A MODIFIED BAYES STOPPING RULE'

By Siemunp J. AmsTeR®

University of North Carolina

1. Introduction of the modified Bayes rule. This paper describes a stopping
rule for sequential sampling that weighs the cost of additional sampling against
the expected gain to be derived from additional observations. The modified
Bayes rule (MBR) requires one more observation to be taken as long as the
posterior risk is larger than the expected posterior risk for some additional
fixed-size sample. In this investigation, risk is defined within the Wald frame-
work of statistical decision theory [6], using losses and costs.

A subjective probability justification for the MBR may be found in interpret-
ing the value of & , the prior distribution on the parameter 6, at any set of 8
values, as representing the original relative conviction that the true value of 9
lies in this set. Once the first n observations have been taken, the belief has been
changed as reflected in the values of the posterior distribution &, . In either case,
the distribution ¢ determines which risk one would like to minimize. The MBR
will accept R, , the present average risk, (i.e., stop sampling) only if the cost of
increasing one’s convictions, through knowledge of a sample of any fizved size, is
more than the expected amount to be gained. If not, one more sample will be
taken and the same problem posed with the (hoped-for) better knowledge of the
true state of nature.

In the context treated above, the defining property of the Bayes sequential
rule (BSR), that of minimizing the original average risk, does not seem particu-
larly relevant. However, the method which determines this rule, by comparing
R, with the average risk ‘“‘resulting from a continuation if at each future stage
we did the best we could with the resulting observations” ([1], page 243), is really
the optimal property. The MBR tries to approximate this by considering only
the average risk if any fixed-size future sample were taken.

The calculation of the MBR is feasible whenever the Bayes fixed sample pro-
cedure can be explicitly obtained. (Part III of [5] can offer assistance in the
evaluation of the integrals involved.) However, except for certain cases, as testing
two simple hypotheses, when Wald’s sequential probability ratio test (SPRT) is
such a rule, or if the BSR is truncated or fixed sample, it is not usually possible to
carry out the Bayes procedure. Even in these cases, the determination of the
appropriate SPRT is not simple and in the truncated cases the necessary com-
putations are exceedingly tedious.
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The MBR calculations are readily adaptable to a high-speed computer since
the analysis before and after a sample has been observed differs only in the
change from a prior to a posterior distribution of 8. The problem is further simpli-
fied if the prior and posterior distributions are of the same functional form, with
only a change in parameters, since the same kind of calculation is then required
at each stage. A distribution satisfying this latter property has been called a
natural conjugate prior distribution [5] and a distribution closed under sampling [8].

During the investigation of properties of the MBR, the book [5] by Raiffa and
Schlaiffer was published. Although the authors specifically refrained from dis-
cussing the sequential decision problem, it was found that their preposterior
analysis is exactly the same as the evaluation of an R,u) (the expected risk of
continuing to the (n + k)th observation given the datum at stage n). Previous
to this, Wald [6] page 151, briefly discussed the computation of min; R, to
obtain the optimal second stage sample size. In the discussion of [2], Anscombe
briefly mentioned a special case of the MBR. A summary of the current state of
sequential research is given in [4].

In Section 3, by defining a sequence of stopping rules having the MBR as a
limit, the average risk for the MBR is found to be the limit of a non-increasing
sequence whose initial value is that for the fixed-sample size Bayes procedure.
Since the average risk of the MBR is, of course, not less than that of the BSR,
the two rules coincide if the BSR is actually a fixed-sample size rule. It is shown
that the MBR is a SPRT for the problem of testing two simple hypotheses. It is
also shown that the actual sample size required by the MBR is never larger
than that for the BSR. This is a mathematical translation of the fact that the
BSR will not stop unless no possible continuation is expected to improve your
lot. At the point of termination, the improvement possible over the MBR is
identical to the difference between the average risk of a fully sequential Bayes
procedure and that of a fixed-sample size Bayes procedure in which the sample
size is zero, the expectations taken with respect to the posterior distribution of 9.

In Section 4, the asymptotic minimax rule [7] and MBR are compared. In Sec-
tion 5, a binomial estimation example is presented in some detail. Although the
BSR requires a fairly complicated ‘““‘working-backward” method, the MBR re-
quires only the solution of several second degree equations.

In Section 6, an example is presented in which the particular SPRT equivalent
to the MBR is found for a two simple hypothesis testing problem with propor-
tional cost and simple loss function. In Section 7, several areas are indicated
where future research may be profitable.

