RANKINGS FROM PAIRED COMPARISONS'

By W. A. TuompsoN, JR. AND RUssELL REMAGE, JR.
The Florida State University and The University of Delaware

1. Introduction. In many experimental contexts, preference relationships
among objects can be obtained where numerical measurement is difficult or
impossible. This situation occurs, for example, in regard to individual preferences
for pieces of music. Frequently because of memory, fatigue or distance limita-
tions the items will be presented to a subject only in pairs and he will be asked to
state his preference. The authoritative statistical paper on this method of paired
comparisons is that of Kendall and Smith [7]; they propose a criterion, based on
the number of circular preference triads, for judging whether a given set of
preferences can reasonably be considered as reflecting a single linear variable.
Alternatively, Slater [6] proposes that the items should be ranked so as to mini-
mize the number of violations of observed preference, and that this minimum
should then replace Kendall and Smith’s circular triad criterion. Thus, more
generally than Slater’s particular criterion, one reason for wishing to estimate
rank order is to obtain a standard whose deviations from the observed set of
paired comparisons can then be examined to determine whether or not ranking
was justified at all. Other uses of rank order arise in psychological testing and
market survey work. We may, for instance, wish to choose the three most pre-
ferred blends of coffee or place people into homogeneous groups according to
their preferences.

Doehlert’s master’s thesis [5] was responsible for calling our attention to the
subject of this paper. We study two theoretical aspects of the problem of ob-
taining rankings from paired comparisons. Section 2 treats the problem from
the point of view of graph theory. Section 3 then introduces a mathematical
model based on the concept of weak stochastic transitivity and uses the graph
theoretic results of Section 2 to obtain a maximum likelihood ranking for this
model. We show that the maximum likelihood weak stochastic ranking yields
Slater’s criterion when every pair of objects is compared exactly once.

2. Paired comparison graphs. Let X = {x;, %2, -+, 2a} be a set of m > 2
distinet objects. A set of paired comparisons of X is a relation R in X which is
anti-symmetric and anti-reflexive; that is, a subset of X X X such that
(z:, ;) 2R and if (z;, z;) ¢ R then (z;, z:;) £ R. For brevity such a relation
will be called a comparison of X. For definiteness the reader may interpret
(z:, ;) € R to mean “in the comparison R, z; is preferred to x,”’; however, the
results of Section 2 in no way depend on this interpretation. A path K in R from
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v to yx and sometimes denoted by (y1, %2, -+, ¥x), is a finite collection of
ordered pairs (y1,¥2) € R, (¥2,¥3) € R, -+, (ys—1,yx) e R. If theys, 42, - -+ , Y
are distinct elements of X, the path is said to be elementary. If y; = y: , then the
path is called a circust; elementary if all elements except y; and y; are distinct.
If K is a path in R, with y; # y;, it is easy to see that there is an elementary
path K’ K from y; to y: . However, a circuit need not contain an elementary
circuit coincident with a given pair of elements.

A full discussion of these concepts may be found in Berge [1]. An arrangement
of X, denoted ordinarily by P or (p1, p2, - , Pm), is a reordering of X, i.e. an
m-tuple whose elements are the elements of X. Itis clear that a comparison on X
may be regarded as a comparison on any arrangement of X ; no distinction will be
made between R on X and R on P. R is said to determine a partial rank-order
(p.r.o.) on Pif (p;, pi) £ R whenever ¢ < j.

An R-bound of X is an element y in X such that (z, y) £ R for all z in X; or
more intuitively, an object y such that in the comparison R no object is pre-
ferred to y. By a familiar argument, involving contradiction, we may show that
if R is a circuit-free comparison of X, then X has at least one R-bound. Applying
this comment stepwise m times yields

TureorEM 1. R determines at least one p.r.o. if and only if 4t s circust-free.

A p.r.o. P determined by R is said to be a semz rank-order (s.r.0.) if there is a
path in R from p; to p; whenever ¢ < j. In particular if (p;, p;) e Rforall7 < j
then P is called a rank-order (r.o.) determined by R.

THEOREM 2. P ¢s a s.r.o. determined by R if and only if (pi, pina) € R for
i=1,---,m— land (p;, p;) 2R fori > j.

