A CHARACTERISATION OF A CLASS OF FUNCTIONS OF FINITE MARKOV CHAINS

By S. W. Dharmadhikari

Indian Statistical Institute

- **0.** Summary. In a previous paper ([2], Theorem 3.1) this author has given some sufficient conditions for a stationary process to be a function of a finite Markov chain. Suppose $\mathfrak F$ denotes the class of functions which satisfy these conditions. In this paper we give a characterisation of $\mathfrak F$. Using this characterisation $\mathfrak F$ is shown to be wider than the class of regular functions of finite Markov chains.
- **1.** Preliminaries. Suppose $\{Y_n, n \geq 1\}$ is a stationary process with a finite state-space $J = \{0, 1, \dots, D-1\}$. We will use the notation of [1] and [2] and assume that $\sum_{\epsilon} n(\epsilon) < \infty$.

The following are the conditions of Theorem 3.1 of [2].

DEFINITON. We say that $\{Y_n\}$ satisfies the Conditions (c) if, for every ϵ , there exists a convex polyhedral cone \mathfrak{C}_{ϵ} such that

- $(c\ 1): \mathfrak{C}(\alpha_{\epsilon}) \subset \mathfrak{C}_{\epsilon} \subset [\mathfrak{C}(\pi_{\epsilon})]^+, for \ every \ \epsilon; and$
- (c 2): β_{ϵ} $A_{\epsilon\mu}$ belongs to C_{μ} for every ϵ , μ and for every β_{ϵ} in C_{ϵ} .

If $\{Y_n\}$ satisfies (c), let $\beta_{\epsilon j}$, $j=1,\dots,N(\epsilon)$, be the generators of \mathfrak{C}_{ϵ} . Let B_{ϵ} denote the $N(\epsilon) \times n(\epsilon)$ matrix whose jth row is $\beta_{\epsilon j}$. The Condition (c 1) and Lemma 1.1 of [2] show that B_{ϵ} has rank $n(\epsilon)$.

For future use we need the following lemma.

LEMMA 1. The vector $\pi_{\epsilon}(\phi)$ is in the interior of $\mathfrak{C}(\pi_{\epsilon})$.

PROOF. Let us recall ([1], p. 1025) that $s_{\epsilon 1}$ and $t_{\epsilon 1}$ can be taken to be ϕ . If $n(\epsilon) = 1$, the lemma thus asserts that the point 1 is in the interior of the nonnegative real line. So, let $n(\epsilon) \geq 2$. Observe that $\pi_{\epsilon}(\phi) = \sum^{(n)} \pi_{\epsilon}(\mu_1, \dots, \mu_n)$, where $\sum^{(n)}$ denotes summation over all possible sequences (μ_1, \dots, μ_n) of length n. Thus, for every t, the vector $\pi_{\epsilon}(\phi) - \pi_{\epsilon}(t)$ belongs to $\mathfrak{C}(\pi_{\epsilon})$.

Let $\xi_i = \pi_{\epsilon}(t_{\epsilon i})$ and $\eta_i = \pi_{\epsilon}(\phi) - \pi_{\epsilon}(t_{\epsilon i})$, $i = 2, \dots, n(\epsilon)$. Then the η_i 's belong to $\mathfrak{C}(\pi_{\epsilon})$; ξ_i and η_i are linearly independent; and $\xi_i + \eta_i = \pi_{\epsilon}(\phi)$. If \mathfrak{C} is the convex cone generated by the ξ 's and η 's, $\pi_{\epsilon}(\phi)$ is thus in the interior of \mathfrak{C} . But it is easy to see that \mathfrak{C} has dimension $n(\epsilon)$. Since $\mathfrak{C} \subset \mathfrak{C}(\pi_{\epsilon})$, the lemma is proved.