2. Assumptions and definition of MBR. To simplify the exposition the follow-
ing assumptions are made:

Al. The experiment consists of observing, possibly sequentially, the random
variables x;, x», -+ (real or vector-valued) which are independent with a
common probability density f(- | §) with respect to a given o-finite measure u.
[Note: The same notation, f(- | 8), is used to denote the (joint) density of any
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number of random variables having the (possibly vector-valued) parameter
0 Q.
A2. For any 0 £ Q and any terminal decision d, the loss L(6; d) is bounded

from below.

A3. Let ch(Vi) = Cosk(Xnsx) — Ca(Xn), Where i = (Tngz, -+, Tugr), and
¢.(x,) is the cost of observing x, = (2, -+, z,). It is assumed that for all x, ,
cu(Yes1) > cx(yi). Also, for any sequence w;, x», --- ; it is assumed that

limg, C:(yk) = .

A4. Any measurability assumptions needed to assure the existence (finitely)
of the integrals used for the procedure are made.

A5. The existence of a Bayes terminal decision rule is assumed. A Bayes
terminal decision is used exclusively here and is denoted by d.

The identical distribution assumption is made solely to avoid notational com-
plexity. A2 is used primarily to justify the use of the Fubini theorem in proving
properties of the MBR. A3 implies that inf;, R, (see below) is actually attained.
A5 is used to avoid the detailed analysis (e.g., [1] page 297) or restrictive assump-
tions (e.g., [6] page 89) otherwise necessary to verify the existence of a Bayes
terminal decision rule in each particular case.

The following notation will be used: for any fixed x, ;n = 0,1, --- ,and k =
0,1, -+, X=X XX X -+ X X (k times), (X the spectrum of a single
observation), £(8) = the prior distribution of 8, d&,(6) = f(x. | 6) d&(8)/fo(X.),

k
fo(xn) = j;f(xn | 0) d&(6),dF (yi | 6) = I;If(yz | 6) du(ys),
Caty = fn /xk cn(yi) dF (yi | 0) dtn(9),

Lo = [ [, Lio;aGe,, 301 dF (5. ]0) e, (0),

and R,g = Ruw(X,) = I-Jn(k) + é.a . (Note: R,y = R, is the U,(z) and
Rowy = Ry , Ro = Ry is the Uy in [1].) R.q) may be interpreted as our present
“best guess” of the posterior risk, R.,:, if an additional sample of fixed size
k would be observed. R, is the average risk of a Bayes fixed-sample size (k)
procedure.

The formal definition of the MBR: at the start of sampling (if » = 0), or
after x, is observed (if » > 0), (i) if R, = inf; R, , stop sampling; (ii) if
R, # inf, R,q) , observe z,.1 . (In either case, A1-A5 implies that the infimum
is actually achieved.)

Notk. An equivalent formulation in terms of sets of distributions may some-
times be more useful (see Section 3). For each 7 a set of distributions (&,) is
defined such that sampling stops if and only if £, is in &, .

For the special case of ¢x(x;) = ke, the stopping rule can be conveniently ex-
pressed in terms of Yoy = (Ln — Laa)/k. That is, stop sampling as soon as
€ = Yn = MAXx Va@k) -



A MODIFIED BAYES STOPPING RULE 1407

3. General results. The following additional notation will be used in this
section: 65 is the Bayes sequential rule (BSR). §; is the stopping rule which fol-
lows the MBR up to and including a sample of size j; if Ry s min, Ry for
k=0,1, ---,7then a sample of fixed size m is taken. (Where m is the smallest
t such that Rjiy = min; B¢ .) & is thus the fixed sample-size Bayes rule and
8. the MBR. §;(x;) is the stopping rule of type §; started after x, is observed (if
sampling is continued beyond x..;, it is with a single fixed-size sample). ap is
the average risk of 85 . " is the average risk of the Bayes rule truncated after
N observations. a; is the average risk of §; . a;(x;) is the posterior expected risk
of §;(x;), using £ . Ny is the sample size using 85 , a random variable. N; is the
sample size using 6, , forj = 0, 1, - -+, », a random variable for j > 0. E; is
the conditional expectation holding x; fixed: specifically, for any h(x;4),

Ei[h(xi+l)] = Lk(xi+1)fi(xi+1) d#($i+1)

where fi(ziy1) = [of(zia | 0) dE:(0). A; = {X, : N = 1} is the stopping region
for the MBR.

