SOME THEOREMS CONCERNING THE STRONG LAW OF LARGE
NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS

By M. RosensBrLATT-ROTH
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1. Introduction.

1. Preliminary. This paper deals with the problem of finding (necessary or
sufficient) conditions for the strong law of large numbers in the case of a Markov
chain.

The results proved in this paper are of classical form, i.e. they come very close
to those of Cantelli, Borel, Khintchine, Kolmogorov for mutually independent
random: variables; these classical results themselves remain true for a very
large class of non-homogeneous Markov chains (for which a; > p > 0,7¢1 =
(1,2, ---)). In the same way we obtain new results for homogeneous Markov
chains (a; = p > 0, 7 £ I); these results contain as particular cases the analogous
results for mutually independent random variables (a; = 1, e 1).

A part of these results was announced in preliminary papers ([11]-[13]).

We express our results by means of the ergodic coefficient of a stochastic transi-
tion function ([2], [1]); in [9] can be found various of its definitions and proper-
ties that we shall use here.

2. Notations and definitions. Let (2;, Z:) be a measurable space, z; the ele-
ments of %;, A; the measurable sets, elements in the o-algebra 2.(¢ e I). If the
sequence of random variables £;(7 & I) is a Markov chain, let us consider that it
has the stochastic transition functions P;(x;, A:y1) with domains of definition
(%, Z¢, Yiga, Zip1) (G e I). We denote by a; = a(P.) the ergodic coefficient of
P; and by a;; = a(P;;) that of the transition function P;;(z;, 4;) for the time
interval 4, j( + 1 < 7). We shall suppose that all the variances D£:(4 e I) are
finite and we set

(1) o =1—n =mingma, Dp=2 Di.

We assume that a; > 0(¢ € I), because in many important formulae (Basic
Lemma, Lemma 1, Theorem 1) o™ appears in the denominator.

The random variables o.(i € I) are called strongly stable, if there is some numerical
sequence di(i € I) so that for n — «, ¢, — d, converges to zero with probability 1.
In this case it is possible, [7], to take d; = mo;(m—the median); thesi(z & I) are
called normally strongly stable if it is possible to take d; = Mo; (M—the expecta-
tion). Let

(2) So= D2 t, oa=n"8, U= maXigeza|Se — M8, (nel).
=]
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SLLN FOR MARKOV CHAINS 567

The sequence £(% € I) is said to satisfy the strong law of large numbers (S.L.)
if the sequence o:(¢ € I) is strongly stable, and the normal strong law of large num-
bers (N.S.L.) if 0:(¢ £ I) is normally strongly stable.

The sequences of random variables &; , (¢ £ I) are equivalent if

;P(& = £ < + oo,

In this paper we shall consider everywhere that the sequence of random
variables £,(¢ ¢ I) is a Markov chain. We shall use the
Basic LemMma [9], [10].

(3) Ca"™D, =< DS, =Cle™™D,; C=161+6 ¢ =107

2. Results. If 1 <lel,if myu =0,1,2,---,and if s and o are related to
mandu by s = I", 0 = I, set

(4) wit =, () for all ¢ with ¢ £ ¢ < lo.

TarorEM 1. If na'™ — o (n — «), then the condition
(5) lefl)g,, <+ oo
for some 1 is sufficient for the N.S.L. If some number A exists, so that for all m = my
(6) " = AV andlP <4 21

then in place of (5) we may take
@) > eI Dt < + .

THEOREM 2. If a; > p > 0(z e I), in place of (7) we may take
®) 30Dt < 4.

This condition is the best in the sense that, if for some sequence of constants b, > 0,
the series

(9) i 7 b,

n=1

diverges, it vs possible to constiuct a Markov chain £.(ieI) (non degenerated
into a sequence of mutually independent random variables) with D& =b;, a; >
p > 0(< ¢ I) and which does not verify the N.S.L.

Let us denote by E, the random event {|£; — m£,| > ¢, by E; its complement,
and by P(E; | Ei_) the conditional probability of E; given Ei_, .

Taeorewm 3. In the case of strong stability, for any ¢ > 0

(10) Zl P(E;|Ei4) < + .