Suppose $\{X_n, n, 1\} \ge i$ is a stationary Markov chain with a finite state-space $I = \{(\epsilon, j) \mid j = 1, \dots, N(\epsilon); \epsilon \text{ in } J\}$, and suppose f is the function on I to J defined by $f[(\epsilon, j)] = \epsilon$. Let \mathbf{m} be the initial distribution and M the transition matrix of $\{X_n\}$. The function f can be used to partition \mathbf{m} into sub-vectors m_{ϵ} , $(\epsilon = 0, 1, \dots, D - 1)$ and to partition M into submatrices $M_{\epsilon\mu}$, $(\epsilon, \mu = 0, 1, \dots, D - 1)$ in the natural way. If s has length m and t has length n, we define

$$q_{\epsilon j}(s) = P[(f(X_1), \dots, f(X_m)) = s, X_{m+1} = (\epsilon, j)],$$

524

Received 26 May 1964; revised 9 September 1964.

and

$$r_{\epsilon j}(t) = P[(f(X_2), \cdots, f(X_{n+1})) = t \mid X_1 = (\epsilon, j)].$$

Let $q_{\epsilon}(s)$ be the row vector whose jth element is $q_{\epsilon j}(s)$ and let $r_{\epsilon}(t)$ be the column vector whose jth element is $r_{\epsilon j}(t)$. By convention $q_{\epsilon}(\phi) = m_{\epsilon}$ and $r_{\epsilon}(\phi) = e_{\epsilon}$, the column vector all of whose $N(\epsilon)$ elements are equal to unity. The Markov character of $\{X_n\}$ shows that

$$(1.1) q_{\mu}(s\epsilon) = q_{\epsilon}(s)M_{\epsilon\mu} \text{ and } r_{\epsilon}(\mu t) = M_{\epsilon\mu}r_{\mu}(t)$$

Let K_{ϵ} be the linear space generated by $\{q_{\epsilon}(s), \text{ all } s\}$ and let L_{ϵ} be the linear space generated by $\{r_{\epsilon}(t), \text{ all } t\}$. Suppose $k(\epsilon)$ and $l(\epsilon)$ respectively denote the ranks of K_{ϵ} and L_{ϵ} . Since $q_{\epsilon}(s)$ and $r_{\epsilon}(t)$ are $N(\epsilon)$ -dimensional vectors, we have, for every ϵ ,

(1.2)
$$k(\epsilon) \leq N(\epsilon) \text{ and } l(\epsilon) \leq N(\epsilon).$$

Suppose now that $\{Y_n\}$ is the function f of the Markov chain $\{X_n\}$ above. Then, for all ϵ , s and t,

$$p(s\epsilon t) = q_{\epsilon}(s)r_{\epsilon}(t).$$

From (1.3) and from the definitions of $n(\epsilon)$, $k(\epsilon)$ and $l(\epsilon)$ it follows that

(1.4)
$$n(\epsilon) \leq k(\epsilon) \text{ and } n(\epsilon) \leq l(\epsilon).$$

Combining (1.2) and (1.4), we get

$$(1.5) n(\epsilon) \le k(\epsilon) \le N(\epsilon) \text{ and } n(\epsilon) \le l(\epsilon) \le N(\epsilon).$$

2. The characterisation. This section continues the work begun in [2]. The following theorem will be established.

Theorem. The following three statements are equivalent:

- I. The stationary process $\{Y_n\}$ has $\sum_{\epsilon} n(\epsilon) < \infty$ and satisfies the Conditions (c)
- II. $\{Y_n\}$ can be expressed as a function of a stationary finite Markov chain in such a way that $k(\epsilon) = n(\epsilon)$, for all ϵ .
- III. $\{Y_n\}$ can be expressed as a function of a stationary finite Markov chain in such a way that $l(\epsilon) = n(\epsilon)$ for all ϵ .
- PROOF. (a) Suppose I holds. Then it was shown in [2] that $\{Y_n\}$ can be expressed as a function of a finite Markov chain in such a way that $r_{\epsilon j}(t) = (\beta_{\epsilon j}, \pi_{\epsilon}(t))$ for all ϵ, j and t. This means that $r_{\epsilon}(t) = B_{\epsilon}\pi_{\epsilon}'(t)$. Since B_{ϵ} has rank $n(\epsilon)$ it follows that $l(\epsilon) \leq n(\epsilon)$. But now (1.5) shows that $l(\epsilon) = n(\epsilon)$. Thus $I \Rightarrow III$.
- (b) Suppose III holds. Then, as shown by Gilbert [3], $\sum_{\epsilon} n(\epsilon) < \infty$. Let P_{ϵ} be the $n(\epsilon) \times n(\epsilon)$ matrix whose (i, j)th element is $p(s_{\epsilon i} \epsilon t_{\epsilon j})$. Let Q_{ϵ} be the $n(\epsilon) \times N(\epsilon)$ matrix whose *i*th row is $q_{\epsilon}(s_{\epsilon i})$. Finally, let R_{ϵ} be the $N(\epsilon) \times n(\epsilon)$ matrix whose *j*th column is $r_{\epsilon}(t_{\epsilon j})$. Then (1.3) shows that $P_{\epsilon} = Q_{\epsilon}R_{\epsilon}$. This means that both Q_{ϵ} and R_{ϵ} have rank $n(\epsilon)$.

Since $l(\epsilon) = n(\epsilon)$, the columns of R_{ϵ} must span L_{ϵ} . Therefore for each t,

there is a column vector $\alpha_{\epsilon}^{*}(t)$ such that

$$(2.1) r_{\epsilon}(t) = R_{\epsilon} \alpha_{\epsilon}^{*}(t).$$

Premultiplication by Q_{ϵ} yields

(2.2)
$$\pi_{\epsilon}'(t) = P_{\epsilon} \alpha_{\epsilon}^{*}(t).$$

Let $B_{\epsilon} = R_{\epsilon}P_{\epsilon}^{-1}$ and let \mathfrak{C}_{ϵ} be the convex polyhedral cone generated by the rows of B_{ϵ} . Then from (2.1) and (2.2), we get

$$B_{\epsilon}\pi_{\epsilon}'(t) = R_{\epsilon}P_{\epsilon}^{-1}P_{\epsilon}\alpha_{\epsilon}^{*}(t) = R_{\epsilon}\alpha_{\epsilon}^{*}(t) = r_{\epsilon}(t).$$

This shows that $\mathfrak{C}_{\epsilon} \subset [\mathfrak{C}(\pi_{\epsilon})]^+$.

Now $\alpha_{\epsilon}(s)\pi_{\epsilon}'(t) = p(s\epsilon t) = q_{\epsilon}(s)r_{\epsilon}(t)$. That is, $\alpha_{\epsilon}(s)P_{\epsilon} = q_{\epsilon}(s)R_{\epsilon}$. Thus $\alpha_{\epsilon}(s) = q_{\epsilon}(s)B_{\epsilon}$. This proves that $\mathfrak{C}(\alpha_{\epsilon}) \subset \mathfrak{C}_{\epsilon}$. Thus (c 1) holds.

Finally from (1.1) and from the relation (1.4) of [2], we get, for all t,

$$B_{\epsilon}A_{\epsilon\mu}\pi_{\mu}'(t) = B_{\epsilon}\pi_{\epsilon}'(\mu t) = r_{\epsilon}(\mu t) = M_{\epsilon\mu}r_{\mu}(t) = M_{\epsilon\mu}B_{\mu}\pi_{\mu}'(t).$$

Since $\mathfrak{C}(\pi_{\mu})$ has dimension $n(\mu)$ we see that $B_{\epsilon}A_{\epsilon\mu}=M_{\epsilon\mu}B_{\mu}$. Thus (c 2) holds. We have proved that III \Rightarrow I.

