THE DEGREE OF RANDOMNESS IN A STATIONARY TIME
SERIES'

By Cauvin C. MooORE
University of California, Berkeley

1. Introduction. Let {X,}2. be a wide sense stationary discrete time series, [2]-
Then by definition the random variables { X,} are square integrable and the inner
products (X, , Xn4x) = a(k) are independent of n. (We shall assume, without
essential loss of generality, that a(0) = 1.) The covariance function a(-) is a
positive definite function on the integers, and is therefore the Fourier-Stieltjes
transform of a probability measure u (the spectral measure of the process) on
the unit circle (or [0, 27))

(%) a(k) = jodexp (—1ko) du(6).

The process {X,} is called white noise if a(k) = 0 if k£ 5 0, and this condition
is of course equivalent to du(8) = df/2x. If the {X,} have zero expectations
then this means that the process is uncorrelated. We shall consider here the
question of measuring numerically the extent of deviation of a general stationary
time series from white noise. More precisely, we shall examine the relation
between an invariant defined directly from the process and ones defined in terms
of the spectral measure u. The methods used are based on the theory of linear
operators in Hilbert space. This may seem rather indirect, but it seems to us to
be the simplest way of approaching the problem. Our notation in this connection
conforms to that in [1].

2. The main result. We first define a numerical invariant directly from our
fixed process {X,}. If F and @ are two disjoint sets of integers, we let

pr,e = sup p(Xr, X¢) = sup |(XF ’ X0)|/|XF| [XGI

where the supremum runs over all finite linear combinations X of the X; (7 ¢ F)
and finite linear combinations X of the X; (7 ¢ @). (Although |f| will denote the
L norm of a random variable f, |a| the modulus of a complex number a, and |T|
the norm of a linear transformation T, no confusion should result.) Then we
define p = suprne—s pr.e - The case p = 0 is white noise, whereas p = 1 is the
opposite extreme. We can define other invariants in terms of the spectral measure
u as follows. We write du = du, + w df/2r where p, is singular with respect to
Lebesgue measure and w = 0 is integrable. If u, = 0, let &y = ess min w, &y =
ess max w and o = ay/as . If p, % 0, we extend the definitions by setting cx =
‘0,0 = ©,a=0.Thus 0 < @ £ 1 and « = 1 corresponds to white noise. Note

Received March 1, 1963.
1 Research supported in part by NSF Grant G-18974.

1253

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr )2
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



1254 CALVIN C. MOORE

that o > 0 if and only if u is absolutely continuous and the spectral density w
is essentially bounded from 0 and + «. We now come to our main result.

TuroreM 1. If {X,} is a discrete stationary time series, then the constants defined
above satisfy

a=(1—=p)/(14+p), wu=(1—-p/14p); 1wz (l—p)/1+>,)

and hence & = ((1 — p)/(1 + p))".

As a special case of the theorem we see that the opposite extreme of white
noise can be characterized in terms of either p or o, namely p = 1 holds if and
only if @ = 0. We shall show further at the end of this note that the first three
inequalities above are best possible. In particular Theorem 2 gives a sufficient
condition for the first inequality to be an equality.

3. Proof of the theorem. For our purposes we may realize the process in terms
of its spectral measure u. In L} (measurable functions on [0, 2r) square inte-
grable with respect to u.), let X, (8) = exp (¢n 6). Then we have a process with
the given covariance function a(-).

We first reduce the theorem to the case u; = 0. If u, ¥ 0, then by definition
of the o’s it suffices to show that p = 1. If we take G, = {—n, —n+1, -+,
—1} and F, = {0,1,2, - -+, n}, it follows from a recent result of Helson and
Szegd, ([3] p. 123) that sup, pr,,e, = 1. Thus surely p = 1 and we are done.
We may also assume that the process is non-deterministic, for if not, then p = 1
trivially, and one must only verify that « = 0. But this is clear since [¢" log w
df = — .

It is convenient now to choose another realization of the process; namely, in
Ly (0, 27) let X.(0) = 'w(o)* exp (in ). Let D be the set of all finite linear com-
binations of the X, . Then D is a dense linear manifold in the Hilbert space
H = L;(0, 27). If L is an arbitrary set of integers we define a linear transforma-
tion U, of D onto itself by the formulas

U X,=X, ifnel, UoX,=—X, ifnglL.

Next, let 8 be the supremum of the norms of the linear transformations U,
(8 will be + o if for example some U}, is unbounded). To be precise
B= sup |U,X]|.
L,XeD,|X|=1

LeMMa 1. We have B2 = (1 — p)/(1 + p). (The left side is read as 0 if 3 = + .)

ProoF. Let X be a unit vector in D and L a set of integers. We write X =
X’ + X” where X' is a linear combination of the X, for n ¢ L and X” is a linear
combination of the X, forn ¢ L. Then U.X = X’ — X” and the subspace of D
spanned by X' and X” is invariant under U, . By assumption X’ and X” lie at
an angle 6 with cos 6 = p (X', X”) < p.