568 M. ROSENBLATT-ROTH

TureoreEM 4. If the S.L. is verified then (10) is true for the events E; =
{|1&: — m&| > e} If s > p > 0 (s e I) and the N.S.L. is verified, then this con-
dition is not necessary if in the definition of E; we take M¢; and (i) = o(7) tnstead
of m&; and . )

Let R be a real line and @ = {u;} some finite or denumerable system of non-
overlapping Borel sets on it, so that the union of all u; is R. The totality of all
real-valued random variables ¢ can be divided into disjunct classes A(©) so that
the probability P(|¢| € ux) depends only on the class which contains £ but not on
the random variable £. All the random variables ¢, contained in the same class
A(Q) will be called Q-identically distributed. Obviously, if all the random vari-
ables of some family are identically distributed, they are also Q-identically dis-
tributed in respect to any system Q. We will use here w; = {k = 2 < k + 1} for
all integers k.

TaroREM 5. If the £:(7 € I) are Q-identically distributed, and

2 enP0=8<1),

for the N.S.L. it is sufficient that in the same class with the £,(¢ € I) there exists some
random variable & possessing a finite moment of order 1 + B.
LemwMma 1. '

(11) P(U > €) < 6a™T™D; &= (20K)", K=1+ 6.
Ifa; > p > 0 (¢ e1), then
(12) P(U, > ¢) < e D, ; a = (20K) e .

Lemma 2. If for a sequence E;(i € I) of random events connected in a Markov
chain, the series (10) diverges, then with probability 1 an infinite set of the E; occurs.

1. Proof of Lemma 1. Without any loss of generality we may suppose M¢; = 0
(¢ e I). Let us consider the random events

Ei={l8]<e 1=2i<k |S/zd; @A=k=n);
Ey={|Si|l <e¢ 1=<=Zmn}. .

Obviously {u, = ¢} = Ui, E; and because the E; are disjoint,
P{U, = ¢} = X P(E)).
=1

For1 = k = n, from

k
=8+ X &, ShzS+2> X
i=kt+1 j=1 i=k+1
follows
k n

M(SW|E) 2 €422 2 Mk E)

5—1 1=k+1
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and because M S, = 0, we have

DS, = I; M(S, | B)P(E) ;g P(E:) [3 +22 j}m M (ejfflEO]

and

(13) ¢ L P(E) = DS, +2 2 P(B)I
= =1

where

k n
L= 2 > Mk | B
j=1 i=k+1
Using the formulae 7 and 8 from [9], we deduce
(14) 1— Qaj; = ﬂi—j.

Now let us consider two stochastic transition functions P(w;, 43), P*(w;, 4,)
defined respectively in the domains (2, 1, &, 2), (2F, =7, Q, =) where
Qf € @, 2F C 2, and let us suppose that for w, e QF , Az € 25 the functions
P, P* coincide; using the Definition 2 from [9], it follows that a(P) = a(P¥),
and by means of Lemma 4 of [9] and of (14) we obtain

|M(£: | B)| < Knt[D(g; | Br) + D(& | B)).
Therefore I, < K(Ix + Ii), where

n k . n ©
= 3 S m) < 3 [( S, ) ptel s
1=k+1 j=1 1=k+1 r=i—k
=1 -7 > D(&|E)
i=k+1

k n . k n—j
I =X > #DG|E) = ), [( 2 nif> D(sleu]
=1 i=k+1 =1 | \r=k+1—j i}
=1 —-g)" z; D(¢;| Ey).
=
Using the relation (18) from [9] and the known relation
Di(¢| B) = 2, P(E)D(¢| Ey) < Dt
where £ = (Ey, By, ---, E,), it is easy to obtain
(15) > LiP(E,) < 2K[a™]" Z;pl(g,. |E) < 2K[a"™]"'D.,.
k=1 =
By means of (3) and (15), (11) follows from (13). Also, because a; > p > 0