Several properties follow immediately from the definitions. For any n, 8,4, will
differ from 6, only if the sequence of observations x, is such that R, > min; R,q, .
A necessary condition for the two rules to differ is therefore that N, > n. Also,
as soon as a particular x, has been observed, the rule 8§x(x,) will act exactly the
same as the rule 8,4 . For example, using the rule 8, (n = 1), the observing of
21 changes & into & and hence 8, into 8,—1(21). 8,—1(21) may be regarded as using
a different prior distribution for a new decision problem, where the truly sequen-
tial portion has been reduced by one.

The additional properties shown here are based primarily on the recognition
that:

a$” = min {Ry , Eolmin {R, , Ey[ - - - Ey_s min {Ry_y , Ex_Ra}] - -- }1},
oy = min {Ro , EoRl ) E0E1R2 y '}, ao(.’lfl) = min {Rl ) E1R2 ) E1E2R3 y °° '}7
o= Ry if o9 = Ro, and o = ank_l(xl) if o < Ro, k= 1.

Except for the first expression which is proved in [1], these follow almost directly
from the definitions (but see the lemmas).

The repetitive nature of the formulas for oy imply a ready adaptability to pro-
gramming for high-speed computers. It is noted that the computation of oy is
not necessary to perform (but only to evaluate) a §; .

Lemma 1. For all k = 1, Ry = EE; --- ExR; . Prove by applying E;_; ,
Ey_5, ---, E, successively.

Lemma 2. If o < Ro , then f07’ all k g 1, o = ank_l(xl) and o =
Eymin [R; , E\R, , EL\EsRs , - - -]. Prove by considering the effect of a particular
21 having been observed, and then averaging.

LemMa 3. Let £ = M + (1 — M)&”, A ¢ [0, 1], and define ag(Xn), ag (Xn), = - ,
asthe ag, -+, if £, £ is used. Then, on(Xn) = Nao(Xm) + (1 — N)aig (Xm).
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Proor. Define ¢ as the first integer such that oy = Ry = min Ry . Then
Ao + (1 — N)ag = Amin Ryy + (1 — \) min RGy = MRy + (1 — MRy, =
R(,;) = Q.

THEOREM 1. az = oy

Proor.

1. o = Ro, if oy = Ro, and o = E’o[min{Rl, Ele, }] if oy < Ro.
o = min[Ry, Ry, --+]1if ap < Ry (using Lemma 1), and therefore oy <
min R(k) = oy .

2. a9 fay: If g = Ry, then ap = oy = s since no sampling is performed. If
ay < Ry, than ay(21) = ao(x;) since (1) was proved for any £& and is thus true
for & . Taking expectations, Eoa(21) = FEoap(2:1), and therefore oy < o by
Lemma 2.

3. as(x1) = oy(xy) since (2) was proved for any & and is thus true for & .
as = a follows by the method used in the second part of (2). am < am_ follows
by repetition, i.e., az(21) = ao(21), ete.

4. ap £ ay is the fundamental property of 65 .

TarorREM 2. (see Theorem 9.4.3 of [1]).

If Q is finite, then ,(d’) is convex, where &,(d') = {£, : X,isin 4, andd = d}
is such that £, is in &,(d’) if and only if the MBR requires sampling to stop at
stage n and a particular terminal decision (d’) to be made.

Proor. Let @ = {047, H(¢,d) = L[0;, d(X.)] + cu(X,) fori =1, --- | m,
and £,(1) = £.(0:) = Mn(8:) + (1 — N)En(6s), for 0 < N = 1. Fix x,, such that
both £, and £, are in E.(d'). If n = 0, interpret ay(X.) = ao, etc. Now
AT En(D)H (3,d") 4 (1 —N) 27 €1 (1) H(4,d") equals hewg(%a) + (1 — N (X4),
since both £, and ¢, are in ,(d’). This is not greater than ag(x,) by Lemma 3;
which is less than or equal to R, , since (%, ) equals ming B, . This latter value
equals ming > 7" & (¢)H(4, d*) which is not greater than D7 &) H(i, d').
Therefore, ay(X,) = Rn = D v & (0)H@, d'); L., & is in Eu(d').

CoROLLARY 2.1. If Q contains only two points, ¢,(X,) = nc and L(7, d) = s; for
d # 1 and zero otherwise, then there exists an SPRT equivalent to the MBR.

