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0. Summary. In a previous paper ([2], Theorem 3.1) this author has given
some sufficient conditions for a stationary process to be a function of a finite
Markov chain. Suppose F denotes the class of functions which satisfy these con-
ditions. In this paper we give a characterisation of &. Using this characterisation
F is shown to be wider than the class of regular functions of finite Markov chains.

1. Preliminaries. Suppose {Y., n = 1} is a stationary process with a finite
state-space J = {0, 1, -+, D — 1}. We will use the notation of [1] and [2] and
assume that D en(e) < .

The following are the conditions of Theorem 3.1 of [2].

DrriniToN. We say that {Y,} satisfies the Conditions (c¢) if, for every e, there
exists a convex polyhedral cone C. such that

(e1):@(a) C €. C [C(mwe)]T, for every e; and

(e 2): Be A belongs to C, for every e, u and for every B in Ce .

If { Y.} satisfies (¢), let Be;,7 = 1, -+, N(e), be the generators of C. . Let B.
denote the N(e) X n(e) matrix whose jth row is 8.; . The Condition (¢ 1) and
Lemma 1.1 of [2] show that B, has rank n(e).

For future use we need the following lemma.

LEMMA 1. The vector we(¢) s in the interior of C(we).

Proor. Let us recall ([1], p. 1025) that s, and {4 can be taken to be ¢. If
n(e) = 1, the lemma thus asserts that the point 1 is in the interior of the non-
negative real line. So, let n(¢) = 2. Observe that m(¢) = 2™ we(pz, =+ , tn),
where D™ denotes summation over all possible sequences (u1, -+, un) of
length n. Thus, for every ¢, the vector 7.(¢) — m(t) belngs to €(.).

Let & = m(te;) and n; = we(¢p) — we(tei), 2 = 2, -+, n(e). Then the #’s
belong to €(w.); & and =, are linearly independent; and &; + 7; = 7.(¢). If @ is
the convex cone generated by the £’s and 7’s, m(¢) is thus in the interior of @.
But it is easy to see that @ has dimension n(e). Since @ C €(w), the lemma is
proved.

Suppose {X, , n 1} = is a stationary Markov chain with a finite state-space
I={(¢7)|j=1,--+,N(e); ein J}, and suppose f is the function on I to J
defined by f[(¢, 7)] = e. Let m be the initial distribution and M the transition
matrix of {X,}. The function f can be used to partition m into sub-vectors m.,
(e =0,1,---, D — 1) and to partition M into submatrices M., (¢ p =
0,1,---,D — 1) in the natural way. If s has length m and ¢ has length n, we
define

er(s) = P[(f<Xl)7 ] f(Xm)) =8 Xnt1 = (E,j)],
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and

Tei(t) = P[(f(X2)’ ttt f(Xn‘H)) = thl = (e’])]

Let ¢.(s) be the row vector whose jth element is g.;(s) and let r.(¢) be the column
vector whose jth element is 7.;(¢). By convention ¢.(¢) = m. and r.(¢p) = e,
the column vector all of whose N (e) elements are equal to unity. The Markov
character of {X,} shows that

(1.1) qu(se) = qe(8)Mq and re(pt) = Meru(t)

Let K. be the linear space generated by {q.(s), all s} and let L. be the linear
space generated by {r.(¢), all #}. Suppose k(e) and I(e) respectively denote the
ranks of K. and L. . Since ¢.(s) and r.(¢) are N (e)-dimensional vectors, we have,
for every e,

(1.2) k(e) = N(e) and I(e) = N(e).

Suppose now that {Y,} is the function f of the Markov chain {X,} above.
Then, for all ¢, s and ¢,

(1.3) p(set) = qe(s)re(?).

From (1.3) and from the definitions of n(e), k(e) and I(¢) it follows that
(1.4) n(e) < k(e) and n(e) = l(e).

Combining (1.2) and (1.4), we get

(1.5) n(e) = k(e) = N(e) and n(e) = I(e) = N(e).

