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1. Introduction and summary. The multivariate sampling distribution theory
underlying a multivariate nornal law has a significant role in Multivariate Sta-
tistical Analysis. Several methods are available for the derivation of the usual
sampling distributions, see, e.g., [2], [7], [8], [9], and [10]. This is yet another at-
tempt in the same direction. However, the method which we present in this
paper is elegant and straightforward, as the desired distributions are obtained
in a rather unified way, either directly from the probability law of the sample or
from the Wishart distribution. Our method is based on a generalization of Sver-
drup’s lemma [12] which we give below. The generalized Sverdrup’s lemma is
indeed implicit in many derivations in multivariate statistical literature without
its explicit statement, see, e.g., Anderson’s derivation of the integral representa-
tion of the noncentral Wishart distribution ([1], p. 417). Our purpose in this paper
is to make an explicit statement of this implied lemma, and point out that the
lemma stated here may be used as a powerful tool in multivariate distribution
theory. Since our method is easily understood, we give only two applications.
Several other applications follow on similar lines, see, Kabe [3], [4]. We have used
fairly standard notation in this paper.

2. Generalization of Sverdrup’s lemma. Sverdrup’s lemma [12] may be stated
as follows. Let y be a N component column vector, D a given ¢ X N matrix of
rank ¢( <N), then

[ i,y dy
y'y=u ,Dy=v

(2.1)
= %C(N — @ |DD'[}(u, )l — ' (DD) )V,
Here v is a ¢ component column vector, dy, as usual, denotes the product of the
differentials of the elements of y, and C(N) represents the surface area of a unit
N dimensional sphere. The integral is considered as a part of the volumn integral
over the appropriate range of the variables of integration, i.e., the range is
—o <y< o, u<yy=<u-tduv =Dy =0+ d. In case the integrand f
is a suitable density function, then the right hand side of (2.1) obviously repre-
sents the joint density of the variables u and v. A similar lemma follows when
the rank of D is less than gq.

As a generalization of (2.1) we have the following lemma.

LeEMMA. Let Y be a p X N matrix all of whose components range over the entire
N dimensional cartesian Euclidean space, D a given ¢ X N matrix of rank ¢q(<N),
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N = p + q. Then

f f(YY', DY) dY
YY'=G@,DY'=V’
(2.2) .
=27 ] C(N — p— ¢ +9)|DD'[*1(G, V') |G — V(DD') V' f¥—»-aD,

=1

Here G is a p X p positive definite symmetric matrizc, V is a p X g matriz, and the
integral vs considered as a part of the volume integral over the range — 0 < Y < oo,
G=YY £G+dG,V =YD =V + dV. In case the integrand f is a suitable
density function, then the right hand side of (2.2) obviously represents the joint
density of the matrices G and V. A similar lemma holds when the rank of D is
less than gq.

We proceed to prove (2.2). Now with DY’ = V', we have a (N — ¢) X N
matrix C orthogonal to D and satisfying the condition _CC’ = I, where [ is the
identity matrix of order N — g¢. Setting CY’' = U, where Uisa p X (N — q)
matrix, we find that

. et
@ c) U’>'

The Jacobian J of the transformation from ¥ to (V' U) is easily found to be

C C
We also observe that

D\ /D\'T*
(2.5) YY' = (VD) [<C> <C>:" (YUY = V(DD')'V' + UU".

It follows that the integral (2.2) is now equal to the integral

—ip

(2.4) J = = |DD'|»,

(2.6) DD/ f VDDV + UV, V') dU,

UU'=G—v(DD')~ 1y’
which is easily evaluated by using the known integral ([2], p. 319, Lemma 13.3.1)
(2.7) Jrrea (YY) dY = 277 [T C(N — p + Of(@) |G,

and gives us the right hand side of the equation (2.2).
Now we proceed to consider the applications of the Lemma (2.2) to distribu-
tion theory. However, we also require following useful results.

3. Some useful results. In case D is a row vector d’ of N components, then
from (2.2) it follows that

(8.1) [yav—ef(YAY' d'Y')dY
= 27[[I C(N —p — L+ DA [ 16, & (A7 DG — 2/ .
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The range of the integration on the right hand side of (3.1) is determined by the
condition that (G — z2') is positive semidefinite.
Using a known integral ([6], p. 268) it may be shown that

(32) [y av—uf(y'Ay) exp {d'y} dy
= 3C(N — DIA[PB(%, 3(N — 1)f(u)u' ™™
D T(AN)W (A AT d)/T(AN + r)2%rl.
In equations (3.1) and (3.2) A4 is a positive definite N X N symmetric matrix.
We use the result ([2], p. 176, Example 6) to obtain that
[exp {— & tr $7'G}|GY 0 (8'G8) dG

(3.3) = (d/d\)ico [exp {— L tr (37" — 28" GIY "V d@

= (2m)"V |32 T (AN + ) (8'37)/ [ T2 C(N — p + )T (3N).

Here d@ denotes the product of the differentials of the distinct elements of the
matrix G, whose diagonal elements range over 0 to « and nondiagonal elements
range over — o to ; § is a p component column vector. The interchange of
differentiation and integration in the formula (3.1) is easily justified. We now
proceed with the distribution theory.

We assume that all the integrals occurring in this paper are evaluated over ap-
propriate ranges of the variables of integration.

