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1. Introduction. This paper has two purposes. It consists of a new attack,
using different methods, on some problems concerning large excursions of Gaus-
sian processes which were studied by M. Kac and D. Slepian in [1], and it may
be considered a technical contribution to this topic since some new and perhaps
simpler proofs are given under less restrictive assumptions than theirs. These
problems (among others) have also been studied by Volkonski and Rozanov in
[4], but again under more stringent assumptions than we shall require. On the
other hand, this paper is intended to provide a further illustration of the point
made in [2] that choice of the proper topology may be of great importance in
connection with convergence of stochastic processes. It seems likely that the
method used below will have other applications in the study of Gaussian proc-
esses, and it is this hope which is responsible for the rather general title I have
chosen.

2. The limiting process. Let {x({)} denote a real, continuous, stationary,
Gaussian stochastic process with mean 0 and covariance function satisfying

(1) p(t) = E(z(s)x(t +8)) = 1 — at® + o(f%)

for small ¢. Kac and Slepian studied the behavior of z(t), conditioned so that
z(0) = a, as a tends to 4 « ; the particular question of greatest interest is the
distribution of the time until the next return to the level ¢ in the cases when
2 (0) > 0. They also discussed several different interpretations of the conditional
probabilities, which led to somewhat different results. In this paper, however, we
shall work at first with the ordinary notion of conditional probabilities and den-
sities (equivalent to those called ‘“vertical window” in [1]); this considerably
simplifies the problem since the conditioned processes are then still Gaussian.
Later on it will be shown how the results can all be carried over to the other types
of conditioning considered by Kac and Slepian.
Let us now define

where
(3) 6 = (2r/a)la™ for a > 0;

obviously A(0, ) = 0 and 6 — 0 are respectively equivalent to z(0) = o and
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a — «. Define also a process {z(¢)} by putting
(4) 2(t) = —(Gam)'t’ 4 o't

where £ is a random variable with a standard normal distribution. We will first
show that the finite-dimensional distributions of {A(t, 8)}, given that A(O, §) = 0,
converge as § — 0 to those of {2(t)}.

The proof is very easy; since {A(¢, §)}, conditioned by A(0, ) = 0, is still a
Gaussian process it is only necessary to show that its mean and covariance func-
tions converge to those of {z(¢)}. Either “by hand” or using the results in the
appendix of [1], we readily obtain

(5) E(A(t,6) | A0, 6) = 0) = (a/6)[p(6t) — 1],
(6)  Cov (A(t, 6), A(s, 8) | A0, 8) = 0) = 67[p(6(t — 5)) — p(6t)p(6s)].

Using (1) and (3) it is immediate that as 8 — 0 these quantities have the limits
— (%ax )} and ast respectively, which are the mean and covariance functions of

{z()}.
For any continuous function y(¢) with y(0) = 0, define the functional
(7) T(y) = inf {t > 0 : y(t) = 0}.

Thus Pr(7T(A(t, 8)) < 7|A(0, 8) = 0) is the conditional probability that
z(t) has a positive a-crossing before time 6r, given that 2(0) = a. We seek a
limiting distribution as § — 0; in view of the result above it is natural to try to
prove that the limit is Pr(7'(z(¢)) = 7), which is easily written down explicitly
using (4).

This is the sort of result that is often proved by an “invariance principle”
type of argument, although it was not so approached in [1]. The difficulty is that
the functional 7 is not continuous under uniform convergence of y, to y for any y
such that T'(y) > 0, since the approximating functions may have rapid small
oscillations near 0, forcing 7'(y,) — 0, and still be uniformly convergent to y. The
“invariance” method can be applied, however, by utilizing a stronger topology
on function space than the uniform one. We turn next, accordingly, to a brief
study of convergence of Gaussian processes on a space of differentiable functions.

3. Convergence in C'. Let {y(") ()} be a sequence of separable, Gaussian
random processes with mean functions u,(¢) and covariances p,(s, t); the param-
eter interval is [0, A], and ¥,(0) = 0. Assume that

(8) limpae ua(t) = u(t) and limu.e pa(s, t) = p(s, t).