Proor. Assume P is a s.r.o. and (p;, piy1) 2 R. There must be a path
(Pi, Dry» Prasy *°° 5 Piy 5 Piyr) in R from p; to psyq . If, for example, k. < k; then
the path from p, to px, combined with (px, , pr,) would form a circuit, contrary
to the fact that P is a s.r.o., hence the following sequence of inequalities must
hold: 7 < &y < ks < -+ < k. < ¢ + 1. This is clearly impossible so that
(pé, pi+1) € R. The remainder of the proof is clear.

Theorem 2 gives a simple characterization of a s.r.o.; the next result indicates
why it is worth-while to define such a concept.

TurorEM 3. A circuit-free relation R determines a unique p.r.o. P if and only
if P is a s.r.0.

Proor. If R determines the p.r.o. P, then (p;, p,) £ R for ¢ > j. In particular
(pis1, pi) 2R fors =1, --- ) m — 1. If, in addition, P is not a s.r.o., then for
some k, (pr, pr+1) £ R and R also determines the p.r.o. obtained from P by
interchanging pi and pi41 . Hence R determines a unique p.r.o. P only if P is a
s.r.0. On the other hand Theorem 2 makes it clear that if P is a s.r.o0. determined
by R, then no other p.r.o. can be determined by R.

The comparison R is said to be complete if for 1 < 7 < 7 =< m then either
(z:, ;) e Ror (z;, z;) € R. Let C be the generic symbol for a complete com-
parison on X, then C consists of (3') pairs of the product space X X X. If for
every 7 ¥ j there is either a path in R from z; to z; or from z; to z,, then R
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will be called semi-complete. The following theorem is a straightforward conse-
quence of Theorem 1 and the definitions of the various concepts involved.

THEOREM 4. A comparison determines a unique r.o. (s.r.0.) if and only if it is
complete (semi-complete) and circuzt-free.

R is a maximal circuit-free subset of a comparison S if and only if R is circuit-
free but is not properly contained in any other circuit-free subset of S. It follows
that if R is a circuit-free subset of S, there is at least one maximal circuit-free
subset of S which contains R.

If (p1, P2, -+, Pm) is an elementary path in R, then it will be called an
m-path in R.

THEOREM 5. Given a comparison S and an m-path Pin S, then R = {(p;, p;) € S:
1 < j} is the unique maximal circuit-free subset of S which determines P as a s.r.0.

Proor. If T is a maximal circuit-free subset of S which determines P as a
s.r.o. then, from Theorem 2, the m-path P is contained in T. If T contains
(p'i ) pj) with 7 > .7.7 then the pa'th (Pa y Pty 20 Piay pi) taken with (pi ’ pi)
forms a circuit in T. Hence T C R but R is clearly circuit-free and T is maximal
so that T = R.

If Cis complete and D is the diagonal of X X X then E= X X X — (DU C)
is likewise complete and if 7(z;, ;) = (x;, z;) then r is a one-to-one mapping
of Conto E. If R © C, then F = R Ur(C — R) is clearly complete. We have
in mind that R represents the comparisons remaining after “removing” those of
C — R, while F represents the result of adding to R the “reversals” of C — R.

LemMma. If R 7s a maximal circuit-free subset of C and (z;, x:) € C — R, then
S = R U {(2:, z,)} s a maximal circust-free subset of C' = [C — {(z;, z)}] U
{(@i, z)}.

Proor. We first show that S is circuit-free. By the maximality of R, there
must be a path K; in R from z, to z; completing with (z;, 2;) a circuit. Now if S
is not circuit-free, then any circuit in S must contain (z;, z;) and thus R would
contain a chain K, from z; to z; . But this yields a contradiction since K; U K;
would then contain a circuit in R.

The lemma will be proved when we have shown that S is maximal in C’. We
see at once that R € S  C’ and that C’ is complete. If S is not a maximal
circuit-free subset of C’, then there is an element (z, , z,) of C' — S which unites
with S to form a circuit-free set T. Since (2, , z,) € C — R, then R U (z, , z,)
is not circuit-free because of the maximality of R. But R U (z,, z,) C T so that
T is not circuit-free. This contradiction proves the maximality of S in C’ and
concludes the proof of the lemma.

TurorEM 6. If R s a maximal circust-free subset of C, then F = R Ur(C — R)
18 also circurt-free.

The proof consists of applying the lemma iteratively a finite number of times.