Proor. It is shown in [1], page 267, that the convexity of Z,(d’) is sufficient
for this conclusion.

Norte. It can be shown, following [1] page 259, that if, for any x, , the marginal
cost ¢y (yx) depends only on the values in the vector y; , the sets Z,(d’) do not
depend on n. This result does not require the finiteness of Q. For example, ¢ (x;) —
> % e(x;), where c(z;) is the cost of the observation z; , is sufficient.

THEOREM 3. No, < Nj.

The proof depends entirely on the fact that £ [min ()] < min E(-).

CoroLLARY 3.1. Suppose cr(xx) = ke.

(i) If L,— 0 uniformly in X, , then 8. is truncated.

(ii) If Ly is a function of n only, then 8, is the Bayes fized-sample size procedure.

Proor.

(i) By [1], Theorem 9.3.3, 65 is truncated. But N, < N .

(ii) By the same theorem, 8z is a fixed-sample size procedure. But, using
Theorem 1, ap < ap = ap = az.

IA
IIA
1A
II'/\
lIA

N (25} ap .
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4. Asymptotic minimax comparison. Wald [7] introduced the Asymptotic
Minimax (AM) sequential estimates for cx(x:) = ke and L(6; 6,) = (8. — 6)™.
“Asymptotic” refers to the limit as ¢ tends to zero and 8, is the maximum like-
lihood estimator of 6, given x, . He exhibited two AM solutions, T and T , which
will use the following notation:

do = infy d(9) = infs B{[9 log f(y/6)/96]" | 6).
T° . Take N, observations, N, = (¢ dy)*, and estimate 9 by v, .
T : Stop sampling as soon as ¢ = v, = [n(n + 1) d(6,)]™ and estimate 6 by 0, .

Since the AM procedures are among the very few general sequential estimat-
ing procedures for which explicit solutions are available, a comparison with the

TABLE 1

fxl0) | &0 Yn Fn 8. d
_ = {Zn + "200/'”}
N@, 1 , T2 1 -1 n _—
6,1)| N, |{n(n + 1)} {(n + )0+ 2+ 1) z (1 + 2/m)

(oo
Bo | Belat) | 20 ?)) n W VAN PR % 20
(1+a: >(n+1+a+b)z 1+ (@ + b)/m)}

En Zn + (6o/n) B} {Zn + (6/m))
P@©) I'(60) "+ D (n + D21 + @2/n)} o {1+ (1/n)}

where: B(6) is the binomial distribution, P(9) is the Poisson, Be(a, b) is the beta, and
T'(f) cc e ttfo1.

MBR may be of interest. The similarity of the stopping criteria and estimators,
as shown in Table 1, is quite striking in view of the apparent disparity between
the two methods. In fact, for large n, the procedures effectively coincide.

5. Binomial estimation computations. To indicate two possible forms that the
stopping regions for the MBR can take, and to show the numerical computa-
tions required to obtain them, two binomial examples will be considered. The
second will be given in considerable detail to include the computation of several
a’s. The form of the BSR for these examples is not known, and hand computa-
tion does not seem feasible. It is known only that they are truncated [1], at a
value not less than 27 and 12 respectively (Corollary 3.1), and that the stopping
boundaries are nowhere within those of the MBR (Theorem 3).

Exampie 1. L(0;d) = (d — 60)°, cx(x) = k/4000 and go(6) = 6(1 — 9). Let
s= Doz, r=(n+ 4)n+ 5)%. From Table 1, N, = n if and only if
1/4000 = (s + 2)(n — s + 2)/r, e,

s (Din = (n+ D — ((n+ 5)7/1000)} = (o4, 7).
In the (n, s) plane, the stopping region is indicated by the shading in Figure 1.
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!
2 4 6 8 10 12

Fi1a. 2

ExampLe 2. L(0;d) = (d — 60), cx(xx) = k/2000 and go() = 96°. Using Table
1,N, =nifandonlyifs = (2){(n —8) + (n+ 10)[1 — ((n + 11)*/500)]}} =
o» . For this example, the stopping region is shown in Figure 2. In this example
the prior belief that @ is large is sufficiently strong (relative to the cost per
observation) that sampling cannot stop for “too few’”’ successes.