(ieI)and a™ > p > 0 (n eI) are equivalent, (12) follows.
2. Proof of Lemma 2. First we shall consider that all the random events
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E,(i £ I) belong to the same measurable space (2, Z). The event X which con-
sists in the occurrence of an infinite number of events E,(n ¢ I), can be expressed
by

Xx=NUE,.
j=1 i>j
If P(E;) = 1 for a finite set of indices 7 < % < --- < 4, we may study the
problem for 7 > %, only; if P(E;) = 1 for an mﬁmte set of mdlces, it follows
evidently P(X) = 1. Thus, we may consider only the case P(E ) >0 (del),
i.e. the case for which the condltlonal probabilities P(E; | Ei_1) exist and are
determined for all 7 £ I; in this last case, we have

P(X) = limjse P (U E;) = 1 — limjo, P () E)
>7 >j

=1-— lim;.>°° {P(E;-H) s'le-f-l [1 - P(EzlE:—l)]}

If the series (10) diverges, the infinite product diverges to zero, i.e. P(X) =

If the random events E;(¢ ¢ I) belong to different measurable spaces (., Z;)
(i e I), we obtain the same result by applying the obtained result to the cylin-
ders E; % Xn:¥, of the infinite cartesian product of all (%, =) (s I).

3. Proof of Theorem 1. Let us consider the random events

Am = {mavxsén(ls n_l|Snl g e}
B,, = {maXs<n<is [Sa] = €5} D 4m, s =™

Using (11) and (4)
> P(4.) S 3., P(Ba) S 20Ke™ Z::o{(s%"‘))“ l; Ds,-}

m=0 m=

(16) ©
< 20Ke” ) wi D
=1

If (6) is fulfilled, for each ¢ which verifies (4) we deduce
(17) Wi = (A — 798,

From (16), (17) follows our theorem.

4. Theorem 3 follows from the definition of the strong stability, using Lemma 2.

5. Proof of Theorem 5. Let us define the auxiliary random variables £, equal
to &, if |&| < n and to zero if |&| > n; obviously £(n £1) is also a Markov
chain with the same transition functions as £&(n el).

(a) The %, tn(nel) are equivalent. Let us set o(k) = Pf|ta| ew} =
P(|t| e w), Fu(z) = P{t, < a}, F(z) = P{¢ < 2}. We have

=Y P8 = E (i — n + 1)e(i) < E ip(i) < f lo| dF (z).

i=n
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From the inequality (M|¢)'** < M|g'*?, (8 = 0), and the conditions of our
theorem, it follows that M|%| is finite and therefore J, — 0 (n — =) ie. &,
£,(n e I) are equivalent.

(b) The &.(n & I) verifies the N.S.L. We have

n—1 n
(1)  Dp s Mgi=3 [ 2 dF() S 3 Gk + D'e(k).
k=0 Jug k=0

In the conditions of our theorem we have
(19) Wl > (1 — P s<i<ls, s
so that it follows that

S ur'Dt s P - P Y [z"“ >k + 1>2¢<k>]

lm

J
(20)

S = P S 100 5.
k=0 1=k
Because f(z) = 2 is non-negative and monotonically decreasing to zero,

1) < 106) + [ f(z) da
=k k

from which follows

(21) 2‘#"2 <201 — 8%

From (20), (21) and the obvious inequality (k¥ + 1)%* < 46" it follows that
J < LY K*Pe(k) = LM|¢|**, where L = 8¢ (1 — 8)7'(1 — )™
k=0

Therefore, from Theorem 1 we obtain our proof, because equivalent sequences
verify simultaneously the N.S.L. ([7], Theorem 4).

3. Proof of Theorem 2.

1. The first part of the theorem follows from Theorem 1. We shall prove the
second part. Let I; be the set of r & I for which b, < 7 and I, its complementary
set in I; also let I;; be the set of r € I; for which r — 1 I.( = 1, 2).

2. The auxiliary sequence of constants 6, . Let us set

. —2. —2
@ = tmin (*"b,; 1 —17r0,) = rely

and let us define a strictly monotonically decreasing sequence of positive con-
stants 8,(r € I) for which 8, < a, if 7 ¢ I and §, < % for r & I, . For instance we
may take 0 < & < min (a1, ) for 1el; and 0 = 6 < § for 1 £1; and also
0=<5 <min (a;8)forl <reland0 =4, < dforl <rel,.