TrEOREM 7. If R 7s a maximal circuil-free subset of the complete set C and
F = R U r(C — R) then there is a unique arrangement P such that 1. P is a
rank-order determined by F; 2. P is a semi rank-order determined by R

Proor. Clearly F is complete; further, according to Theorem 6 F is circuit-
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free. Hence from Theorem 4 we have that there exists a unique rank order P
determined by F. Now assume that P is not a semi rank-order determined by R.
There must then exist elements p; and p; with ¢ < j such that there is no path
in R from p; to p, . Therefore R U (p;, p:) is circuit-free. But (p; ,p;) e F — R =
7(C — R) and (p;, p:) € C — R, sothat R < R U (p;, p:;) < C contradicting
the maximal nature of R. Thus P must be a semi rank-order determined by R
and the theorem is proved.

ComMmeNT. This theorem shows that if we wish to convert a complete set of
comparisons into a ranking, then we may do so by either deleting comparisons
or reversing comparisons; the rankings obtained do not depend on which pro-
cedure we adopt.

TaroreM 8. If C is a complete comparison, then there is a one-to-one correspond-
ence between the maximal circuit-free subsets of C and the m-paths in C.

Proor. If R is maximal circuit-free, then Theorem 7 states the existence of a
unique s.r.0. P determined by R. Theorem 2 then implies that P is an m-path in
R but R € C and hence P is an m-path in C. On the other hand, if P is an
m-path in C, then Theorem 5 states the existence of a unique maximal circuit-
free subset of C which determines P as a s.r.o.

3. Estimating a weak stochastic ranking. The following probabilistic model is
introduced as one possible theoretic foundation for the method of paired com-
parisons. Let m items denoted individually by 21, 22, - -+ , £= and collectively
by X be independently (in the probability sense) compared in pairs. Items z; and
z; are compared on n;;(n:;; = 0, 1, 2, - - -) independent trials, each trial having
two possible outcomes denoted respectively by z; — z; and z; — ;.

Let I denote the set of all subscripts pairs (7) such that 1 < 7 < ¢ < m and
n:; > 0 and let ¢ be the number of pairs in 1. We have ¢ = (7) with equality
holding in the frequent case where every pair of items is compared at least once.
Define P(z; — z;) = mi; for ¢ % j. Since 7i; + m; = 1, exactly ¢ functionally
independent parameters enter into the model; we may as well restrict our con-
sideration to those parameters with subscripts in /. The parameter space €, of
all 7;; with subscripts in I is a ¢-dimensional unit cube with typical parameter
point x. The probability that z; — x; occurs s;; times (s;; + s; = n.;) for each
and every pair of items is given by

(1) II (™) migmsse.
T Sij

Brunk [3] has reviewed much of the previous theoretical work on ranking from
paired comparisons. The Bradley-Terry Model [2] is typical of what Brunk
calls an intrinsic worth model. Bradley and Terry assume that m;; = m:/(m: + 7;)
where m; and 7; are the “worths” of z; and z; respectively. Here we investigate a
method of determining rank-order without assuming the existence of an intrinsic
worth. In order to motivate a more general definition, observe that in the Brad-
ley-Terry model w; > =;if and only if 7;; > }. In general we define the compari-
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son R(w) as follows:
(z:, ;) e R(w) if and only if

ni; >0 and m; = Po(x;—> ;) > 1.

(2)

Note that z; — z; and R(w) are sample and population orderings respectively,
and that in some cases the two may easily be in opposite directions.

Following the related literature [4], if P is a rank-order (s.r.o. or p.r.o.) deter-
mined by R(w), then it will be called a weak stochastic ranking. Use of the modifier
“weak” implies that there must also be a strong stochastic ranking. The difference
between these two concepts can best be seen by an example. If m = 3, m» = $,
ms = § and w3 = %, then (21, 22, 23) is a weak stochastic s.r.o. determined by
R(r). Some writers [3] would require 712 = %, w3 = I, m = %, m3 = m and
m = my before declaring (21, 72 , 5) to be a stochastic ranking; such a ranking
is called strong. We believe that there is a need for both weak and strong
stochastic ranking theories. The rankings of the present paper will in general be
weak.

We have now introduced the concepts necessary to state the main idea of this
section; briefly it is as follows. Define w to be that portion of the total parameter
space @ where R(r), as defined in (2), is a circuit-free comparison. A point in
may be called a circuit-free point. Next maximize the likelihood function (1)
over the closed region w to obtain estimates (#;;) = # which would then immedi-
ately yield a p.r.o. determined by R(#). In general the likelihood function may
assume its maximum at several points of w, in which case the maximum likelihood
ranking may not be unique. Let u be the set of all circuit-free points at which
the likelihood function assumes its maximum value.