4. The distribution of the matrix of regression coefficients. We consider a
multivariate normal regression model, ¥ = BX + E, where Y is a p X N matrix
of observations, B is the p X ¢ matrix of the population regression coefficients,
the ¢ X N matrix X of fixed variates is of rank ¢( < N), and the usual pN com-
ponent error vector that is obtained from the elements of E has a pN variate
normal distribution with mean vector zero and covariance matrix ¥ ® . Here ¥
is p X p positive definite symmetric matrix. The maximum likelihood estimate
Bof Bis B = (XX')7'XY’'. Obviously the joint density of the matrices Y¥' =
G, and B is

06, B) = [ (2m) g

YY'=6,(XX')"1Xy'=8
(41)
exp {—% tr 3 [YY — 2BXY + BXX'B’]} ay.

The integral (4.1) is evaluated by using (é.2), and we find that
(42) ¢(G, B) = 272m) Y [E [ C(N — p — ¢ + 9)|XX|*
exp {—1 tr 37[@ — 2BXX'B’ + BXX'B}}|@ — BXX'B'}® P,
Further, setting
(4.3) G — BXX'B =%,
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we find that the densities of ﬁ} and B are independent. $ has Wishart density
with N — ¢ degrees of freedom, and the pg component vector B has a pg variate
normal density with mean vector B and covariance matrix ¥ ® (XX')™".
Obviously the joint distribution of the sample mean vector and the sample co-
variance matrix may be obtained by using the method of this section.
In case the rank of the matrix X is r( < ¢), then the model may be repara-
metrized as

® 0
(44) Y = BAANX +E = (8 B1) <0 0>H+E= BZ + E,

where

¥ 0 ® 0 A
(4.5) ANXX'A = ,  ANX = H = )
0 0 0 0 0

Here A is a ¢ X ¢ orthogonal matrix, H is a N X N erthogonal matrix, and &
is the r X r diagonal matrix of the nonzero roots of XX'. Z = (® 0)H is r X
N and of rank r, and 8 is p X r matrix of the estimable linear functions of the
components of B. Using the transformation (4.5) we observe that the normal
equations XY’ = XX'B’ reduce to the normal equations ZY' = ZZ'§’. It follows
that

0(6,8) = (2m) g [

YY'=@,XY'=XX'B’

-exp {—%— tr £YY — 2BXY' + BXX,BI]} dy
(4.6)
= (2 [

YY'=6,2v'=22'§"
-exp {—% tr 7YY — 2827 + ﬁZZIﬂ’]} dy.

The second integral on the right hand side of the expression (4.6) is evaluated by
using (2.2), and we find that £ = @ — 322" = @ — BXX'B’ has now a
Wishart distribution with N — r degrees of freedom, and this is true for any par-
ticular solution B of the normal equations XY’ = XX'B'. .

A careful observation will show that several distribution problems of multi-
variate analysis of variance and covariance theory involve manipulations of the
integrals of the type (4.6) and its generalizations.

For further applications of generalized Sverdrup’s lemma to distribution prob-
lems of regression theory, see, Kabe [3], [4].

5. Distribution of a random matrix used in classification theory. Following
Sitgreaves [11] we write the joint density of a p X p positive definite symmetric
matrix G, and a p X 2 matrix Y as

(5.1) ¢(@, Y) = Crexp {—%tr $7'G + tr kd'$7'Y}|G — YY),
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where
(5.2) Cl—l — T%p(p+l)2%p(N+2)|2 %(N+2)H11_7=1 F(%[N —p + 7/])
exp {3(8'37'8) (k'k)},

where £ is a column vector of two components. Using (3.1), the joint density of
the matrices @ and M = Y'G™'Y may be easily found to be

(5.3) g(G, M) = CiC, exp {-—% tr Z)_IG”G[%(N—pH)[I _ Ml%(N_p_l)
f exp {k’z(alx—le—la)%} M — zzll_(p_4)/2 dz’

where
(5:4) C: = Il C(p — 3 + ),
and z is a column vector of two components. Writing |[M — 2| = |M|

-[1 — 2'M "], and using (3.2) we first find the joint density of the variates G, M,
aed M "2 = u, and then integrate out this density with respect to u; we thus
find that

(5.5) g(G, M) = CiCarT(3[p — 2T — M7 P\ M % exp {—% tr 37'G}
. |Gl%(N—P+1) :°=0 (B,E_IGX_IB)r(kle)r/P(%p + ,r)22r7.!

Now we use the result (3.3) to integrate out the result (5.5) with respect to @,
and we have that

g(M)
(5.6) = DN + IDITGIN — p + 2DTGEIN — p + 1T — 1T
-exp {—%(5,2_15) (k,k)} |M|%(p—3)|l _ M[%(N—p—l)
o D(3IN + 2] 4 ) (8'27%)"(K'Mk)"/T (3p + )27},

a result which agrees with that of Sitgreaves ([11], p. 269, Equation 21). The
density (5.6) is called as the noncentral linear multivariate beta density. The
analogy of the result (5.6) with a similar result given by Kshirsagar [5] may be
noted.

Taking k to be a vector of one component N* and ¥ to be a p X 1 vector
N*j, we see that the matrix ¥'G'Y reduces to the quadratic form N§'G 'y, and
setting Ng'G g = (T*/(N — 1)/1 + T*/(N — 1)) we may obtain the non-
central distribution of Hotelling’s 7° by using the method of this section.
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