Computation of a,(=a2). Let (n, \y) represent the coordinates in the (n, s)
plane of the accessible stopping points where k(=1, 2, ---, 12) indexes these
points. Let #x = number of distinct (accessible) paths in the (%, s) plane from
(0, 0) to (n, \), (i.e., which do not pass through a (n, ¢,)). Let d; = the Bayes
terminal decision, if sampling stops at the point (7, Ax). Since this is the mean of
the posterior distribution, (see Table 1), d; = (9 4+ Ax)/(n + 10).

By definition,
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ae=93 [ 1 = 0" + en(i) P16 v,

where Py(k) = Plx, : s = N | 0] = £,6™(1 — 9)" ™. After performing the opera-
tions indicated, a.,, = .00623 + .00138 = .00761.
Computation of a; . Forany x,, , g.(0) « 6°75(1 — 6)""". Also,

R = [ 2 {infd* [ @ o dsn+k<o>} (f) 01— )" dt,(6) + ok,

7=0

and therefore,

1 k . .
_ (8+9+2)(n—8+1+k—2)<k)i _ ayk—i
R""”‘/o % mFhkF10PmFhrin \i)f (=07 da(o) +ck

=G6+9n—s+1)/(n+10)(n + 11)(n + 10 4+ k) + ck.

Assuming that k is a continuous variable, dR,u)/dk = 0 if and only if &' =
[{2000(s +9)(n — s + 1)/(n + 10)(n + 11)}* — (n 4+ 10)]" and [y]’ = integer
closest to .

1°. @ = R = .00629 + .00150 = .00779.

2°. o = .00648 + .00125 = .00773.
Since for z; = 0, k" = 6, and hence a(0) = Ry . Also ap(1) = Ryqy ,since k' = 1
in this case.

3°. Forx, = (0,0), %" = 7;forx, = (0,1) or (1,0), % = 4 and for x, = (1, 1),
K = 0. Also fo(1,1) = 9/11, ete. Therefore oy = .00629 + .00138 = .00767.

4°. For x; = (1,0, 1) or (0, 1, 1), k' = 3, for x; = (1, 0, 0), (0, 1, 0) or
(0,0,1), k" = 5and k¥ = 7 for x; = (0, 0, 0). Note that x, = (1,1) e 4,.
fo(1, 0, 1) = 3/44, f0(0, 0, 1) = 3/220, etc. Therefore,

a = (£r)lao(1, 1) + 2/2000] + Z [ao(X5) + 3/2000]fo(x)

= .00626 4 .00141 = .00767.

Since the stopping point (2, 2) contributes .00563 to each a; , the reduction
possible as compared with a, is rather small in this example. It is noted that
although the a,’s are monotonic, the contributions from expected cost and loss
are not.

6. Testing hypotheses. The testing of two simple hypotheses is another
problem to which the MBR may be applied. By Corollary 2.1, for ¢,(x,) = nc
and L(7,d) = 0if d = 5 and s, if d # 1, there exists an equivalent SPRT. From
Theorem 3, the particular SPRT must have boundaries at, or within, the SPRT
corresponding to the Bayes solution. Since the BSR for this problem is available
(by an iterative process [1]), an explicit comparison of the two procedures may
be possible. By the use of Wald’s well-known formulas [1], approximations of
the o.c. function and ASN are obtainable for the MBR in this case.

The actual use of the MBR is not dependent on establishing the equivalent
SPRT. If the sample number is expected to be small (for example, if the cost per
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observation is high), it may be simpler to determine whether or not sampling
should continue directly from the MBR definition.

To illustrate the computations needed to determine the equivalent SPRT, the
following numerical example is presented. This same binomial example is found
in [1], page 280. The considerable decrease in the computational complexity,
when compared with the BSR, is evidence for the remarks made in Section 1.

The problem is to test H; : § = 6, = s against H; : § = 6, = %, when L(6;,d)
equals zero if d = 60, ,and equals unity if d # 8; ; cx(xx) = k/38.25,and &(6;) = 1.
Let: a; = posterior probability that 6 = 6; , if x, is observed, s = s = D ¥ a:,
@ =1 — b = probability that § = 6, and k = log (a’/b").

Then for any o', a; < % if and only if s > s* = h/2log2 + k/2. Then, if
o' = ao, using the notation of Section 2, y@ = (b'P; — a'P1)/k, where

SERGIOION

ete. (it is assumed that ap > 3). To establish the critical value of @', ¢ is com-
pared with v for various values of ao , where ¢ = 1/38.25 = .0262.