3. The stochastic matrices. We shall consider a chain with three states
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w’(i = 1,2, 3) in the instants r £ I; and only two states w{” (i = 1, 2) in the
instants r ¢ Iz

We shall use the auxiliary constants m = —1,m=0,m = 1,6, = —1,6, = 1.
Denote the transition probability P(w;” | ws b ) from w{™ to wi” by p(')(r el)
[where: 4,7 = 1,2,8in Iy ;71=1,2,3,7=1,2inIy ;% = 1, 2 ,7=1,2,3in
In ;1,7 = 1,2 in Iy] and define

In:pi? = pii = 7%, + =, (6 =1,2,3)
Lo : pi = § + w6, (i=1,23)
In : p$ = pid = 37, + 6.6, (i=1,2)
In:pi) = 3 + 0.4, (G =1,2).

4. The initial and the absolute probabilities. If P{" is the absolute (for r = 1’
initial) probability of w{” and we take P{" = P{” = 14, for 1 ¢I; and P{® =
PP = 1 for 1¢1,it is easy to prove by induction that P{” = P{” = %, for
reliand P{° = P{” = 3 forrel,.

5. The ergodic coeﬁcwnts. From the Definition 6 in [9] it is easy to obtain that
o, is equal to 1 — 49, in the cases I, Iy, ie. for r ¢ I; and to 1 — 26, in the
cases Iy, Inp, ie. for r e I ; then o™ > 1 — 48(n e I).

6. The random variables £, can be defined by & (w”) = = (¢ = 1, 2, 3) for
re I and by &(0”) = 6:(b,)¥(¢ = 1, 2) for r ¢ I, . Using the a,bsolute proba-
bilities P{”(r £ I), it is easy to obtain M, = 0, Dg, = b,(r e I).

7. The £(r € I) does not verify the N.S.L. If we set E, = {|t, — M%,| > e},
obviously, in the case Iy , B, = o{” U i, Bty = wi™", P(E, | E1—y) = %,
and in the case Iy2, E, = U, E’,_l = w{“l) P(E, IE,_I) = 1.

In the cases Iy, Izz , because B, ; = ,,, P(E, | E;.) is not defined. For
b.(r £ I) only one of three cases can occur: (1) Iy is an infinite set, (2) Iy isa
finite set, (3) Ir, is a finite set.

In the first case the series (10) contains an infinite set of elements equal to 1;
in the second case, the series (10) contains all the elements of the divergent
series (9) except a finite set of them. Thus, in these two cases, from Lemma 2,
it follows that the £.(r ¢ I) does not verify the N.S.L. In the third case, for all
r eI, except a finite set, we have P(E,) = 1; in the proof of Lemma 2 we
have seen that with probability 1 there occurs an infinity of events from the
sequence E.(r e I), i.e. £&(r e I) does not verify the N.S.L.

4. Proof of Theorem 4.

1. The first part of the proof. If &,(n e I) verifies the S.L. there exists some
sequence of constants ¢,(n e I), so that if we denote ¢, = ¢, — 7' (n — 1)c,y
and we consider the random variables on = o, — Cn, M = N fa,
on — W (n — 1)on_y = A\ — ¢n and the random events
A={U;_)O: n-—)oo}; A1={U;—l_)0, n—)w}}

B={oy —n'(n —1)on_y—0, n— o},
Ei = (N — il > ¢ = {|ti — mEi| > i¢}
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wededuce A N A; € B, P(A) = P(A;) = 1. It follows that P (B) = 1, i.e. the
Markov chain \,(n & I) verifies the S.L. From Lemma 2 follows the convergence
of the series (10).

2. The second part of the proof. Let us consider a real-valued positive function
¢(n) = o(n) and the event E, = {|& — M%| > ¢(r)}; we shall construct a
Markov chain £&.(r € I) which verifies the N.S.L. but the series (10) diverges.

