DECOMPOSITION OF SYMMETRIC MATRICES AND
DISTRIBUTIONS OF QUADRATIC FORMS!

By NorMmaN Y. LuTHER
Washington State University

1. Summary and introduction. This paper presents some theorems for real
matrices which should be of use and interest to anyone working with quadratic
forms in normally distributed variables because of the following equivalences:

(i) stochastic independence of forms and orthogonality of their matrices
(Craig [3] and Carpenter [1]),

(ii) x* distribution of a form and idempotency of its matrix (Carpenter [1]),
and

(iii) the dlstrlbutlon of a form as the unique difference of two stochastlcally
independent x* distributions and the tripotency of its matrix (i.e., 4 = A%,
The last equivalence is a consequence of the first two and the fact that every
symmetric matrix is the unique difference of two non-negative, orthogonal
symmetric matrices. The above equivalences apply specifically to forms in
independently distributed variables with common variance, but this is incon-
sequential since if the random vector X has covarlance matrix V, then ¥ = V!X
has covariance matrix I and X’AX = Y'VIAV'Y. Hence the matrix theorems
of this paper can be easily adjusted to fit the more general case.

The matrix theorems of this paper emphasize the use of the trace of a matrix,
a concept which has not been fully exploited in such results as these. As an
introductory remark, we mention that throughout this manusecript all matrices
are assumed to be symmetric except for those involved in Lemma 3; and our
application of that lemma will be to symmetric matrices only.

2. Orthogonal matrices. The primary result of this section (Theorem 1) will
generalize Cochran’s Theorem. We begin with a lemma which will have applica-
tion in the following section. Its proof follows easily from the fact that if 4 and
B are non-negative, then AB = 0 if, and only if, tr AB = 0.

LemMa 1. Let A = D> 5 A;and A; = 0,7 =1, -+ k. Then A:A; = 0,4 # j,
i,j =1,k if, and only if, tr A* £ D Ftr A

Lemma 2 will be used to prove Theorem 1.

LemMa 2. Let A = Y i A;. Then A;A; = 0,7 % §, 4,7 =1, -+ | k, if, and only
if,rank A = leankA and A:A; =—AA1,’L¢],1]=1 , k.

Proor. A;A; = —A;A:, 7 # 5,17 = 1, , k, implies that A = >5AS
and that AfA]-2 = AfAL i # G, 0,5 =1, -, lc. Hence there is an orthogonal
matrix L that simultaneously diagonalizes each 4. Thus rank A’ = D> irank A7
implies that A”A;” = 0foré # 5, 4,7 = 1, --- , k. But repeated application of
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AA; = —A;A; yields (4,4;)(A4:4;) = APA} = 0so that 4;4; = 0,4 = j,
2,7 =1, - -+, k. The converse is immediate.

THEOREM 1. Let A = D 1 A;. Then A;A; = 0,4 % 4,7 =1, --- , k, if, and
only if, rank A = D _irank A;and AA; = A;A,i =1, --- , k.

Proor. The proof is by induction: if k = 2, AA; = A;A for ¢ = 1, 2 implies
that 414, = AA; ; hence there is an orthogonal matrix which simultaneously
diagonalizes A; and A,. Thus rank A = rank A; 4+ rank A, requires that
A1A2 = 0

Fork = 3,let A4g = A; + A,. Then rank A = > % rank 4, and rank 4, <
rank A; + rank A4, imply that rank A = rank 4o + »_srank 4;. Moreover,
AA =AA,,9=0,3,4, ---, k. Consequently, the induction hypothesis renders

(1) A’tA]=O) 7’¢]7’L7]:377k
and

Similarly, applying the induction hypothesis to eachof A = A; + (A: + A4;) +
A4+ +AkandA = (A1+A3) +A2+A4+ +Ak,We0btain

(3) A4 = 0, i=4, -k
(4) Ai(Ay + Ag) = (As+ A)A; =0, i=1,4, -,k
(5) A4 =0, i=4, -,k
and

(6) Ai( A + 43) = (41 + 4:)4, = 0, i=24, -,k

Summarizing, from (1)-(6) we obtain A;4; = 0 for¢ = j,¢ =1, --- | k,
j=4, -,k and 4;4; = —A;A;for i # 7,1, 7 = 1, 2, 3. Thus the desired
result follows from Lemma 2.

Theorem 1 is a generalization of Cochran’s Theorem (see Cochran [2] and
Madow [6]): let A = I to obtain the latter. Moreover, the following algebraic
lemma shows that one may assume A = I in the proof of Graybill and Mar-
saglia’s generalization of Cochran’s Theorem ([4], Theorem 1(b)); hence that
theorem follows from Cochran’s Theorem and the upcoming lemma. This
lemma will have further use in the sequel.

