiefer and Sacks [3].

For the problem considered here the method of Chernoff [1] suggests a pro-
cedure which is similar to §; [when a = b = —log c¢] and will be asymptotically
optimal as ¢ — 0. However this procedure is dependent upon the cost ¢ and in
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practice 8; probably would be more desirable to an experimenter. Kiefer and
Sacks [3] consider a type of two-stage design procedure which is asymptotically
optimal as ¢ — 0. This design allows that during the second stage the choice
of the next category on which to take the next observation does not depend
upon the second stage observations. In both cases modification is involved
because the model (1.1) leads to games which have payoff matrices to which
the problems of Chernoff, Kiefer, and Sacks do not directly apply.

2. Applications. If «, 8 [error probability levels] are specified and go, g1 are
assumed known, denote

Ip = Eo {log [go(X{")/(X{")}, L = Ex {log [gu(X1”) /go(X1")}
and let

(2.1) A = min {1, k8Io/a(k — 1)[Iy + (k — 1)I]}.
For any of the three procedures, we suggest choosing
(2.2) o = log (k/Aa) and b = log[8 — (k — 1)aN/k]

which is what is suggested by Paulson [4] for procedure &;. Let P, indicate
probability when 6 is the state of nature. For the three procedures we will have

k k r
1 — Po(Dy) = 2, Po(D;) £ 2 Py [Z ZP =z a for some r < 00]
j=1 j=1 =1
and

1 — PiD;) £ P; [Z ZP <b for some r < oo]

=1

k r
+ Pj[ZZ?)ga for some r < 00].

s=1,854] i=1

It is well-known [see Wald [6]] that P[> i1 Z¢¥ = a for some r < ] < ¢
and P[> i1 Z{" < bforsomer < ] < ¢ fors = 1,2, ---, k. Thus in order
to satisfy the requirement that Po(Dy) = 1 — « and P;(D;) = 1 — B, we
therefore determine @ and b so that ke * < a and ¢® + (k — 1) * £ B. For
the three procedures a/I, — (kK — 1)b/I, is an approximate upper bound for the
expected sample size if 8 is one of 1, 2, - - - | k. If we minimize this approximate
upper bound [that is, a/I; — (k — 1)b/I,] with respect to ¢ and b subject to
ke < aand e’ + (k — 1)e™® £ B we have the values for a and b given by (2.1)
and (2.2).

ExampLE. Suppose go and ¢; are probability density functions of normal
distributions with means x and u + A, variances 1 and ¢, respectively. Then

Z&0 = [AXP — w)? = (XP — u— A — 24 log ¢]/24%,
In= (A 4+ 1 — ¢ + 25° log 0) /24,
L= (AN —14+¢ —2logos)/2

—a
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so that 8, is suggested over 6, if ¢* < 1 and 8; is suggested over & if ¢° > y(A)
where y(A) is the greatest value of y for which y* + y(1 + A*) — 3y logy —
2(1 4+ A%) = 0. In particular, if x = 0 and A = 1 then &, is suggested over &;
if ¢* < 1 and &; is suggested over & if o* > 2.17.

3. Proofs.
Lemma 1. For any random variable Y

(i) EY = log Ee" when EY exists,

(ii) P(Y 2 0) < Ed"ifh = 0.

Lemma 2. (Wald’s Equation). Suppose that

(i) Y1, Y., --- are identically distributed random variables,

(ii) N s a random variable whose values are the positive integers,

(iil) the event {N = j} and the random variable Y are independent for j < k,
(iv) E|Y| < o and EN < o then E(),}-, Y;) = (EN)(EY,).

Proor. See Johnson [2]. 4
Let N; denote the number of observations taken on X, Let

R(J, S) = H [gl(Xz('j))/go(Xz('j))] for ] =1, 27 IR k
i=1

and denote R(0, Ny) = 1. The notation Py indicates probability when 6 is the
state of nature.

LemMma 3. If S is an event such that Po(S) > 0 and the procedure terminates with
probability 1 for 6 = 0,1,2, --- | kthen P(S) = P,(S)E[R(t, N;)/R(s, N,) | S]
fors,t =20,1,2, -+ k.