Obviously it is sufficient to consider ¢(n) monotonically increasing to in-
finity, n '¢(n) monotonically decreasing to zero for n — © and ¢(1) = 1. From
the relation

(22) 0<nlo(n) —(n+1)"on+1) <nlep(n) >0 (n— »)
it follows that there exist some values of 7 so that for a given s ¢ I, we have
(23) stP<no(n) <32

For each s ¢ I, let ns be the least integer in I for which these inequalities are
true. From (22) it follows that there exists an s, € I, so that for s = s, the cor-
respondence between s and 7, is one-to-one. If s runs over I, we denote by I,
the subsat of I, containing all the integers n, and by /. its complement in I.
We define now the function g, equal to n~* for n ¢ I, and to s for n = n, e I,
and also the function

U = '% rgr [¢(r)]_l-

From (23), 2v, < 1. We consider the constants §,(r ¢ I) strictly monotonically
decreasing to zero, for which

06 <min (v,,3 —v,) = %

3. The construction of the Markov chain. We define the Markov chain &.(r e I)
with three states wi” (¢ = 1, 2, 3) for which £ (w”) = cri(r) (¢ = 1,2, 3) and
the transition probabilities p{’ = p$¥ = v, + m6,(1 = 1,2, 3).

4. The sequence & (r & I) verifies the N.S.L. Denote by P{” the absolute (for
r = 1, initial) probability of w{” (¢ = 1, 2, 3). If we suppose that P{" = P{"
= v, , by induection it is easy to obtain P{” = P§{” = v,(r £ I'). Using the Defini-
tion 6 from [9] we obtain that a, = 1—-46, so that o™ = 1-48 > 0 (n e I). Itis
easy to see that M¢, = 0, D¢, = cr’go(r) and therefore

2 rDE = ¢ LgrTe(r) <& X g =+ g = 2" 207t = I3,
r=1 r=1 r=1 r=

rely relg

The desired result follows from Theorem 2.
5. The series (10) diverges. Easily we obtain E, = wi” U wf”, E1—; = wi™ ",
P(E,|E/-;) = 2v, and

Zij(E, [ Bi) > 2 T =2 3 67n, o(n)]”

rely

which diverges because of (23).
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6. Remarks.
A. Remarks concerning Theorem 1.
A, . The Condition (6) s verified for

=z”"]I=II[f(p,;i)]"",6+jZ=;w<2 tel

where B> 0,v; >0, p;el and f(p, ;%) is the iterated logarithm of the order
p; of © in a basis greater than 1. Let us set w = (m + 1) log I, v = mlogl,
F(m, p) = f(p;1s) (f(p; 8))™" = f(p — L;u) (f(p — 1;))"", s = I".For each
p eI there exists a mo(p) € I so that for m = m, F(m p) = l. Indeed, for
p=1F(m1)=uw"'=m" (m+l) <22 Bif F(m,p) <l ie f(p — L;u)
S — 1;0) < (f(p — 1;0))", it_follows that f(p; u) = Iif(p; v); ie.
F(m,p+ 1) = 1. Now if we set v = > %1 v: we obtain

n
a(ls) — a(s) l—ﬂH [F(m, pi)]*?’i > l—(ﬁ+‘7) a(s)
=1

which concludes our proof.

A, . The Condition (6) generalizes the conditions in the papers [12], [13]. Indeed,
the conditions in these references require the existence of a constant k(0 < k < 1)
for which

(24) Pla’™® = o, mel, s=1"

But, if (6) is satisfied with a determined constant A > I”*, then (24) is also
satisfied with any & for which (AP)™ = k < 1; conversely, if (24) is verified
with a determined k(0 < k& < 1), it follows that (6) is also verified with
A < (Pk)7

A;. If na'™ is monotonically increasing to infinity, then (6) is satisfied with
A = T'; in this particular case Theorem 1 can be easily obtained. Indeed if y, =
[na™] " D¢, , Ky = (20K)7", & = Kien, from (11) it follows that

n

P(U > ne) < (Kye)n™" ; [na™] 7 D& < (Kie) "0 2oy

1=

Because

Zn Yo = Z[ “a™]”" Dt

n=1

by means of ([3], 47, Chapter IX, Theorem 3), it follows from (7) that
n > iiyi—0(n— @), ie. the N.S.L. holds.