We thus come to the following question: Given a two dimensional Hilbert
space and vectors ¢; and e; with cos 6 = cos (e1, e2) = k < 1, what is the norm
of the linear transformation T defined by Te; = e, Te; = —eq. It is easy to
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see that |Tz|/|z| is maximal when cos (z, e;) or cos (z, e) is cos (6/2), and we
find by simple trigonometry that |T|> = (1 + k)/(1 — k).

Returning to the situation of the lemma, we immediately deduce that |U,|*
=< (14 p)/(1 — p) for any L. On the other hand, by suitable choice of L and a
vector X = X' + X” we can force p(X’, X”) arbitrarily close to p. It is then
immediate that g° = supy)| UL|2 = (14 p)/(1 — p) and the lemma is proved.

The first inequality of Theorem 1 will follow now from the following lemma.

LemMa 2. We have o < B

Proor. We may assume that & > 0, for otherwise there is nothing to prove.
Then w and hence w* are bounded from 0 and + . Let M be the linear trans-
formation on L, (0, 2r) defined by Mf = w'f. Then M is bounded with a bounded
inverse given by M7 = w *. One knows the norms of these operators (cf.
Lemma 4); |[M| = ess sup (w') = o} and [M 7Y = o7,

If L is a set of integers, we define a transformation V. analogous to U, by

Vilexp (in0)) =exp (in6) ifnel
Veiexp (in0) = —exp (in0) ifnglL.

Then V is a unitary transformation and |V ;| = 1. We see by an easy calculation
that MV, M ' X, = U, X, . By linearity MV, M = U, on all of D (finite
linear combinations of the X,). The left hand side of the above is a bounded
operator on all of L, (0, 2r) and so U, may be extended (uniquely) to a bounded
operator which we also call U, . We derive at once a norm inequality

Ul = [MV. M) < MV 7 = (M M) = a7

Thus we find that 8 < o * and our lemma is proved.

The reverse inequalities for o; and « lie somewhat deeper. The procedure will
be essentially to reverse the argument given in Lemma 2. Theorem 1 will then
be proved once we have established the following lemma.

LemMMA 3. o' £ B2 and oz = /32

Proor. We may clearly assume that §8 is finite and in that case the linear
transformations Uy, defined on D may be uniquely extended to bounded operators
on Ly (0, 27). The set of U, form an abelian group under multiplication. In fact
Uz' = Uy and UUy = Ug where K = (LN M) U (L' N M) with 8’ de-
noting the complement of a set of integers. Since the group is uniformly bounded
in norm (by 8) one can conclude by a standard theorem in operator theory, [4],
that it is similar to a unitary group. This means that there is a bounded in-
vertible operator @ such that QV . Q7' is a unitary operator for each L. Since
this theorem may not be familiar, and since we shall need some more detailed
information about @, we include a proof.

Let G be a bounded abelian group of operators on a Hilbert space H. We
denote by K the closure in the weak operator topology ([1] p. 476) of the set of
all convex combinations of the V*V for V e G. (V* denotes the adjoint of V.)
If 8 is a bound for |V|, then K is contained in the ball of operators of norm less
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than or equal to 8. Since this ball is compact, K is a compact convex set. More-
over ( operates as a group of continuous linear transformations on K as follows:
7p(8) = U*SU for SeK, Ue@G. If S = V*V for some V e G, UV*VU =
(VU)* VU and it follows at once that =y (K) < K. One now applies the Markoff-
Kakutani fixed point theorem, ([1] p. 456), to extract a fixed point P in K; that
is, UPU = P for all U in G.

The set K consists of non-negative self adjoint operators and if z ¢ H and
Veq,

V*Vazx) = (Va, V) =2 67 (x, )

since |V7'| £ 8. By convexity (Sz,x) = 87 (x, z) holds for all S ¢ K. It follows
that S is invertible with |S™'| < g°. This holds in particular for P, and now we
may extract a unique positive invertible square root @ of P. We have Q| < 8,
@' < B. An easy calculation shows that QVQ ™ is unitary for V e G, and the
proof is complete.

Let us return to the proof the lemma; @ is now the set of Uy . Since U, X,
=+ X, (U U, X,X,) = (U.X,,U.X,) = (X, X,) =1 for all n. By
convexity, (S X,, X,) = 1 for all S ¢ K. In particular it holds for the fixed
point P = @°, and we find that |QX,| = 1 for all n. Since QU Q™" is unitary it
follows easily that the vectors QX, are orthogonal to each other. Further, the
X, span a dense submanifold and since @ is bounded and invertible, the @X,
must be a complete orthonormal system in L. (0, 27) = H. We can therefore
find a (unique) unitary transformation T' of H onto itself such that TQX, =
exp (in -).Let M = Q'T™ (M~ = TQ), and we have |[M| < gand [M'| < 8.