PROOF Our sample space consists of points X = (X{”, X, -+ ; X{?,
X2, ey o X, X9 -00). We have Py(S) > 0 for ¢t = 1, 2, lc.
Suppose s =1, t = 2 and deﬁne

S;;={X:Ni=1¢ and N, = j}
I//ij = ’LleES”
= 0 otherwise
o7, k) =1ifXe SN Sy
= 0 otherwise.
It follows that Doy D .o ¥:; = 1 with probability 1 for each 6. Now

Py(S) = Z Z Py(8S N Sij) Z ZE2‘P1J¢’(1, 7)

=1 j=1

I
Ms i |

Ex{ys0(i, j)R(2,7)/R(1, 0)}

I
™M 1
s 1M T

E\{¥ip(N1, N2)R(2, N»)/R(1, N1)}
= E\{¢(N1, N2)E(2, N»)/R(1, N1)}.

.Q
I
-

<.
Il
-~
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Also Pl(S) = E1¢(N1 ,Nz) so we have Pz(S) = Pl(S)El{R(2, Nz)/R(l,Nl) | S}
which completes the proof when s = 1, ¢ = 2. The proofs in the other cases are

similar.

Let M be the least n; such that b < Y 14 Z < a is violated.

Proor or TuEorEM 1. If p(8) < o then by the definition of p(8) it follows
that P;(D;) = —Mclog ¢ if ¢ # j for some M > 0 and ¢ sufficiently small.

By Lemmas 1, 2, 3 we have

N; .
—IEN, = B 3. 28

=1

N j - N‘ -
= Py(not Do) Eo (‘21 Z$ | not Do> + Po(Dy)E, <2 AL Do)
4= =1

é Po(IlOt Do) log Eo(R(], N,) | not Do) + Po(Do) log Eo(R(], N]) | Do)
= Po(l’lOt Do) IOg {Pj(not Do)/Po(IlOtDo)} + Po(Do) log {P,(Do)/Po(Do)}.

But
lim inf, .o Po(Dy) log[P;(Dy)/Po(Dy)] > lim,., Py(Dy) log(—Mc log ¢) =1
log ¢ : log ¢
and

lim,..0 Po(not Do) log [P;(not Dy)/Poy(not Dy)] = 0.

Thus EWN; = —[1 + o(1)]loge/Iy for j = 1, 2,---, k. Similarly
EN; =2 —[1 + o(1)] log ¢/I, for j = 1, 2, ---, k. Therefore it follows that

r(8) = cgos,-E,-N 2 —[1 4 o(1){k&/Io + (1 — &)/Ii}clog e

which completes the proof of (i). By similar methods (ii) will follow. Let us
now prove (iii). Let us show E\N, = —[1 + o(1)]{1/(Iy + 1)} log ¢. Define

M3 My Mg
A={ZZ53)§b’ZZf4)§b’,Zz,fk)éb},
7=1 i=1

7=1 =
Mo M1
S0={M2<M1, 2 Z¥ < b}nA, Sl={Mzg M., > Z&® ga}nA,
7=1 =1
S: = complement of Sy U S; .
Proceeding as in the proof of (i),
N
B (=Z8 + ZP) = — (I + L) E:N; £ Pi(So) log [Pa(S0) /P1(S0)]
7=1

+ Pi(81) log [P2(81)/P1(81)] + P1(82) log [Py(81)/P1(Se)].

However P(So) = —2Mclogec, P:(S;) £ —Mclog c and Py(:Sy) + Pi(S;) — 1
¢ — 0. Thus — (I; + Io)(E.N:)/log ¢ = 1 as ¢ — 0. Similarly for j # s, E;N, =
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—[1 4+ o(1)){1/(Io + I)} logcforj,s = 1,2, - - -, k. Thus we have
r(8) = —[1 + o(D)I{k&/I + (1 — &)1/ + (b — 1)/(Lo + I)l}c log ¢

which completes the proof of Theorem 1.

For the remaining remarks let ¢ = —b = —loge.