From (1) we have that the log-likelihood is a constant plus I(w), where

(3) I(m) = ,Z (si5log ms; + s;:1og 7).

In maximizing the likelihood we may as well maximize I. In Q, the unrestricted
parameter cube, the maximum likelihood estimates of the ,; are #:;; = s;;/n;;
for (47) € I and the maximum of [ is

maXg l(1r) = l(‘ﬁ) = ;nij('ﬁ'ij lOg 1?',',' + 1?','{ IOg ‘ﬁj,).

In this notation we may rewrite (3) as
(3/) l(1r) = ZI n“(v?-ij lOg 35 + 7'1"]’@ IOg 1I'j,).

The following theorem is fundamental to our objective.

TeHEOREM 9. For all (ij) € I either #;; = % or #5; = #45.

Proor. Suppose that (ab) eI but #, equals neither % nor #,. Since
7 + e = 1 and #a + e = 1, we may without loss of generality take 7 < 3.
Let # and = be the points obtained by substituting  and #a respectively for
#ap In #, the remaining #;; being held constant. #, # and = are colinear and on
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this line, ! assumes its unique absolute maximum at «'. Further # is circuit-free
but =’ can not be since I(#) < I(7'); hence we must have #s < 3 < #a . From
this it follows (by considering the derivative of I w.r.t. ms) that I(#) < I(7) <
I(«"). But # is circuit-free since # is, and I(#) > I(#) contradicting the definition
of 7.

Define 8 = {r: m;j = % or m,; = #;; for all (¢j) ¢ I}, in view of Theorem 9,
p C B. Note that 8 depends on the particular collection of comparisons which
have been observed and contains at most 2 raised to the power (z') distinct
points, many of which will not be circuit-free.

COROLLARY. max, I(m) = max.ng (7).

Observe that o N B is a finite set.

This method of estimating rank-order has an important information theoretic
interpretation which adds to its intuitive appeal. The uncertainty of a single
comparison of x; and x; is —m;;log m;; — w;;log m;: . Since information or un-
certainty is additive over independent experiments, the uncertainty .of all n;;
comparisons of z; and z; is

Ui = Uis(wi;) = nij(—milog mij — wjilog my)
and the uncertainty of all comparisons is

(4) U(’II') = IEu,,— = ;ni,-(—m-,- IOg Wij — T IOg 1l'ji).

LemmMa. If 7 e B, then I(m) = —U(w).

Proor. Either mij = % or mi; = i, in either case ij IOg i + 7’I"ji log T =
mij log mij + 7 lOg s«

TaeoreEM 10. Maximizing the likelthood over w is equivalent to minimizing the

uncertainty over the set w N B.
Proor. From the previous lemma and the corollary to Theorem 9

max, {(w) = maxeng () = —mineng U(w).

Noting that max.,; u:;(m:;) = u:;(3) then the uncertainty increase in taking
z; and z; to be equal in preference is seen to be

Aii = uii(%) - uzi(i\rzi)
= n,;(1 — #i;log #i; — #j:log #5) = max ui; — uii(#) = 0.

From this relationship we see that non-transitive comparisons will in general be
resolved by equating in preference items with A;; small. Hence, if n;; = n for
all 7 and j, then we have in particular that non-transitivities will be resolved by
equating items with large estimated uncertainties.

As a first and simplest example consider that m = 3 and 7y, = ng3 = N1z = n.
If (#1, #13, #) is circuit-free, then it yields a p.r.o. Hence we need consider
only the case where the estimated ranking is circular; without loss of generality
we assume #yp > 3, #93 > % and #y > 1. This circular preference relationship
will be converted into a s.r.o. by deleting any single preference. Thus according
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to Theorem 10 and Equation (4) the maximum likelihood s.r.o. will be obtained
by deleting that preference with the greatest estimated uncertainty, or since all
items are compared an equal number of times, by deleting that preference for
which #;; is nearest to .5.

The rankings of this paper differ from those given by the method of rank sums,
and in particular they differ from the Bradley-Terry rankings. For the example
of the previous paragraph the rank sums are si2 + 13, sSu + Se3 and s + s .
We have

S12 + S13 = Sa1 + Sz + 2[812 - %(831 + 823)]
and
So1 + Se3 = szt + S32 + 2[823 - —(831 + 312)]
— 11

Forsi, = 8,813 = 5,83 = 1l andn = 12 we have #1; = %, #s = 1% and 7y = }3.
The weak stochastic ranking is (x; , 2 , 3) ; while that of the rank sum method
is (22, 21, 23).

