ON THE ADMISSIBILITY OF SOME TESTS OF MANOVA

By M. N. GrosH

Institute of Agricultural Research Statistics, New Delhs

1. Summary. Using Stein’s [7] generalisation of a method of Lehmann and
A. Birnbaum (A. Birnbaum [2]), we show that two of the tests commonly used
in multivariate analysis of variance are admissible.

2. Introduction. In the canonical form of the multivariate linear hypothesis we

observe independently normally distributed p-dimensional row vectors 2, - - -

24 y® .y (n = p) with common non-singular covariance matrix =
and means
21)  E@E”)=b", E@”)=0 r=1--Q+tms=1--n

where b® are unknown p-vectors and we want to test the hypothesis

(2.2) H: b =0 for r=1, - Q.

Several tests have been suggested for this hypothesis depending on the char-
acteristic roots of the matrix ZY ™' where Z = 2,299 and Y =
Sr y™y™ e roots M = N2 = ¢+ = Aminca,p Of the equation

Q n
(2.3) 1Z — Y] = 22929 — 2 Y ™| =o.
q=1 u=1

The following statistics which reject the hypothesis H for large values are
commonly used for the test of H,

(i) the sum of roots, D \; = Tr(ZY™) suggested by Hotelling [3] and
Lawley [4],

(ii) the largest root, suggested by Roy [5] and

@iii) JT(1 + M) = |Y + Z|/|Y| suggested by Wilks [8] and Bartlett [1].

When Q = 1, all these criteria reduce to Hotelling’s T-test which Stein [7]
proved admissible against unrestricted alternatives. His proof is based on a
generalisation of a result of Lehmann and A. Birnbaum [2]. We shall use Stein’s
method to prove the admissibility of (i) and (ii) against unrestricted alternatives.
The proof of admissibility given here has the same limitations as the corre-
sponding proof of the admissibility of Hotelling’s T? given by Stein [7], e.g., the
superiority of the above tests is established for some large values of the pa-
rameters in the alternative hypotheses and would be useless if one restricts the
domain of alternatives.

Stein considers random variables (z;, --- x,) which belong to the n-dimen-
sional linear space X and defines an exponential family of distributions.

(24) Pi(z) = y(£) "e"du(x)
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790 M. N. GHOSH

where u is a measure on the c-algebra B of all ordinary Borel sets of &, and ¢
is an element of the adjoint space &’ of % corresponding to different values of
the parameters. Let ® denote the set of £ & &’ for which the integral of Pg(x)
is defined and is equal to unity and let 6 ¢ ® C © be the parameter space in
the problem under consideration. The hypothesis to be tested is given by the
points of @ C O and the alternatives by points of ® — 0, . Stein proves the
following theorem.

TuEOREM. Let (X, u, ©, P) be an exponential family and ©y a nonempty proper
subset of ©. Let A be a closed convex subset of X such that for every £ € ' and a real
¢ for which

(2.5) {x:tx>cfNA =0 (the null set)

there exists 61 £ © such that there exist arbitrarily large N for which 6, + \e € ® — o,
then the test ¢y given by

do(z) =0 if ze4d
=1 if zgA

1s admissible for testing the hypothesis that a random element x of X is distributed
according to some Py with 0 € Oy against the alternatives 6 € ® — 0 .

The distribution of the variables 2, ™ can be expressed as

exp {—} > b"=" ™} 1 -1 & gt o
(27) @m)i@mmss i X expy =5 Tr (27°8) + g bz

(2.6)

= (&) 7" du()

where z is a vector variable with ip(p + 1) + (Q + m)p, components corre-
sponding to the ip(p + 1) components of the matrix S = D> &2 +
dr 1 y™'y™ and the components of the vectors 2, -+ 2°*™ and ¢ isa vector
with 3p(p + 1) + (Q + m)p components corresponding to the 3p(p + 1)

components of =1* and (Q 4+ m)p components of bz, - T e
(28) @ =(8,27 -+ %), &= (7,002, - 0O

and tz = —iTr(ZTS) + D2 ”=1%" and u(z) is obtained from the joint
distribution of S and 2, - - - 2®™™, and is absolutely continuous with respect to

the Lebesgue measure on . All vectors considered below are rowvectors unless
specified otherwise.