Lemma 4. Forj = 1, 2, , k

(1) PofR(j, M;) 2 1/0} Sc

(ii) Pi{R(j, M;) = ¢} S c.

Proor. Suppose j = 1. Let A, be the set in the sample space on which we
have M; = n and > {4 Z" = —log c. Let B, be the set on which M; =
and D1 780 < log . Then on A,, R(1,n) = 1/c so that J]7; go(X) <
3 gl(X( ’). Therefore Py(4,) < c¢Pi(4,) so that

My 0 0
Py Z8 = —loge) = D Po(4,) < ¢ Pi(4,)
7=1 n=1 n=1

M,
= CPI(Z Zd = —loge) = ¢
im1

which proves (i) when j = 1. The other cases are very similar.

LemmaA 5. Forj =1,2,---,k

(1) EtM; = —[1 + 0(1)] log c/Iy

(il) E;M; = —[1 + o(1)] log ¢/I; .

Proor. By the Theorem 1 argument we have EoM; = —[1 4+ 0(1)] log ¢/I
and E;M; = —[1 + o(1)] log ¢/I;. To show that also E;M; < —[1 +
0(1)] log ¢/I, a type of argument which can be found in the proof of Lemma 2
of [1] will be used. If e > O and n; = — (1 + ¢) log ¢/I; we have for ¢t < 0

P (Zf 79 < —log c) < P, (i) 789 < I/ (1 + e))

< [Ejexp {12 — L/(1 + &)1}]™.

But Z{” — I,/(1 4 ¢) has positive mean and finite moment generating function
for —1 =t £ 0 and 0 = j. Hence the left-hand derivative of the moment gen-
erating function is positive at ¢ = 0. Thus there is a t; = t;(¢) so that
E; exp {t}[Z{? Il/(l + )]} < d;for some d; = d;(e), 0 < d; < 1. Thus it
follows that P; (Z 3 7 < —loge) £ dfforn; = —(1 + €) log ¢/l .

Therefore E;M; = —[1 + 0(1)] log ¢/I, which proves (ii). The proof of (i)
is similar.

Proor or TureorEM 2. For § one of 6, §;, 8 by Lemma 4, L(4, 8) < ke =
o(cloge¢) for 2 =0,1,2,--- k. Note in the proof of Theorem 1 that
E,N; =z —[1 4 o(1)]log ¢/I, for j = 1. For & let us show that E;,N =<

—[1 4+ o(1)] loge/Iyforj = 1,2, -, k. We have E;N; < E;M; = —[1 +
0(1)] log ¢/I, . Let us show E;N, = o (log ¢). It is sufficient to show there is a
r, 0 < 7 < 1, so that after n, observations on X and n, on X® we
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have Pi{ D4 Z0 < D14 ZP) < ™. Now we have for ¢ £ 0

ni ng

Pl{zl, AR X; Z&®Y £ (B, exp [tZ{") " {E, exp [—tZ{P]} ™.

But —Z{” has a positive mean and finite moment generating function for
—1 =t =< 0 when 6 = 1. Hence the left-hand derivative of the moment gen-
erating function is positive at ¢ = 0. Thus thereis a &7 , —1 < & < 0, so that
B %Y < 7 for some 7, 0 < 7 < 1. Now since ¢4(t) = E’letzil) is convex
and ¢1(0) = ¢1(—1) = 1 then ¢, (&) < 1. Thus E:N: = o (log ¢). Similarly
E;N, = o (log ¢) for s, 7 =1, 2,---, k and 7 # s. Therefore 7(8) =
—[1 4+ o(1){k&o/Io + (1 + &)/I:}c log ¢ which proves (i). By use of Lemmas
4 and 5,7(8) = —[1 + o(1)l{ké&/Io + (1 — &)[1/I + (k — 1)/2LJ}clog ¢
which proves (ii). Also by Lemmas 4 and 5, 7(8) = —[1 + o(1)]{k&/Io +
(1 — &)[1/I + (k — 1)/max (1o, I,)]}c log ¢ which completes the proof of
Theorem 2.
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