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0. Introduction and summary. In an earlier paper [4], the author has given
upper bounds for the number of disjoint blocks in (i) Semi-regular GD designs,
(ii) certain PBIB designs with two associate classes having triangular associa-
tion scheme, (iii) certain PBIB designs with two associate classes having L,
association scheme and (iv) certain PBIB designs with three associate classes
having rectangular association scheme. In this paper, we give bounds for the
number of common treatments between any two blocks of the above-mentioned
PBIB designs. The main tools used to establish the results of this paper are the
theorems proved by (i) Bose and Connor [1], (ii) Raghavarao [3], and (iii)
Vartak [6].

1. Semi-regular GD designs. An incomplete block design with v treatments,
each replicated r times in b blocks of size k is said to be group divisible (GD)
[2], if the treatments ¥ = mn can be divided into m groups, each with n treat-
ments, so that treatments belonging to the same group occur together in A\; blocks
and treatments belonging to different groups occur together in A blocks (A\; 3 \z).
The primary parameters of such a design arev = mn, b, 7, k, At , Ao, 01 = (n — 1),
ny = n(m — 1). They obviously satisfy the relations bk = vr, (n — 1)\ +
n(m— 1) =7r(k—1),7 2 M, r = No.Semi-regular GD designs [1] are charac-
terised by 7k — vAe = 0 and r — N > 0. Bose and Connor [1] proved the follow-
ing theorem for semi-regular GD designs.

THEOREM 1.A. For a semi-regular GD design, k is divisible by m. If k = cm,
then every block must contain c treatments from every group.

We use Theorem 1.A to obtain bounds for the number of common treatments
between any two blocks of semi-regular GD designs. The result is given in
Theorem 1.

TuwvoreM 1. If x be the number of treatments common between any two blocks of a
semi-regular GD design, then max (0, 1) =< =< min (k, T), where

Ty=k(r—1)/(b—1) — (b — 2)4,
To=k(r—1)/(b—1)+ (b — 2)}4

and
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s [F{o—=Kk)Db—=1r) — @w—r1k)(v—m)} K@ —1)° _
A_[ vl — m) - (b—l)]/(b 1)

=KW —-k0®—-r0b—-v+m—1)/v( —m) — 1)~
Proor. Let the blocks be denoted by B;, Bs, -- -, By . Denote the number of

treatments common between B; and B; by z;,¢ = 2,3, -+ -, b. Let z; = z. Con-
sidering the treatments of the block B; singly, we obtain
(1.1) . St sz = k(r — 1) — =

The block B;, by virtue of Theorem 1.A, contains k/m treatments from each
group which form pairs of first associates. Hence, considering the treatments of
the block B; pairwise, we get

Dtz — 1) »
= {k[(k — m)\ + E(m — 1)\ — m(k — 1)]/m} — 2(xz — 1).

Following the method of proving author’s [4] result (2.3) from (2.1) and (2.2),
we can show from (1.1) and (1.2) that

(1.2)

> e _ Ko —k)(b —1) = (v —rk) (v — m)]
| B -D —d
(b—2) =

Then, Theorem 1 follows from (1.3).

CoroLLARY 1.1. If ©n a semi-regular GD design b = v — m - 1, then there are
k(r — 1)/(v — m) treatments common between any two blocks of this design.

This result is also proved in [4].

2. PBIB designs with two associate classes having a triangular association
scheme. A PBIB design with two associate classes is said to have a triangular
association scheme [2], if the number of treatments is v = n(n — 1)/2 and the
association scheme is an array of n rows and n columns with the following prop-
erties:

(a) the positions in the principal diagonal are blank,

(b) the n(n — 1)/2 positions above the principal diagonal are filled by the
numbers 1, 2, --- , n(n — 1)/2, corresponding to the treatments,

(c) the array is symmetric about the principal diagonal,

(d) for any treatment 6, the first associates are exactly those treatments which
lie in the same row and same column as 6.