We know that M (exp (in -)) = X, = w? exp (¢n -) and since M is linear,
M (g) = w' ¢ for any trigonometric polynomial. If f ¢ L, (0, 2x), we may find a
sequence ¢, of trigonometric polynomials such that ¢, converges to f in L,.
Then M (g.) converges to M (f) in L. since M is bounded. We may, by passing
to a subsequence, assume that ¢, and M (¢.) converge almost everywhere to f
and M (f) respectively. But then M (¢.) = w'q, converges almost everywhere to
wi, and it follows that M (f) = w'f for any f in L, . Thus M (w'f) = f for any
fin L. Since M maps L onto itself, every g in L is of the form g = w'f with
fin L, , and it follws that M~ (g) = w ¥ for any ¢ in L, . To conclude the argu-
ment we make use of the following fact whose proof we omit.

Lemma 4. If 1 7s a measurable function and Lf = 1 - f defines a bounded linear
transformation of Ly (0, 2r) into itself of norm |L|, then ess sup |l| = |L|.

We apply this to M and M~ to find that

o = esssupw® = [M| <8, and ot =esssupw = M7 = B
Lemma 3 and Theorem 1 are now completely proved.

4. Some examples. We shall consider now a special case and some examples of
the previous theorem. In particular, we give a sufficient condition for the first
inequality of Theorem 1 to be an equality. Unfortunately, we do not know of
any example where equality does not hold.
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THEOREM 2. Let the spectral measure of the process {X,,} be absolutely continuous
with density w. Assume that w 7s continuous, w(0) = w(2w) and never vanishes.
Further suppose that there exists 6; and 0 such that w(6;) = oy, w(0:) = o with
6 — 0, = +m. Then a = (1 — p)/(1 + p).

Proor. The final condition on w asserts that exp (¢ 6;) and exp (¢ 6;) are
antipodal points on the unit circle in the complex plane. Consider the process
X% =X, exp (— in 6;). Its spectral density w* is given by w*(0) = w(6 —
61), and so the constants a, oy and o, are the same for the two processes. (We
are viewing w and w* as periodic functions on the line.) A moment’s considera-
tion shows one that {X,} and {X}} have the same constant p. Now w* has a
minimum at 0 and a maximum at =. We may then assume without loss of gener-
ality that this is true of w.

In the proof of Lemma 2, we have an inequality |U.| = |MV, M| < |M
[V [IM7'| = o In virtue of Lemma 1, it is enough to show sup |Uz| = %
Under the conditions of Lemma 2, we shall prove that U, = o * when L is the
set of all odd integers. Let y.(0) = w*(6) D,(6) where D,(0) = 1/(n + 1) D&
exp (in 0). We observe that |D,(8)|* = F,.(8) is the Fejér kernel. Then |y,|*
= [07 [y=(0)° d6/27 = [i" w(6) F,(0) df/2w and lim [y, = w(0) = o . Now
M™y,(0) = F.(0) and V. F,(8) = F,(0 + =). Finally we find that

Uy (8) = MV M7y, (8) = w'(8) Fn (6 + 7).

It follows just as before that |ULy.|" = [¢* w(6) F. (6 + 7) d6/2x and hence
lim |Upya* = w(r) = a. Thus

UL 2 m [Usyal’/lyal’ = ar/er = o7,

and our theorem is proved.

REMARKS.

(1) With a suitable reformulation one can drop the hypothesis that w be
continuous. One simply has to make use of the fact that

27

fo w(8)Fulp — 0) db/2m — w(p)

for almost all ¢ if w is integrable ([5] 2 p. 90). We leave this to the interested
reader.

(2) For processes satisfying the conditions of Theorem 2, the proof shows
how to construct the linear combinations of the random variables so as to maxi-
mize the correlation coefficients. To be precise, let {X,} be as in Theorem 2 with
w(0) = a, w(r) = a, then one can easily establish the following fact.

COROLLARY. Let F,, = {0,2, -++,2n}, Gu = {1,3, -+, 2n + 1} fu = > Xx
(keF,) and gn = D Xy (ke Gn). Then p = sup p(fa, gn).

(83) We have established that the first inequality of Theorem 1 is best pos-
sible. However if & > 0, we may clearly construct processes {X,} satisfying the
conditions of Theorem 2 with the given constant « so that «; is arbitrarily close
to « or so that o3 is arbitrarily close to a. This may be done just by writing
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down suitable spectral densities w. It then follows that the second and third
inequalities of Theorem 1 are also best possible.

(4) Finally let us consider an autoregressive process of order one ([2], p. 36).
The covariance function a is given by ¢ (0) = 1, a(1) = b/2, and a(k) = 0 for
|k| > 1 where |b| = 1. The normalization procedure of Theorem 2 simply rotates
b in the complex so that it becomes negative. Then w(6) = 1 -+ b cos 6, which
has a minimum value of 1 4+ b at 0 and maximum value of 1 — b at =. Thus
a =1+ b/1 — b, and one can see either by the corollary or by direct verification
in this simple case that p = —b.
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