Ay . Ifna'™ — o (n— o) and D& < ¢ < + o (¢ € I), then, instead of (5)
and (7) we may take respectively

0 0

(25) Dwit < o, Zl[nza‘“r‘ < 4w,

1=1 n=
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If a; > p > 0 (i el) (e.g. the chain is homogeneous a; = p > 0, (¢ eI)), D&
Sc¢< 4o ({el), because w; = pl *(1 — 7% = pl %" (¢ & I) follows the
N.S.L. If the chain is discrete, na™ — © (n — ®)(e.g, a; > p > 0,5¢1) pi
the probability of the appearance of the event ¢ in the kth trial, x; the number
of occurrences of ¢ in the first n trials and (25) is verified, then o —
nfl D 7y pi converges to zero with probability 1; if a; = p > 0 (1), pr o=
p® then n™" u; converges to p’ with probability 1. This follows from Theorem
1 taking & equal to the number of oceurrences of 7 in the kth trial.

B. Remarks concerning Theorem 2.

Bi.Letl <lel,s=10,0=8" (80— Sp) re).Ifaz;>p >0 (iel),
then the condition Y i1 Di; < o s sufficient for the N.S.L. of &(¢eI). This
condition is the best in terms of (i € I), in the sense that it is possible to construct
a non degenerated Markov chain £;(i € I) for which this series diverges, a; > p > 0
(¢ € I) and which does not verify the N.S.L. From (3), it follows that

ls ls ls

¢ > iDEsC Y s+ 1)TPDE <D S CF Y D
3 1

1=s+1 T=38+ i=s+1

(26) C > i'Di < 2 Dt = CP D i D
i=l+1 r=1 i=l41"
and by means of Theorem 2 we obtain the first result.

For the second part we may use here the Markov chain constructed in the
proof of Theorem 2. Indeed, it does not satisfy the N.S.L. Since in the proof of
Theorem 2 we have proved that the series (8) diverges, then the series here
diverges also because of (26).

B, . If the sequence of arbitrarily dependent random variables (i e I) verifies
the S.L. then {:(ieI) is strongly stable. Set s = I, 8" = Is, a, = s (s'moy —
SMG,), T = Gs — M0s, Trp1 = 02 — Moy , By = {1, > 0, r > »o} = {7, —> 0,
71— 0,7 — o}, Ry = {lry4y — 7. — 0,7 — x}. Under our conditions, o,(n & I)
defined by (2) is strongly stable; i.e., P(¢, — mo, — 0,n— ©) = 1 and there-
fore P(R,) = 1; because Ry C Ry, lr,y1 — 7. = {» — @, it follows that P(R,)
= 1, i.e. {:(7 e I) is strongly stable.

C. Remarks concerning Theorem 5.

C: . If the variables £,(7 ¢ I) are Q-identically distributed, a; > p > 0 (¢ 1)
[e.g. (1) independent variables, (2) the £;(7 ¢ I) are identically distributed and
the chain is homogeneous] in order that they verify the N.S.L. it is necessary
and sufficient that in the same class with this sequence there exists some variable
£ having a finite expectation. This follows from Theorem 5 if 3 = 0.

C; . In Theorem 5 and remark C; , we do not assume the existence of D;(z ¢ I).

D. General remarks.

D, . We have supposed everywhere in this paper that na'™ — o (n — «),
because in the other case the obtained results are not interesting (see [9], p. 444,
Remark 3).

D. . Theorems 1, 2, 5, Lemma 1 and some facts in the Remark A4 generalize
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the results of Kolmogorov ([4]-[6]), Theorems 3, 4 and the Remarks B;, B,
those of Prokhorov, and Lemma 2 and some facts in the Remark A, those of

Borel and Cantelli.
D; . The totality of homogeneous chains with o > 0 (the end of remark A,)
intersects with the totalities of chains which satisfy the conditions from ([8],

p. 364; [14], p. 59, 61, 166).
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