Let C' denote the Banach space of real functions on [0, A] with continuous de-
rivatives; the norm is the maximum of the function plus that of the derivative.
We will use the following

THEOREM. Suppose that, for each n, u,' (1) and ga.(s, t) = [8°pa(s, t)]/(ds Ot)
exist for 0 < s, t < A. Suppose further that the functions p, (t) are continuous and
converge uniformly and that the inequality
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9) lgn(t, t) — 20a(t, 8) + gu(s, 8)| < BJt — s|°

holds for all s, t € [0, A] with the choice of B and & > 0 independent of n. Then there
exists a Gaussian process {y(t)} with mean u, covariance p, and a.s. continuously
differentiable paths, such that the distribution function of f(y™ (t)) converges weakly
to that of f(y(t) ) for every real-valued functional on C" which s Borel-measurable and
continuous at almost all paths of {y(t)}.

Proor. This result is an easy application of a theorem of Prokhorov [3, Thm.
2.1] (se€ also [2]), which states that if the condition

(10) E(|£(t) — £(s)|*) < Bt — | a, 8> 0,

holds uniformly in = for a sequence of separable stochastic processes {£,(¢)}, and
if their finite-dimensional distributions have limits as n — o, then the measures
induced by the processes on the Banach space C of continuous functions on
[0, A] converge weakly to the measure of a process with the limiting finite-di-
mensional laws. In case the processes are Gaussian with zero means, it is easily
seen that the validity of a condition of the form (9) for their covariances implies
that a condition (10) holds for some positive 3.

We shall apply this result to the processes {y, (£) — . (¢)}. In fact the means
are 0 and the covariances of these processes are ¢, (s, t) which satisfy (9) by as-
sumption; we also have

limpe ga (s, t) = [8°p(s, £)]/(9s 8t)

as a consequence of (8) and (9). It follows that the measures of {1, (t) — u. (¢)}
converge weakly on C. Since our assumptions imply that img,.. u. (1) = #'(¢)
uniformly on [0, A], the same conclusion holds for the processes {1, ()} them-
selves. Let us call the limit process {y'(¢)} ; its integral, with y(0) = 0, has mean
v and covariance p.

An equivalent formulation of the above fact is that if f is any real functional
continuous everywhere on C, then the law of f(y, (¢)) converges weakly to that of
f(&'(t)). But suppose that g is a continuous functional on C*; defining

FE®) = g([s£(r) dr)

for every continuous function £(¢), we have

g(yn(t)) = f(ya' (2)).

Also, it is clear that C" continuity of ¢ implies the continuity of f with respect to
the uniform metric. Hence the law of the random variable g(y,(¢)) converges to
that of g(y(t)); in other words, the measures induced on C' by {y.(t)} converge
weakly to that induced by {y(¢)}. The conclusion of our theorem is a standard
consequence of such convergence.

ReMARK. The conclusion of the theorem can be somewhat strengthened by
using the sharpening of Prokhorov’s theorem which is presented in [2]; the ad-
vantages of doing so do not seem at present to be very significant. Alternatively,
Assumption (9) can probably be weakened.
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4. (" convergence of A(t, §). We now apply the theorem of Section 3 to the
convergence of {A(t, 6)}, conditioned by z(0) = a, to the limiting process {z(¢)}.
The result is as follows:

TaEOREM. Suppose that Condition (1) is strengthened to

(11) p(t) =1 — 1o’ + O(£F°), e> 0.
Then for any Borel-measurable functional f on C* which is continuous at almost all
of the parabolas {z(t)} we have

(12) limg.o Pr(f(A(2, 6)) = w[A(0, 8) = 0) = Pr(f(()) = »)

at values of u such that the right hand side is continuous.
We will carry out the proof in several easy stages.
LemMa 1. Assuming only Condition (1) we have

(13) limgoo (d/d¢)E(A(4, 6) | A0, §) = 0) = —2(%ar),

and the convergence is uniform for 0 =t = A < .
Proor. The covariance function p(¢) has the representation

(14) p(t) = [5 cos tx dF (z),

and it follows from (1) that « = [¢ 2’ dF(z) is finite. Accordingly, using (5)
and (3) we can write

E(A(L, 0) | A(0,0) = 0) + (3am)}? = (%”y [ ) {%“—1 + %”—2} dF(z).

As a result we have

T B(a(1,6) | A0,0) = 0) + 2(Fam)'

_ 271'% i 2 sinetx
“(‘J)fo tx {1_ o }dF(x).