The primary parameters of this design are v = n(n — 1)/2, b, 7, k, M1, A2,
m o= 2n — 4, n = (n — 3)(n — 2)/2. The following theorem is proved by
Raghavarao [3].

TrEOREM 2.A. If in a PBIB design with two associate classes having a triangular
association scheme, rk — v\y = n(r — \)/2, then 2k is divisible by n. Further,
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every block of this design contains 2k/n treatments from each of the n rows of the as-
soctation scheme.

We use Theorem 2.A to obtain bounds for the number of treatments common
between any two blocks for this design in which 7k — v\, = n(r — \1)/2. The
result is given in Theorem 2.

TaEOREM 2. If 2 be the number of treatments common between any two blocks of a
PBIB design with two associate classes having a triangular association scheme and
with vk — o\ = n(r — N)/2, then max (0, 7)) £ z £ min (%, T:), where

Ty=lk(r—1)/(b—1]—0b—2%4, To=[k(r—1)/b—1)]+(b—2)"A4

and

A% = [kzo{n(b +1—=2r) — (v — rk)(n — 2)}

ne(v — n)
k2(r —-1)
-1 ]/“" 1)

kz(v - kb —=r0b—v+n— 1)
vl — n) (b — 1)2

Proor. Using notation as in Theorem 1, we again get

(2.1) Diawi=k(r—1) — .
Also, by virtue of Theorem 2.A and considering treatments of the block B; pair-
wise, we get

2imsxi(m — 1) = ne(2k/n)+ ((2k/n) — 1)(\ — 1)
(22) + [k(k — 1) — ne(2k/n)((2k/n) — D]\ — 1) — 2(z — 1).
Following the method of proving author’s [4] result (3.4) from (3.1) and (3.2),
we can show from (2.1) and (2.2) that

;; (2: — 5)° = Eefnb +1 — ir(z) : 5:; —rk)(n — 2)}

(23)
2 [k(r —1) — af?
—x - ____._(b___z)— > 0.

Theorem 2 follows from (2.3)

CoroLLARY 2.1. If in a PBIB design with two associate classes having atriangular
assoctation scheme and vk — v\ = n(r — \)/2,b = v — n + 1, then there are
E(r — 1)/(v — n) treatments common between any two blocks of this design.

This result is also proved in [4].

3. PBIB designs with two associate classes having a L, association scheme. A
PBIB design with two associate classes is said to have a L, association scheme
[2], if the number of treatments is » = °, where s is a positive integer and the
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treatments can be arranged in an s X s square such that treatments in the same
row or the same column are first associates, while others are second associates.
The primary parameters of this design are v = &, b, r, k, ny = 2(s — 1),
ne = (s — 1)°, A\; and \. . The following theorem is proved by Raghavarao [5].

TrEOREM 3.A. If in a PBIB design with two associate classes having @ L, associ-
ation scheme, vk — v\; = s(r — \1), then k is divisible by s. Further, every block of
this design contains k/s treatments from each of the s rows (or columns) of the associ-
ation scheme.

We use Theorem 3.A to obtain bounds for the number of treatments common
between any two blocks of this design with & — vA; = s(r — A;). The result is
given in Theorem 3.

THEOREM 3. If x be the number of treatments common between any two blocks of a
PBIB design with two associate classes having a L. association scheme with
rk — v\ = s(r — \1), then max (0, T1) < z < min (k, Ts), where

Ty = {[k(r — 1)/(b — DI} — (b — 2)*4,
Ty = {[k(r — 1)/(b — D]} + (b — 2)*4
and

o _[E{® ==k —(s— D@ —rk)} ¥ —1)° N
- oo =17 i)/ 0D

_ B — )b —7r)(b—v+ 2 —2)
N v(s — 1)2 (b — 1)? ’

Proor. Using notation as in Theorem 1, we again get
(3.1) St =k(r—1) — a.

Also, by virtue of Theorem 3.A and considering treatments of the block B; pair-
wise we get

?=3 xi(xi - 1)
= (k/s)[2(k — s)\i + (sk + s — 2k)\, — s(k — 1)] — z(x — 1).