2. The characterisation. This section continues the work begun in [2]. The
following theorem will be established.

TueoreM. The following three statements are equivalent:

1. The stationary process {Y,} has Y .n(e) < « and satisfies the Conditions (c)

I1. {Y.} can be expressed as a function of a stationary finite Markov chain in
such a way that k(e) = n(e), for all .

III. {Y.} can be expressed as a function of a stationary finite Markov chain in
such a way that I(e) = n(e) for all .

Proor. (a) Suppose I holds. Then it was shown in [2] that {¥,} can be ex-
pressed as a function of a finite Markov chain in such a way that r.;(t) =
(Be;, me(t)) for all ¢, j and ¢. This means that 7.(t) = Bere (t). Since B, has rank
n(e) it follows that I(e) < m(e). But now (1.5) shows that I(e¢) = n(e). Thus
I = III

(b) Suppose III holds. Then, as shown by Gilbert [3], > .n(e) < . Let
P. be the n(e) X n(e) matrix whose (7, 7)th element is p(seete;). Let Q. be the
n(e) X N(e) matrix whose ¢th row is ¢e(se;). Finally, let R. be the N(e) X n(e)
matrix whose jth column is r.(f;). Then (1.3) shows that P, = Q.R.. This
means that both Q. and R, have rank n(¢).

Since I(e) = n(e), the columns of R, must span L.. Therefore for each ¢,
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there is a column vector o (¢) such that

(2.1) re(t) = Reac*(t).
Premultiplication by Q. yields
(2.2) 7 (1) = Pea™(2).

Let B, = R.P.”" and let €, be the convex polyhedral cone generated by the rows
of B, . Then from (2.1) and (2.2), we get

Be"re,(t) = RePe—lPeae*(t) = Rea(*(t) = Te(t).

This shows that €. < [€(w.)]*.

Now ac(s)me (t) = p(set) = ge(s)re(¢). That is, ac(s)Pe = ge(s)R.. Thus
a.(s) = qe(s)Be. This proves that €(a.) C @c. Thus (¢ 1) holds.

Finally from (1.1) and from the relation (1.4) of [2]; we get, for all ¢,

BeAeu""ﬂ,(t) = Be""e,(#t) = re(ut) = Mor,(t) = MeuBn""u,(t)~

Since €(m,) has dimension n(u) we see that B.A, = MeB, . Thus (¢ 2) holds.
We have proved that ITI = I.

(¢) By taking the duals of all the cones involved, we see that { Y,} satisfies the
Condition (¢) if, and only if, for every ¢, there is a convex polyhedral cone D,
such that

(c1):e(r) C D C [@(ac)], for every ¢; and

(¢2)": v.(4e)" belongs to D, for every e, u and for every v, in D, .

(d) Suppose I holds. We will use the cones D, introduced above. Let D, be
generated by the non-zero vectors ve;j, (j = 1, -+, N(e)) and let C. be the
N(e) X n(e) matrix whose jth row is v.; . Condition (¢ 1)’ and Lemma 1.1 of
[2] show that C. has rank n(e).

Lemma 1 and (¢ 1) imply that the vector m.(¢) is in the interior of D, .
Hence there are positive constants Ae;, (7 = 1, -+, N(e€)), such that =.(¢) =
> i Aejyve; - Since the s are unique only up to positive multiplicative constants
we can replace them by My’s and have

(2.3) 7e($) = 2230 ves -

Define ¢.;(s) = (ve;, ae(s)), for all s. Denote ¢.;(¢) by m.; . Following the same
lines as the proof of Lemma (1.2) of [2] we can show that each m.; is positive.
Taking inner product of (2.3) with a.(s), we get

(24) p(se) = D557 gei(s).

The substitution s = ¢ in (2.4) shows that p(e) = Y, m.; . Thus the vector m
of N = D_.N(e) elements formed from the m’s defines a probability distribu-
tion.