LemMa 3. Let A = D Y A;where Aand A;,i = 1, -+ , k, are m X n matrices
(hence not necessartly symmetric), and let rank A = D> Yrank A;. Then for
1 = q £ m, of the gth row vector of A s the zero vector, so is the gth row vector of
A;foreacht =1, - | k.

Proor. By induction we may assume £ = 2; hence we show that if a; and a2
denote the qth row vectors of A; and A., respectively, then a; and as are zero
vectors if a; + a. is the zero vector.

Let r = rank 4,, p = rank A,. Let 1, -+, z- and y1, -+, y, be bases
for the row spaces of A; and A, respectively. Then a; = Qi sz and as =
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> P tyy; for certain scalars s;,j =1, -+ ,r,andt;,j=1,--- ,p. But ey = —a
so if a; is not the zero vector there is a jo, 1 < jo < r, such that z;, is a linear
combination of the r + p — 1 vectors {x; ;7 =1, -+ ,r, 7 # jo} U {y;;j =
1, ---, p}. It follows that every row vector of A is also a linear combination
of these 7 + p — 1 vectors. Hence rank A < r + p — 1 < rank A; + rank 4,
which is a contradiction.

3. Idempotent and orthogonal matrices. Let A = Z’{A, ; we intend to
exploit the concept of the trace of a matrix to give necessary and sufficient con-
ditions for the idempotency and pairwise orthogonality of the matrices
Ay, -, Ai . In this section and the next, we will repeatedly use without mention
the following well-known facts and their consequences:

(i) A = A%if, and only if, rank A = tr A = tr A%, and

(ii) (trA4)* < (rank A4)(tr 4%).

These facts are direct consequences of applying the Cauchy-Schwarz Inequality
(and its statement of equality) to the non-zero proper values of 4; and (i), in
particular, suggests the possible usefulness of the trace for the purpose of this
section as well as the next.

THEOREM 2. Let A = Z'{ A ; the following are equivalent.

(i) Ai=Ali=1,-- -, kand A 4; =0, #j, 5,5 =1, -+, k.

(i) 4 =A4%4:,20,i=1,--- ,kandtr A < D 7tr A/

(iii) 4 = A* trA;4;2 0,4 # 4,4, =1,--- ,k,and foreachi =1, --- ,k — 1,
at least one of the following conditions holds:

(a) rank 4; =< tr 4;,
(b) rank A; < tr A7, or
(¢) A; = AL

(iv) A = A% rank A, S trd;,s=1, -,k — Land tr (A — Ax)4x = 0
ortrA;A;, 20,7=1, -+ k — 1

(v) A=A rank A; S trdi,i=1, -,k — Landtr (2 fm D fmr,ies Aid;)
>0ortrd = D itrAl

(vi) A = A, A; = Al i=1,---,k— 1, and tr Ay = tr A;".

(vii) 4 = AL tr A, Str Al i=1,---, k—Land A4; Z20,i=1,---,k

(viii) 4 = A>rank 4; S trA%i=1,---,k—Land A, 20,s=1,--- k.

(ix) A = A% rank A; S trd;,i=1,---,k— 1,and 4, Z 0.

(x) A =A% 4, 20,i=1,---,k and foreach ¢ = 1, --- , k — 1, at least
one of the following conditions holds:

(a) rank A; =< tr Ai,
(b) rank 4; < tr A7,
(¢) trA; < tr AS or
(d) A, = A,’Z.

Proor. Obviously (i) implies all others, (viii) implies (vii), and (x) implies
(vii). Moreover, (vi) implies (v) since tr A = Shtrd; = DA r A + tr A
> > %tr A7 and (ii) implies (i) by Lemma 1. Hence it suffices to show that
each of (iii), (iv), (v), (vii), and (ix) implies (7).

(iii) implies (i): It suffices to prove the result assuming rank 4; = tr Al
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¢ =1, ---,k — 1. The proof is inductive: For £ = 2, by diagonalizing with a
suitable orthogonal matrix we may assume that A = A; + A, has the form

I. 0 D I.—x =D
= + ,
0 0 D X -D —Ne

where 0 < v < n and X;, X\; are diagonal matrices. Let » = rank A, . Then
tr A" = r requires that

(1) tr X2+ tr X +2tr DD = »
and tr A4, = 0 implies that

(2) trhy — tr X’ — tr X’ — 2tr DD' = 0.