- (c) By taking the duals of all the cones involved, we see that $\{Y_n\}$ satisfies the Condition (c) if, and only if, for every ϵ , there is a convex polyhedral cone \mathfrak{D}_{ϵ} such that
 - $(c\ 1)': \mathfrak{C}(\pi_{\epsilon}) \subset \mathfrak{D}_{\epsilon} \subset [\mathfrak{C}(\alpha_{\epsilon})]^+$, for every ϵ ; and
 - $(c\ 2)': \gamma_{\mu}(A_{\epsilon\mu})'$ belongs to \mathfrak{D}_{ϵ} for every ϵ , μ and for every γ_{μ} in \mathfrak{D}_{μ} .
- (d) Suppose I holds. We will use the cones \mathfrak{D}_{ϵ} introduced above. Let \mathfrak{D}_{ϵ} be generated by the non-zero vectors $\gamma_{\epsilon j}$, $(j = 1, \dots, N(\epsilon))$ and let C_{ϵ} be the $N(\epsilon) \times n(\epsilon)$ matrix whose jth row is $\gamma_{\epsilon j}$. Condition (c 1) and Lemma 1.1 of [2] show that C_{ϵ} has rank $n(\epsilon)$.

Lemma 1 and (c 1)' imply that the vector $\pi_{\epsilon}(\phi)$ is in the interior of \mathfrak{D}_{ϵ} . Hence there are positive constants $\lambda_{\epsilon j}$, $(j = 1, \dots, N(\epsilon))$, such that $\pi_{\epsilon}(\phi) = \sum_{j} \lambda_{\epsilon j} \gamma_{\epsilon j}$. Since the γ 's are unique only up to positive multiplicative constants we can replace them by $\lambda \gamma$'s and have

(2.3)
$$\pi_{\epsilon}(\phi) = \sum_{j=1}^{N(\epsilon)} \gamma_{\epsilon j}.$$

Define $q_{\epsilon j}(s) = (\gamma_{\epsilon j}, \alpha_{\epsilon}(s))$, for all s. Denote $q_{\epsilon j}(\phi)$ by $m_{\epsilon j}$. Following the same lines as the proof of Lemma (1.2) of [2] we can show that each $m_{\epsilon j}$ is positive. Taking inner product of (2.3) with $\alpha_{\epsilon}(s)$, we get

$$(2.4) p(s\epsilon) = \sum_{j=1}^{N(\epsilon)} q_{\epsilon j}(s).$$

The substitution $s = \phi$ in (2.4) shows that $p(\epsilon) = \sum_j m_{\epsilon j}$. Thus the vector **m** of $N = \sum_{\epsilon} N(\epsilon)$ elements formed from the *m*'s defines a probability distribution.

Condition (c 2)' shows that $\gamma_{\mu k}(A_{\epsilon \mu})'$ belongs to \mathfrak{D}_{ϵ} . Therefore there are non-negative constants $m_{\epsilon j,\mu k}$ such that

$$\gamma_{\mu k}(A_{\epsilon \mu})' = \sum_{j=1}^{N(\epsilon)} \gamma_{\epsilon j} m_{\epsilon j, \mu k}$$
.

Post-multiplying by $\alpha_{\epsilon}'(s)$ and using Lemma (1.3) of [2] we get

$$(2.5) q_{\mu k}(s\epsilon) = \sum_{j=1}^{N(\epsilon)} q_{\epsilon j}(s) m_{\epsilon j, \mu k}.$$

Putting $s = \phi$ and summing over ϵ , we have

$$(2.6) m_{\mu k} = \sum_{\epsilon=0}^{D-1} \sum_{j=1}^{N(\epsilon)} m_{\epsilon j} m_{\epsilon j, \mu k}.$$

Define \hat{M} to be the $N \times N$ matrix for which the (k, j)th element in the (μ, ϵ) th submatrix $\hat{M}_{\mu\epsilon}$ is $\hat{m}_{\mu k, \epsilon j} = m_{\epsilon j} m_{\epsilon j, \mu k} / m_{\mu k}$. Then (2.6) shows that \hat{M} is a transition matrix. Suppose F denotes the $N \times N$ diagonal matrix for which the (j, j)th element in $F_{\epsilon\epsilon}$ is $m_{\epsilon j}$. Then, writing $m_{\epsilon j, \mu k}$ in terms of $\hat{m}_{\mu k, \epsilon j}$, we get from (2.5)