3. We shall use the following equivalence relation due to Roy [5] which is a
consequence of the simultaneous diagonalisability of two quadratic forms in a

suitable basis.
Let S; and S; be p X p symmetric positive definite matrices whose elements

are functions of z and § any row vector, then

(3.1) {x : gglg, < cforall 6} = {z : largest ch root of 8, 87" < c}.
2
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Here “="" denotes that the two regions are identical. In the special case of this
when the matrix S; = y'y, y' being a p-vector, SiS7* = y'ySs* has only one
characteristic root Sz = Tr(y'ySz') so that (3.1) becomes

(3.2) {z: (y8')/880" < ¢ for all 8} = {z:yS7% = c}

which was given by Scheffé [6].
When S, = I, (3.2) reduces to

(3.2) {x: (y8')" < c88' foralld} = {z: Xy < o}.
For the case of @ = 1, Stein has shown that the region

m+1
{ (8,27, «o- 2™) 1 § — > 2™ positive definite

=2
’ m+1 , -1 ,
and 2® <S — > z(')) 2 = c}

r=2

(3.3)

is p-equivalent (differ in a set of zero u-measure, i.e. Lebesgue measure) to the
region contained in the intersection of all half-spaces of the form

m+1

1 ’ ’

{(S, 2(1), . Z(m+ )) . lz(l) I z k(f)lz.(r)
r=2

(34) = %Tr (1'8) = %[c +3 (k<,,)2]}

r=2

(1) (m+1)y gas; r)7.(r)’ 1 ’ 1 m+1 (2
(8,27, -2 ).Zk Iz —§Tr(llS)§§Z(k )
r=2 r=2

where [ ranges over all p-vectors different from zero and k®, - - - k™ range over

the real line. We shall extend this result to regions in the X-space defined by
{x:Tr(ZY") ¢} and {z:M < c}.

Consider the pQ-vectors

3 [¢)) 0] @ @y [¢)) (@
z=(zl’...zp’-..zl’...zp =(z’-..z )

L=, 19, - i@, . 15y = (1, ... 19)
) P b » - ?

and U = Io X U, where I, is the unit matrix in Q dimensions, U any symmetric
and positive definite p X p matrix and I X U denotes the Kronecker product
of I, with U. Consider also the regions
AT) = {z: @) /101 < cforall 1},
Ax(T) = {x: (&')/101" £ ¢ for all | with I{® = 1,3,}.
We shall denote the pQ-dimensional vector space {I} by V; and the vector space
formed by vectors of the type I{? = ,5; by Va. We shall show that the regions

A; and A, can be generated by half-spaces similar to (3.4). Since (lUl')} <
L(c + 1OV) forall le Vy

(3.5)
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A(D) c {z: 8] < 3(c + 100) forallle Vi} = B(U).

Since for any 1V, —! also belongs to Vi, we need not take the absolute
value of gl' in defining B;(T'). For any givenland U, if 2 ¢ Bi(T), then |50'/\| <
i{c + 101'/2\*} holds for all \. Putting A = (107 /¢t we get

&N = & = all/N,
ie. (B') < U1 forall le V. Thus 21 ¢ A« U) for given U, so that generally
(3.6) A4(T) = B«D).
Let 8; = 8§ — D8 "2" = Yand 81 = I X Y. Then from (3.6)
A:(8) = {x: @E)*/IBI S cforallle Vi)

1 Q4-m , , 1 ,
{x : 51(10 X Zz(’)z(')> U's50 — 3
r=1

+ %Z(IQ X 8)I’ for all eVi}.