The addition of (1) and (2) yields tr A; = 7 so that tr \; = rank X, . But, using
(2) again, we obtain tr X; = tr X" 4 tr X’ + 2tr DD’ = tr X + tr X" = tr &y
so that rank X; = tr X; = tr X,’, D = 0, and X, = 0. The desired result follows.

Fork = 3,let A = A, + Ao, where Ag = > 5 A;. Then 4 = A% tr 4,4, =
D> str A14; = 0, and rank 4; < tr A,® imply that 4, = A¢ and 4, = A4,%
Hence A; = A7, ¢ = 2, ---, k, by the induction hypothesis. It follows that
AA;=0,7%7,¢,7 =1, -+, k, and the proof is complete.

(iv) implies (i): Let A = A, + A, , where 49 = »_5=1 A;. We have rank
Ao £ DV 'rank A; £ Y ¥l tr A; = tr Ao and tr Ao = 0. Hence 4 = 44’
and 4, = A, by the fact that (iii) implies (i). Hence rank 4, = tr A, =
DV trA; = > ¥ ' rank A; implies that A, = A%, i =1, ---, k — 1, by Gray-
bill and Marsaglia’s generalization of Cochran’s Theorem ([4], Theorem 1(b))
that was mentioned earlier. Hence the desired result follows.

(v) implies (i): The proof is by induction: For £ = 2, (v) is contained in
(iii). For k£ = 3, since -

D e tr AGA; = D STl tr AgAy 4 D iTi D ki eitr AiA; =0,

we consider two cases:

CasEe 1: If D %1 tr A4A; = 0, the result follows from the fact that (iv) im-
plies (i).

Case 2: If D SZ1 > %y iitr A;A; = 0, thereisandy, 1 < 4 < k — 1, such
that D sy e, tr AyA; = 0. Hence if we let A = A, + Ao, where 4o =

* 0 0
> i, A;, we have rank A,, < tr 4;, and tr A; Ao = 0; since (iii) implies
(i) it follows that A,, = Ai,, A, = Ay, and A;4, = 0. Consequently,
Zl}zl,#io tr 4;0A; = 0, which implies that

k

k k k k
ZZ tI‘A,'Aj= EZtI‘AiAj—Q Z trAioAng.

A=l =1 i=1 j=1 7=1,j71¢
177,171 0,J71 0 J#i
Thus 4; = A% ¢ # 4,7 =1, -+, k, by the induction assumption.
(vil) implies (i): Since A; = 0, ¢ = 1, ---, k, by diagonalizing with an
orthogonal matrix we can assume A = I. Hence, A; = D e Asd;,j=1, -+,
k — 1 so that tr Aj = Z?=1,i;éj tr quAj + tr Aj2 g Z?:l,i;éj tr A@AJ + tr Aj,
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j = , k — 1, implies that Zf=1,¢,trAiAj £0,j=1,---,k— 11t
follows that AA; =0,72# 7,1, =1, , k.
(ix) implies (i): Consider first the case k = 2. We can assume 4 = 4, 4+ 4,

has the form
0 0 ’

where A; is a diagonal 4 X u matrix (0 £ u = n) with diagonal elements
A, 5 M. Now A; = Oimpliesthat \; £ 1,2 = 1, - -+ , u. We shall renumber
the A1, -+, Auso that Ay, -+ -, \, are the non-zero ones. Then tr X; = ZI =
r = rank A;. On the other hand, rank X; < rank 4; < tr A; £ tr \;, the last

inequality holding since A, = 0. Hence, rank X, = tr 4; = tr X; = D [\
Thus i = 1,2 =1, ---,r,D = 0,and E = 0so that 4, = A,*, A, = A4;’, and
A1A2 = 0

In the general case (kK = 2),let A = 4o + Ax where 4o = > i 1A, Now
rank Ao £ Dt ‘rank A; < D1 ' tr A = tr Apand 4; = 0. It follows from the
case for k = 2 that 4, = Ao’ and 4, = A’ Hence, since rank 4; < tr A4;,
i =1,---,k — 1, it follows from Graybill and Marsaglia’s generalization of
Cochran’s Theorem, as in the proof of (iv) implies (i), that A4; = A/
i =1, -+, k — 1. The proof is complete.

It should be noted that the Hogg-Craig Theorem [5] is an immediate corollary
of p=> (i) of the preceding theorem for every p = (iii), - - - , (x), except p = (vi).
Moreover, one can easily construct examples which show that the hypotheses in
conditions (ii)—(x) are essentially minimal. For example, it is essential that every
A; be non-negative in the hypotheses of conditions (vii) and (viii).