If h = 1,thena’ = .73, and yo = .020, v = .018 and v = .021 indicating
that b = 1 is too large. If b = .6, than a’ = .65, v = .042 showing h = .6
to be too small. It is quickly found that ' = .72 is approximately the critical
value. To find the SPRT boundaries, the notation of [1] page 279 is used and
af = [log (.72/.5)(.5/28)/log (£)(3) = 2 i.e., the SPRT has boundaries
(=2, 2). Confirming Theorem 3, these boundaries are not outside of the Bayes
solutions; in fact, they coincide with the innermost Bayes solution.

For the composite hypothesis testing problem when ¢;(x;) = ke and L(6, d)
is a linear function of  when d is wrong and 0 if d is right, a detailed discussion
may be found in Chapter 5 of [5].

7. Discussion. Many questions regarding the MBR remain. In addition to
those peculiar to this procedure, there are those applicable to any Bayesian-type
rule. The problem remains of establishing a common ‘‘numeraire’” so that losses
and costs can be quantitatively compared. Also, methods are needed for deter-
mining the particular functions “appropriate” under any given circumstance.
The establishment of “rules” is controversial and requires further investigation.

A brief discussion of several open problems is presented below:

1. I'nvestigation of a. . An indication of the gain achieved by using a sequen-
tial procedure would be given by a knowledge of o, — ao . If good bounds were
available for a., — ap, a limit to the possible improvement with more sophis-
ticated procedures (see 2.) would be known. At present only lower bounds for
ap [3] can be compared with «p . In fact, except for the case of testing two simple
hypotheses, little is known about the advantage of using a BSR.

2. Other modifications. In the same way as the MBR discussed here has been
defined in terms of “looking ahead’” at fixed samples of any size, a double se-
quence of such rules can be defined in terms of a truncated Bayes look into the
future. That is, let §;; be such that as long as N = j, if
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Ry > min {Ex[min {Bxy1 , Evyal- -+ RBygd} -], By, -+ -}

another sample is taken and otherwise sampling is stopped. Since the right-hand
side of the above expression is always not greater than min; Byw) , 2 general
theorem of sample size inequality (like Theorem 3) can be shown. Whether the
additional computational complexity implied by such rules is worthwhile remains
to be investigated.

3. A single critical R, . A general criterion for determining which R, is
the minimum does not seem feasible in the light of the complexity shown in
Chapter 5 of [5]. Except for certain members of the exponential class, with their
corresponding conjugate prior distributions, the minimizing k seems to be de-
pendent upon x, . Bounds on R, or 4, (see Section 2) would provide sufficient
conditions for either stopping or continuing.

4. Properties of the Bayes procedure. The existence of a general sequential pro-
cedure whose average risk is not larger than the fixed sample-size Bayes risk may
be useful in evaluating properties of the BSR. For example, since the a. is less
than «, for the estimation problem found in Section 5, the BSR cannot be a fixed
sample-size procedure.

8. Acknowledgments. The author wishes to record his sincere appreciation for
the guidance and encouragement given to him by his adviser, Professor W. J.
Hall, throughout the course of this investigation. He is also grateful to the referee
for his many constructive comments.

REFERENCES

[1] BrackwEeLL, D. and GirsuIck, M. A. (1954). Theory of Games and Statistical Decisions.
Wiley, New York.

[2] GrunpY, P. M., HEALY, M. J. and REEs, D. H. (1956). Economic choice of the amount
of experimentation. J. Roy. Statist. Soc. Ser. B 18 32-55.

[3] Hoerrping, W. (1957). Lower bound for the expected sample size and the average risk
of a sequential procedure. Ann. Math. Siatist. 28 57-74.

[4] Jomnson, N. L. (1961). Sequential analysis: a survey. J. Roy. Statist. Soc. Ser. A 124
372-411.

[5] Ratrra, H. and ScHLAIFFER, R. (1961). Applied Statistical Decision Theory. Graduate
School of Business Administration, Harvard Univ.

[6] WaLp, A. (1950). Statistical Decision Functions. Wiley, New York.

[7]1 WaLp, A. (1951). Asymptotic minimax solutions of sequential point estimation prob-
lems. Proc. Second Berkeley Symp. 1-11, Univ. of California Press.

8] WeTHERILL, G. B. (1961). Bayesian sequential analysis. Biometrika 48 281-292.