$$(2.7) q_{\mu}'(s\epsilon) = F_{\mu\mu} \hat{M}_{\mu\epsilon} F_{\epsilon\epsilon}^{-1} q_{\epsilon}'(s),$$

where $q_{\epsilon}(s)$ denotes the row vector whose jth element is $q_{\epsilon j}(s)$. Since $F_{\epsilon \epsilon}^{-1} q_{\epsilon}'(\phi) = e_{\epsilon} = (1, \dots, 1)'$, it follows from (2.7) that

$$(2.8) q_{\mu}'(\epsilon_n \cdots \epsilon_1) = F_{\mu\mu} \hat{M}_{\mu\epsilon_1} \cdots \hat{M}_{\epsilon_{n-1}\epsilon_n} e_{\epsilon_n}.$$

It is now convenient to assume that $\{Y_n\}$ is defined for $-\infty < n < \infty$ rather than just for $n \ge 1$. This involves no loss of generality because we are interested only in distribution problems. Let $\hat{Y}_n = Y_{-n}$. From (2.4) and (2.8) it is clear that $\{\hat{Y}_n\}$ is a function of a Markov chain $\{Z_n\}$ with transition matrix \hat{M} and with \mathbf{m} as the distribution of Z_0 . This Markov chain need not be stationary. Define \mathbf{m}^* by

$$\mathbf{m}^* = \lim_{N \to \infty} (1/N) \sum_{k=1}^N \mathbf{m} \widehat{M}^k.$$

Then \mathbf{m}^* is a stationary initial distribution for \hat{M} and the stationarity of $\{Y_n\}$ shows that $\{\hat{Y}_n\}$ is a function of a stationary Markov chain $\{\hat{X}_n\}$ with transition matrix \hat{M} and with \mathbf{m}^* as the common distribution of each \hat{X}_n . If $X_n = \hat{X}_{-n}$, then it follows that $\{Y_n\}$ is a function of the finite stationary Markov chain $\{X_n\}$. We will use asterisks to denote quantities connected with this last functional relationship. Using (2.8), we get

(2.9)
$$q_{\mu}^{*'}(\epsilon_{n}\cdots\epsilon_{1}) = F_{\mu\mu}^{*}\widehat{M}_{\mu\epsilon_{1}}\cdots\widehat{M}_{\epsilon_{n-1}\epsilon_{n}}e_{\epsilon_{n}}$$
$$= F_{\mu\mu}^{*}F_{\mu\mu}^{-1}q_{\mu}^{\prime}(\epsilon_{n}\cdots\epsilon_{1}).$$

But the definitions of $q_{\epsilon j}(s)$ and C_{ϵ} show that $q_{\mu}'(s) = C_{\mu}\alpha_{\mu}'(s)$. Further C_{μ} has rank $n(\mu)$. Therefore the linear span of $\{q_{\mu}(s), \text{ all } s\}$ has rank $n(\mu)$ at the most. Now (2.9) shows that $k^*(\mu) \leq n(\mu)$. From (1.5) we get $k^*(\mu) = n(\mu)$. This proves that $I \Rightarrow II$.

(e) Suppose II holds. We will use the matrices P_{ϵ} , Q_{ϵ} and R_{ϵ} introduced in part (b) of this proof. Let \mathfrak{D}_{ϵ} be the convex polyhedral cone generated by the rows of Q_{ϵ}' . The relation $\pi_{\epsilon}'(t) = Q_{\epsilon}r_{\epsilon}(t)$ or, equivalently, $\pi_{\epsilon}(t) = r_{\epsilon}'(t)Q_{\epsilon}'$ shows that $\mathfrak{C}(\pi_{\epsilon}) \subset \mathfrak{D}_{\epsilon}$.