4. Tripotent and orthogonal matrices. Let 4 = DA we will play the
same theme as in the preceding section with the exception that here we are in-
terested in the tripotency and orthogonality of the matrices 4;, ---, A.
We list some well-known and easily-verified results which will be used through-
out this section:

(i) if A;d; = 0,45 5,4,7=1,--- ,k then A = A®if, and only if, 4; = 4,
i=1 -,k

(ii) there are unique non-negative symmetric matrices B and C' such that
BC =0 and A4 = B — C; indeed, if 4 = A°, B = (A*> + A)/2 and
C = (A® — A)/2 are idempotent;

(iii) the following are equivalent:

(a) 4 = 4%,
(b) every proper value of A has value —1, 0, or 1,
(¢) A* = A foreveryi=1,2, -,
(d) rank 4 = tr 4% = tr A%,
We need two preliminary lemmas.
Levma 4. Let A = A+ A, . If A = A®, A, = 0, tr A14; = 0, and either rank

Ay < tr A, or rank A, < tr A, then A, = A, Ay = A, and A4, =
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Proor. It suffices to prove the result assuming rank 4, £ tr 4,°. By an or-
thogonal diagonalization of A, we may assume A = A, + A4, has the form

I, 0 0 By By By Cun Cpn Ci
0 —I, 0)=|Bu By Bu|+|Cu Cu Co
0 0 0 By B Bs Ca Cn Cy
Then A4 = A + A4, and tr 4,14, = 0 imply that tr 4,® < tr 4,4 = tr By —

tr Bp < tr By < tr A;. Together with rank 4, < tr 4%, this implies that rank
Ay = trA; = tr A, hence A; = A;" and tr A; = tr By . From the latter it
follows that tr By, = tr Bss = 0. Thus B” = OQunless? = j = 1sothat C;; = 0
unless 7 = ] 1or 2 hence Bu = Bn, 99 = '—12, and Cu = Il Bn . The
conclusion follows.

Lemma 5. Let A = Ay + Ay If A = A®, A; = 0, tr A; < rank A, and

rank A = rank A; + rank A;, then A, = A, A, = A5, and A_lAQ = 0.
Proor. Using Lemma 3 after diagonalizing with a suitable orthogonal matrix,

we may assume that A = A; + A, has the form

I, 0 N DY I.— N =D/
= + s
0 -1, D, X —D —I, — X

where X, is a diagonal matrix with non-negative diagonal elements A, - -+, A,
and X; is a diagonal matrix with non-negative diagonal elements N\,q1, « - - , Ay .

Let p be the number of A\;, 1 = ¢ < u, which have value 0 (0 < p < u). Since
A; =z 0, we may now assume that 4 = A; 4+ A, has the form

I o 1.0 D I, — 5 0 -D
=({0 0 0|+ 0 I, 0 ,
0o —1I, - -
D 0 X -D 0 —I,—X

MO
where » + p = u, and ¥, = ( ) >has rank r. Thus rank A; = r. But

0 M\
—1—N=-1,2=wu+41, -+, u -+ v; hence the last v + p rows of A, are
linearly independent. Consequently, rank A = rank A; + rank A, implies that

rank A; = r and rank A, = v + p. Thus the last v 4+ p row vectors of 4, form a

basis for the row space of 4,. Hence for‘each ¢ = 1, ---, r, there are scalars
tig,i=7+1, -+ u-+o suchthata, = D> =", tiq@: , where a; denotes the jth
row vector of 4,,7 =1, .-+, u + ». But necessarily th =0,2=r+41,

r4+p,g=1,---,r;hencea, = Y iFoii tigas, g =1, r. If welet D = (d“),
i=u+1 - u+t+ov,5j=1---,7 1tfollowsthatfor each ¢ = 1, , 7
(07"'y071_)‘Q707"'707_du+IQ7"'; du+v.q)_2'tu+z+ltw( dll,"'y
—din‘: 07 e 70) -1 - >\57 07 ) O) Thus 5qk(1 - >\q) = Zu+:/i+1 twd'tk y 4,

k =1,---,r (84 denotes the Kronecker delta), and —d;, = t;(—1 — \.),
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t=u-+1 -, u4+ 049 =1--., r. Consequently, 1 — A, = hayan
(=1 —=X\),qg=1, ---,r. Hence from the fact that —1 — \;, £ —1,7 = u + 1,

-, u + v, we can conclude that foreachq =1, --- , 7,1 — A, £ 0 and indeed
1 — N = 0if and only if, ¢t;;, = 0,2 = w + 1, .-+, u 4+ v. Accordingly,
rank A; £ D1 M\, < tr A;. But tr 4; £ rank 4; by hypothesis; hence, N =1,
g=1,..-,r. It follows thatt;;, =0, =w+1, --- ,u+v,¢g=1, ---,r. Thus

D = 0 from which it follows that X\, = 0. The proof is complete.
THEOREM 3. Let A = D% A ; the following are equivalent.
() Ai=Ai=1, - kand AiA; = 0,0 = j,4,7 =1, k.