Following the method of proving author’s [4] result (4.4) from (4.1) and (4.2),
we can show from (3.1) and (3.2) that

: e _ KL =)= k) = (s = 1)*(v — rk)]
; (@ —2)" = v(s — 1)2

(3.2)

3.3)
( _x2_[k(7'—1)"‘x]220'
(-2
Theorem 3 follows from (3.3).
CoRroLLARY 3.1. If in a PBIB design with two associate classes having a L.
assoctation scheme and rk — vh = s(r — N\1), b = v — 2s + 2, then there are
k(r — 1)/(s — 1)* treatments common between any two blocks of this design.
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This result is also proved in [4].

4. PBIB designs with three associate classes having a rectangular association
scheme. A PBIB design with three associate classes is said to have a rectangular
association scheme [5], if the number of treatments is v = v;+v, and the treat-
ments can be arranged in the form of a rectangle of v; rows and v, columns, so
that the first associates of any treatment are the other (v, — 1) treatments of
the same row, the second associates are the other (v; — 1) treatments of the same
column; while the remaining (v»; — 1)¢(va — 1) treatments are the third as-
sociates. The primary parameters of this design are v = v; X vy, b, 7, k, n, =
ve — 1, me = v, — 1, n5 = nma, M, Ay and A;. Vartak [5] has proved that the
characteristic roots of NN’ of this design are 8, = rhky 0 =71 — N4+ (1 — 1)
()\2 —_ )\3), 02 =7 — )\2 + (1)2 - 1)()\1 —_ )\3), 63 =7r — )\1 — A2 + )\3 . In this paper,
we consider this design with §, = 0 = 6, . The following theorems were proved
by Vartak [6].

TuEOREM 4.A. If in a PBIB design with three associate classes having a rectangu-
lar association scheme, 6, = 0, then k is divisible by v, and every block of this design
contains k/vy treatments from every column of the association scheme.

TurorEM 4.B. If in a PBIB design with three associate classes having a rectangu-
lar association scheme, 6, = 0, then ks divisible by v, and every block of this design
contains k/vy treatments from every row of the association scheme.

We use Theorems 4.A and 4.B to obtain bounds for the number of treatments
common between any two blocks of the above design with 6, = 0 = ¢, .

The result is given in Theorem 4.

THEOREM 4. If x be the number of treatments common between any two blocks of a
PBIB design with three associate classes having a rectangular association scheme and
6, =0 = 6, then max (0, Th) < z < min (k, Ts), where

Ty = [k(r — 1)/(b — 1)] — (b — 2)%4,
Ty = [k(r — 1)/(b — 1)] + (b — 2)%4

and

2 [k{r(v — k) — kp(v — vk)) _ B —1)° _
4 _[ up ®—-1) ]/(b 2

=KW —%®—17(b— p— 1)/op(b — 1)°

p being equal to (vy — 1) (v, — 1).
Proor. Using notation as in Theorem 1, we again get

(4.1) St = kE(r — 1) — x.

Now using Theorems 4.A and 4.B and considering treatments of the block B;
pairwise, we get

Dt xi(ri — 1) = (k/0)wa(k — v1) (M — \g)

4.2)
+ Ul(k — 1)2)()\2 — )\3) -+ Z)(k — 1)()\3 — 1)] — x(x— 1)
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Following the method of proving author’s [4] result (5.7) from (5.1) and (5.3),
we get from (4.1) and (4.2)

Xb: (2; — 2)° = klr(v — k)* — kp(v— rk)]
W ! k(r — 1) — ]
2 r — —
v - G-y =°

Theorem 4 follows from (4.3).

CoROLLARY 4.1. If in a PBIB design with three associate classes having a rectangu-
lar association scheme and 6, = 0 = 6, b = p + 1, then there are k(r — 1)/p
treatments common between any two blocks of this design.

This result is also proved in [4].
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