Since Q_{ϵ} has rank $n(\epsilon)$ and since $k(\epsilon) = n(\epsilon)$, the rows of Q_{ϵ} span K_{ϵ} . Therefore, for each s, there is a unique vector $\alpha_{\epsilon}(s)$ of $n(\epsilon)$ elements such that

$$(2.10) q_{\epsilon}(s) = \alpha_{\epsilon}(s)Q_{\epsilon}.$$

This vector $\alpha_{\epsilon}(s)$ must be the same as the vector with the same notation used before, because post-multiplying (2.10) by $r_{\epsilon}(t)$, we get, for all t, $p(s\epsilon t) = \alpha_{\epsilon}(s)\pi_{\epsilon}'(t)$. Since $q_{\epsilon}(s) \geq 0$, (2.10) shows that $\mathfrak{D}_{\epsilon} \subset [\mathfrak{C}(\alpha_{\epsilon})]^{+}$. Thus (c 1)' is satisfied.

Now from (1.1) and (2.10)

$$q_{\epsilon}(s_{\epsilon i})M_{\epsilon \mu} = q_{\mu}(s_{\epsilon i}\epsilon) = \alpha_{\mu}(s_{\epsilon i}\epsilon)Q_{\mu}$$
.

Therefore $Q_{\epsilon}M_{\epsilon\mu} = A_{\epsilon\mu}Q_{\mu}$ or $Q'_{\mu}(A_{\epsilon\mu})' = (M_{\epsilon\mu}'Q'_{\epsilon})'$. Thus (c 2)' also holds. This shows that II \Rightarrow I and completes the proof of the theorem.

A stationary process $\{Y_n\}$ which can be expressed as a function of a finite Markov chain in such a way that $n(\epsilon) = N(\epsilon)$ for all ϵ was termed a regular function of a Markov chain by Gilbert [3]. It was shown in [2] that such regular functions are in \mathfrak{F} (i.e. have $\sum_{\epsilon} n(\epsilon) < \infty$ and satisfy the Conditions (c)). This also follows from the preceding theorem, because, in view of (1.5), the condition $n(\epsilon) = N(\epsilon)$ implies that $k(\epsilon) = l(\epsilon) = n(\epsilon)$. A question arises whether \mathfrak{F} includes some non-regular functions also. We will show that the answer is in the affirmative. We need a simple lemma.

Lemma 2. If $\{Y_n\}$ can be expressed as a function of a finite Markov chain in such a way that $k(\epsilon) = l(\epsilon) = N(\epsilon)$, then $n(\epsilon) = N(\epsilon)$.

PROOF. If $k(\epsilon) = l(\epsilon) = N(\epsilon)$, then we can find s_i , t_i , $(i = 1, \dots, N(\epsilon))$, such that the $q_{\epsilon}(s_i)$'s and the $r_{\epsilon}(t_j)$'s are linearly independent. It follows from (1.3) that the $N(\epsilon) \times N(\epsilon)$ matrix whose (i, j)th element is $p(s_i \epsilon t_j)$ is non-singular. Hence $n(\epsilon) = N(\epsilon)$. This proves the lemma.

We have constructed before ([1], Section 3 and [2], Section 4) a 2-state stationary process $\{Y_n\}$ such that (a) n(0) = 3 and n(1) = 1; (b) $\{Y_n\}$ is not a regular function of a Markov chain; and (c) $\{Y_n\}$ is a function of a Markov chain $\{X_n\}$ with 5 states in such a way that N(0) = 4 and N(1) = 1. For this functional relationship suppose k(0) = l(0) = 4. Then Lemma 2 shows that n(0) = 4, which is false. Thus either k(0) = 3 or l(0) = 3. In any event $\{Y_n\}$ belongs to \mathfrak{F} . This proves that \mathfrak{F} is wider than the class of regular functions.

The results of this paper pose the following question. Does F exhaust all functions of finite Markov chains? The answer is not known.

REFERENCES

- Dharmadhikari, S. W. (1963). Functions of finite Markov chains. Ann. Math. Statist. 34 1022-1032.
- [2] Dharmadhikari, S. W. (1963). Sufficient conditions for a stationary process to be a function of a finite Markov chain. Ann. Math. Statist. 34 1033-1041.
- [3] GILBERT, EDGAR J. (1959). On the identifiability problem for functions of finite Markov chains. Ann. Math. Statist. 30 688-697.