Before presenting an additional example we need one more result. Define
E = {r: R(w) is a maximal circuit-free subset of R(#)} and notice that
E c w N B. E is called the estimation set to emphasize the result of the following

TaeoREM 11. u C E, and if R(#) s complete then each # & u determines a
UNIQUe S.1.0.

Proor. The second part of the theorem follows from Theorem 7 as soon as
we have proved that 4 C E. From Theorem 9 and its corollary we may assume
that R(#) is circuit-free and R(#) D R(#). For purposes of contradiction we
assume that R(#) is not maximal, i.e., there exists a point 7 ¢ 8 such that R(#)
is properly contained in R(#) and R(#) C R(#). But R(#) is properly con-
tained in R(#) if and only if for all (%) ¢ I, #;; = % whenever #;; = 2, but for
some (ki) e I, 7y, = % while #, # %. Hence, since # and # are both in 8,
I(#) < l(#), which contradicts the definition of #. Therefore R(#) is a maximal
circuit-free subset of R(#) and u C E.

The special case most frequently encountered in the applications is n;; = 1 for
all 7 and j. R(#) is complete since we have either #;; = 0 or #;; = 1, depending
on whether z; — 2, or , — z; in the sample. For either alternative u;;(#:;) =
1(—01log 0 — 1log 1) = 0 according to the usual information theory convention.
On the other hand u;;(3) = log2 = 1 provided the logarithm is taken to the
base two. Thus for any = e E, u;;(w:;) = 1 if the sample preference between
z; and z; is violated by the s.r.o. determined by R(~), and u;;(w;;) = 0 otherwise.
Hence finally, for 7 ¢ E,

U(r) = Z uij(wi;) = [the total number of sample preferences violated by the
s.r.o. determined by R(x)].

We may summarize as follows: In the special case n;; = 1 for all 7 5 j, the

principle of maximum likelihood applied to the probabilistic model of this section

yields Slater’s criterion of choosing that ranking (or rankings) which minimizes

the number of violations of observed preference.
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4. Conclusion. In principle, for the case where R(#) is complete, Theorems 8
and 11 provide a full solution to the problem of calculating the maximum likeli-
hood (or minimum uncertainty) weak stochastic ranking. The general procedure
is as follows: Determine the m-paths in R(#) and from these, using Theorems 8
and 9, determine the estimation set E. By direct substitution in Equation (4)
find the maximum likelihood estimates u and their corresponding weak stochastic
rankings.

When m is large, straightforward computation becomes tedious and shortened
methods as well as computer implementation are necessary. However, as an
example will show, for a small number of items the direct procedure outlined
above may be carried out by hand. Suppose that m = 4, n;; = 4 throughout and
=%, fy =1 #u=1% fn = % #u = §, #u = 3. We have, using an obvious
inequality notation,

1
T > T 3 > {x )
4

X3
x2>{ , Ty > X1,
L4

From this layout, by exhausting all possibilities, we see that there are exactly
five 4-paths. These maximal paths together with all points in the estimation set
appear in Table 1. By examining the last column of the table it is clear that
(22,25, %4, 1) is the unique maximum likelihood or minimum uncertainty weak
stochastic rank order.

One final comment is in order. According to the definition (2), z; and z; may
fail to be compared in two distinct ways. First, n;; may be zero in which case the
sample comparison never took place. Second, z; and z; may have been compared
but the result was a tie. Thus, failure to obtain a ranking may be due to ties and
missing comparisons as well as inconsistency in the data.

Our warmest thanks are due to Richard L. Postles for his work on the ex-

TABLE 1

Points in the estimation set
(The tabled value under the subscript ij is 4mi;)

4-path Subscript Uncertainty
12 13 14 23 24 34
Ty > X2 > Tz > T4 3 2 2 3 3 3 2a* + 4b* = 21.0
T2 > T3 > Ts > T 2 1 1 3 3 3 a + 5 =20.2
T3 > T4 > X1 > Ta 3 1 1 2 2 3 2a +4b =21.0
T4 D> X1 > Ty > X3 3 2 1 3 2 2 3a +3b =21.7
T3> L1 > T2 > T4 3 1 2 2 3 3 2a +4b =21.0

*g=4(—%logt—31log}) =4,b=4(—%logj — ilog}) =~~324.



RANKINGS FROM PAIRED COMPARISONS 747

position of this paper and to I. Richard Savage for his careful reading and con-
structive criticism.
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