Let the integral on the right side be written as [3* + [ . Since |(sin w)/w| < 1
for all w, the second term is at most 2Af§';} &’ dF (x), which is small when M is
large uniformly in 6. In f o' on the other hand the integrand tends to 0 with 6
uniformly in x and ¢ over their stated ranges. Hence the right side of (15) goes to
0 with 6 uniformly in {( £A), and Lemma 1 is proved.
Lemma 2. Condition (11) implies that [§ 2™t dF (z) < = forall € < .
Proor. Let us put

(16) B(t) = p(t) — 1 + 3af® = [5 {costx — 1 + 3’2"} dF (z).

Let f(w) = cos w — 1 + 1o’; it is easy to see that f(w) > 0 for all > 0 and f is
continuous. Consequently for any ¢ > 0 we have

h(t) = [7f(te) dF(z) = [t f(tx) dF(x) 2 min<u<e f(u){F(2/t) — F(1/1)}.
Putting ¢ = 2™, the Assumption (11) that h(¢) = O(£*) yields

(15)
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F(2n+l) _ F(zn) é 02—(2+e)n'

From this estimate it follows at once that all moments of F' of order less than
2 + e must be finite

Lemma 3. Condition (11) tmplies that the mized second partial deriative of the
conditional covariance function of {A(t, 8)}, given A(0, 8) = 0, satisfies a condition
of the form (9) uniformly in 6.

Proor. The covariance function in question was given in (6); the mixed partial
derivative is accordingly

(17) qo(t,s) = —p”(8(t — 8)) — p'(6t)p'(65).

It is of course enough to obtain (9) separately for each of the two terms in (17).
Tor the second term, however, this is trivial (with § = 2) in view of the fact that
o is bounded. Condition (9) for the first term in (17) becomes

(18) [—p"(0) + 0" (8(t — s))| < BJt — ', 5> 0,

to hold for all small 6; clearly it is enough to obtain (18) with § = 1, for all
lw| = |t — s| £ A. Using the spectral representation (14) of p(w), plus the
existence of the second moment of F, we can write

(19) —0"(0) + 0" (0) = [5 (1 — cos wz)a’ dF (x).

Choose 1 € (0, min (¢, 1)), so that by the previous lemma I3 & dF () is finite.
Since 1 — cos u < Cu’ for all u, we can write

0= [0 (1 — coswr)a® dF(z) < Co' [ o dF (z)
< 0’ (™) 2 dF(z) £ O™,
For the remainder of the range of integration we have
0= [5i-1 (1 — coswr)r’ dF(z) £ [ar-1 2 dF (z)
< [ 2@/ dF (z) £ &[T 2 dF ().

Combining these two estimates with (19), we obtain (18) withé = (1 — ) > 0.
Proor or THE THEOREM. The results of Section 2 about convergence of mean

and covariance functions, plus Lemmas 1 and 3, verify all the hypotheses of the

theorem of Section 3; the conclusion specializes to the result stated above.
CoROLLARY. Under (11), for any 7 > 0 we have

(20) limeo Pr(A(,0) >0 for 0 <t =17]A(0,0) =0)=1-—o((3 i),

where ® is the standard normal distribution.

Proor. The functional T defined in (7), modified to have value A if y(¢) has
no zero in (0, A), is continuous on C" at all paths of {z(¢)} except the one with
2'(0) = 0. Accordingly the conditional distribution of T'(A(t,6)) givenA(0,8) = 0
converges to the law of T(z(¢)), and (20) is the result. (Use A > 7.)

5. Other types of conditioning. Even in the “vertical window” case Kac and
Slepian’s results are slightly different from ours, since they condition by putting
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A(0,8) = 0 and A'(0,6) = 2'(0) = 0, thus ensuring that an “upcrossing” takes
place initially. However, our theorem easily yields the more general formula

limg.o Pr(f(A(, 0)) < u|A(0,0) = 0,¢c < 4'(0,6) <d)

(21) ’
=Pr (f(2(t)) Sulc=2(0) =d)

(for u a continuity point) for functionals f which are continuous on C". To prove
(21), we rewrite the conditional probability as

Pr(f(A(t,6)) < u,c < A'(0,0) < d|A0,6) =0)
Pr(c = A’(0,6) = d|A0,0) = 0) '

Now the event {f(A(t, 8)) < u, ¢ < A'(0,8) < d} defines a Borel subset of "
whose boundary has measure 0 with respect to the process {z(¢)}. Therefore it
follows from the weak convergence which was established in the previous section
that the conditional probability of this event given A(0,8) = 0 tends to
Pr(f(2(1)) £ u, ¢ £ 2'(0) < d). The probabilities in the denominator of (22)
tend to Pr(c¢ < 2'(0) < d) for the same reason. (These probabilities are actually
equal to Pr(¢ < 2'(0) £ d) and so independent of §.) Combining these facts
gives (21).