(3.7)

Now

Qtm ,
l <IQ NI z(')> U

r=1

Qtm
=1 (Z (I X 27°) (I X z"”)') 4
r=1

(38) o
= > (1D X 27 (1 Ig X 277)

r=1

LR (@) (1) \2 : (r)’ (1) (r)’ (IR M
=3 > (1927 since 1-Iq X &7 = (I, - 192",

r=1 g¢g=1
From (3.2)" we get

etm @ )
{a: > (19) 2a}

r=1 g¢g=1

eQtm Q 12 Qtm 9
= {a: : [2 2 kP10 :l < 20 ) D (k) for all kf,”}.

r=1 ¢=1 r=1 g¢=1

(3.9)

From (3.6), (3.8) and (3.9)

Q+m , ,
{x 1 (IQ X >, 2" z<’>>z =< 2a}

r=1

Qtm Q , Qtm @ .
{x: > DRI =3 30 2 (k) S o for all kf{’}.

r=1 ¢=1 r=1 g¢=1

(3.10)

From (3.7) and (3.10) we get
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Qtm Q
A(R) = {x 224 D D kP19 —1Tr (LS)

r=1 ¢=1

Qtm @Q
=< [c + > > (k;”)z] for all 1eV; and k;”}

r=1 ¢=1

(3.11)

where we have used the relation

Q Q
I(Iq X S)I' = Tr [Z 1@ l(‘”S] =Tr (LS) where L= 1979,
gq=1 g=1
We now introduce the additional restriction that S — Zf:{" 272" should be
positive definite. This is equivalent to 6(S — Y252 2")s’ > 0 for all non-
null p-vectors 4, i.e. the smallest characteristic root is positive.
Thus we get the condition

Qtm | ,
(3.12) 8 (Z 20 z"’) 8§ < 88y,
r=1
Analogous to (3.10) this is u-equivalent to
Qtm , , Q+m \
(3.13) {x 2 2, k78 —1Tr (5%8) =1 > (k) }
r=1 r=1

Thus the regions 4,(S:), (¢ = 1, 2), with the additional constraint that S is
positive definite are p-equivalent to the region contained in the intersection of
half-spaces (3.11) and (3.13).

4. We shall now show that the regions A, A, respectively are the regions
{x:Tr(ZY") < c} and {z : i < ¢}. In fact
Q , Q ,
87E =D 2y = Tr [(E 29 zm) Y—l] =Tr (ZY™)
g=1 g=1
and from (3.2)
Ai(81) = {z: (&)/IBI S cforle Vi) = {2 :387% < ¢}

(4.1) 1
= {z:Tr(ZY ) = ¢}.
Whenle V,
Q (@< 2
q
A:(8) = {x : [; l(2 6)] <c¢ for all ! and 8}
SIEoYY
Q
(4.2) = {a: 1 2 98T < oY for all 8} from (3.2)’
g=1
Q
=<zr:6 (E P z(‘”) o' < c3Ys for all 6}
q=1
={z:NM=c} from (3.1).
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The defining half-spaces for both the regions {z : Tr(ZY™") < ¢} and {2 : M = ¢}
with appropriate restrictions on {2 can be written as

Q Q Q Q
1) 1) +1 +m
(L, l( + 21: kq l(q), ... ,l(Q) + zl: k;Q)l(q)’ zl: k;Q )l(q), .. z :]{‘;Q )l(4)> .
q= = q=

g=1

) Qtm Q
(43) (8,29, 29,27, ... 29™) = %[c+ 22 (kf{’)’]

r=1 g¢g=1

Q+m
(&0, kD5, - - K"™8) - (8,27, --- 29"™) =3 2 (k7).

r=1
If £ is any pointin &' say &£ = (T, m, - - *nesm) for which the region {z : &z > ¢}
has no common points with either of these regions, it may be obtained as a limit
of a finite number of positive linear combinations of halfspaces (4.3), so that T
is positive semidefinite at least. We now choose 6, ¢ ® — @, . Then the first com-
ponent of 6 -+ At for X > 0 is a positive definite matrix. If n = 0, the second
component is non zero for all X while if n > 0, it is non-zero for large values of \.
Thus 6; + \e® — O, for large N and the conditions of Stein’s theorem are
satisfied. Thus the acceptance regions {z : Tr(ZY ™) < ¢} and {x M = ¢} are
admissible for the test of the hypothesis b(") =0 (g =1,2, ---Q), when the

alternatives are unrestricted.
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