(ii) 4 = 4% A, = A}, i=1,---,k— 1, and trA;A; = 0, ¢ # j,
Gj=1, k

(iii) 4 = A% rank A = > rank A; ,andtr A’ < rank 4;,s=1, -+, k —1.

(iv) A = A° A; =A% i=1,---,k—1,and rank A = D_% rank 4, .

(v) A = A% rank A = D> Yrank A;,and tr A;A; = 0,4 % j, 4,5 =1, -+ , k.

Proor. It is immediate that (i) implies all others and that (iv) implies (iii).
Hence it remains to show that each of (ii), (iii) and (v) implies (i).

(i) implies (i): The proof is by induction. For k = 2, let A; = B, + B:,
where B, = By, —B, = By, and BB, = 0. Now tr (B; + B:)A, = tr Bi4,
+ tr BeA, = 0 by hypothesis. Thus either tr Bi4ds = 0 or tr BsA, = 0. Suppose

tr BiA; = 0. (The proof for tr BoA: = 0 is similar.) Then tr Bi(B: + A4:) =
tr Bids = 0; hence, B + Ay = (B; + A»)* and BiAs = Bi(B: + As) = 0 by
Lemma 4. Consequently, tr BiAs = 0 so that tr (—B;)(—As) = tr B,A, = 0.
Applying Lemma 4 to — (B + Az) = —B; + (—A4,), it follows that 4, = 4,°
and B:A: = 0. Hence A14. = 0.

Fork = 3,let A = A; + B;,j =1,--- ,k — 1, where B; = > 1 ..i A;,
j=1,--+,k —1.Thentr4;B; = 0,7 =1, -,k — 1; hence B; = B,* and
A;B; = 0,57 = 1,---, k — 1. Thus the induction assumption implies that
A, = A and that foreachj = 1, -~ , k — 1, 4,4, = 0,7 # q, 1 # j, ¢ # J,
1,,qg =1, -+ k. It follows that A;4; = 0,7 # j,4,7=1,---, k.

(iii) implies (i): Again induction is used: Suppose k = 2. Let A, = B; + B,
where B; = 0, B: < 0, and B;B: = 0. Consequently, Al =Bl + By, it follows
that tr B> + tr B = tr A,®> < rank A, = rank B; + rank B, . Accordingly, either
tr B> < rank B or tr B> < rank B, . Suppose tr B < rank B; . (The proof for
tr By < rank B,issimilar.) Since rank A = rank B; + rank (B, + A,), it follows
from Lemma 5 that B, = By, (By + A4,) = (B: + A,)°, and By(B, + A4,) =
B4, = 0. Thus tr B;> = rank B, which implies that tr By> < rank B, . Moreover,
rank (Bs + A,) = rank B; + rank A>. Hence if we apply Lemma 5 to
—(Bz + Az) = —Bz + (—Az), we Obtain '—Bz = B22, A2 = Azs, and B2A2 = 0.
Consequently, 4; = A,* and 4;4, = 0. The proof for & = 3 is quite similar to
that for (ii) implies (i).

(v) implies (i) : We again use induction. Let £ = 2. Then rank 4; + rank 4, =
rank A = tr A*> = tr A, + tr A5 + 2 tr 414, = tr A® + tr 45", Accordingly,
either tr A4," < rank A, or tr A,> < rank A, . Thus the desired result follows from
(iii) implies (i). The proof for £ = 3 is as before.



690 NORMAN Y. LUTHER

It is easy to show by example that the hypotheses in (ii)—(v) are essentially
minimal. In particular, the direct analogy of Cochran’s Theorem is not true: the
hypotheses 4 = A®and rank 4 = Y rank A; are not sufficient to guarantee that
(i) is valid. Moreover, one cannot delete either the condition 4; = A
i=1,---,k — 1, or the condition tr A;4; = 0,7 # 7,7, = 1, - -+, k, from (ii)
and still have (ii) imply (i).
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