Next we will obtain an easy generalization of (21) which allows for, among
others, “horizontal window”’ conditioning.

TaEOREM. For the same functionals f as before, we have

limg.o 2. Pr(f(A(t, 8)) < u| A0, 8) = 0,4(0,6) = y)p(y) dy
= [2.Pr(f(2(1)) = u|2'(0) = y)p(y) dy,

where p(y) is any continuous probability density.

We remark that the obvious line of attack—showing convergence of the
integrands—can not be used without imposing a stricter condition on p(¢) than
that in (11). We will instead obtain (23) from (21) using the following

LeEmMMA. Suppose for 0 =< 6 = 1 that go(y) ts measurable in y and satisfies
0 =< go(y) = 1. Suppose also that for all —» Z ¢ < d = + =,

(24)  limg.o [5 exp (—4*/2a)gs(y) dy = [ exp (—y*/2a)g0(y) dy.
Then
(25) limaso ¢ go()p(y) dy = [% 9o(y)p(y) dy

for any p(y) which s continuous and absolutely integrable on (— =, « ).

Proor. Consider measures uy defined by the densities exp (—v°/2a)ge(y);
(24) implies that us converges weakly to uo as § — 0. From this, and the uniform
boundedness of go(y), it follows easily that

limaao 2 B(y) due(y) = [4h(y) duo(y)

for any continuous function » and finite interval (¢, d). Choosing h(y) =
p(y) exp (¥°/2a) we have (25) for finite intervals; using the integrability of p
and again the uniform bound on gy(y) it is easy to see that this suffices.

(22)

(23)
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To prove the theorem, for § > 0 we let
(26) Pr(f(A(t, 0)) = u|A(0,8) = 0,4'(0,0) = y) = go(y).

Now A’(0, §) = 2'(0) is a normally distributed random variable with mean 0
and variance «, and so we have

Pr(f(A(t,0)) = u|A(0,0) = 0,¢c = A'(0,0) < d)
= (2ra)"[¢exp (—y’/2a) Pr(f(A(t,y) < u|A(0,8) = 0,47(0,0) = y) dy
= (2ra) [T exp (—y"/2a)g0(y) dy.
By (21), as 6 approaches 0 this tends to
Pr(f(2(t)) Sulc = 2(0) < d)
= (2ra) [T Pr(f(2(1)) = u|Z'(0) = y) exp (—y"/2a) dy.

Accordingly if we set go(y) = Pr(f(2(t)) = u |2 (0) = y) relation (24) is
satisfied. The conclusion of the lemma then yields (23).

As an illustration we will give explicitly the results for ‘“horizontal-window?”
conditioning. As explained in [1],

Pr(f(A(t, 6)) < u|4'(0,0) = 0,A(0, 6) = 0)y..
= o' [7 y exp (—1"/2a) Pr(f(A(,6)) < u|A'(0,0) =y, A(0,6) = 0) dy.
By (23), this quantity has for § — 0 the limit
a ' [5 yexp (—y/2a) Pr(f(2(1)) = u|2'(0) = y) dy.

Specializing to the functional T’ (see the corollary in Section 4 and its proof), it
is straight-forward to evaluate the limit explicitly and obtain

limg_o Pr(A(¢, 6) > 0 for

27
(27) 0<t<7|A(0,0)=0,A(0,6) =0)uy. = exp(—Lirr)

which agrees with equation (4.3) of [1]. Kac and Slepian’s method also gives
convergence of the densities, a result which does not follow from our theorems
without further work. On the other hand, the condition (11) used in our deriva-
tion is considerably more general than (4.1) of [1], and in addition the limiting
distribution has here been found for many other functionals in addition to 7.
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