Condition (¢ 2)’ shows that v, (A)’ belongs to D. . Therefore there are non-
negative constants m.; . such that

’ N (€)
'Yuk(Aelt) = 7=1" YeiMej uk «



FUNCTIONS OF FINITE MARKOV CHAINS 527

Post-multiplying by . (s) and using Lemma (1.3) of [2] we get
(2.5) Qur(s€) = D557 qei(8)Mespu -

Putting s = ¢ and summing over ¢, we have

(2.6) Mue = D o=t D3t MeMej s -

Define M to be the N X N matrix for which the (k, j)th element in the (u, ¢)th
submatrix M. is % e; = MefMe; /M . Then (2.6) shows that M is a transi-
tion matrix. Suppose F' denotes the N X N diagonal matrix for which the (7, 7)th
element in F.. is m.; . Then, writing m.; . in terms of 7 ; , we get from (2.5)

(27) Qn,(se) = FﬂnMueFé—flqe,(s)’

where g.(s) denotes the row vector whose jth element is g.;(s). Since Feeg. (¢) =
e = (1,--+, 1), it follows from (2.7) that

(2-8) QMI(En ce 51) = FlmMﬂq e M‘n—lenefn .

It is now convenient to assume that {Y,} is defined for — o < n < o rather
than just for » = 1. This involves no loss of generality because we are interested
only in distribution problems. Let ¥, = Y—,. From (2.4) and (2.8) it is clear
that {¥,} is a function of a Markov chain {Z,} with transition matrix /7 and
with m as the distribution of Z,. This Markov chain need not be stationary.
Define m* by

m* = limysw(1/N) Dty mM*.

Then m* is a stationary initial distribution for M and the stationarity of {Y.,}
shows that { ¥,} is a function of a stationary Markov chain {X,} with transition
matrix M and with m* as the common distribution of each X, . If X, = X_,,
then it follows that {Y,} is a function of the finite stationary Markov chain
{X,}. We will use asterisks to denote quantities connected with this last func-
tional relationship. Using (2.8), we get

PN

(2'9) Qﬂ*,(e" ctt 61) = FZ‘M#H e Mﬁn—lfneen
= F:MF;;(I#,(% cecoE).

But the definitions of ¢.;(s) and C. show that ¢,'(s) = C,a,’(s). Further C, has
rank n(u). Therefore the linear span of {g.(s), all s} has rank n(u) at the most.
Now (2.9) shows that k*(u) < n(w). From (1.5) we get k*(u) = n(u). This
proves that I = II.

(e) Suppose II holds. We will use the matrices P., Q. and R. introduced in
part (b) of this proof. Let . be the convex polyhedral cone generated by the
rows of Q.. The relation . (t) = Q.r.(t) or, equivalently, m.(¢) = 7.’ (¢)Q. shows
that €¢(w.) C D..

Since Q. has rank n(e) and since k(e) = n(e), the rows of Q. span K, . There-
fore, for each s, there is a unique vector a.(s) of n(e¢) elements such that

(2.10) 2e(8) = ae(s)Q .
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This vector a.(s) must be the same as the vector with the same notation used
before, because post-multiplying (2.10) by r.(t), we get, for all ¢, p(set) =
ae(s)vre (t). Since ¢.(s) = 0, (2.10) shows that . < [€(a.)]*. Thus (¢ 1) is
satisfied.

Now from (1.1) and (2.10)

Qe(sei)Meu = Qﬂ(seie) = aﬂ(séie)Qﬂ .

Therefore Q. M., = AqQ,or Q' (A,) = (M,)'Q.. Thus (¢ 2) also holds. This
shows that II = I and completes the proof of the theorem.

A stationary process {Y,} which can be expressed as a function of a finite
Markov chain in such a way that n(e) = N(e) for all ¢ was termed a regular
function of a Markov chain by Gilbert [3]. It was shown in [2] that such regular
functions are in § (i.e. have ) ..n(e) < » and satisfy the Conditions (e)).
This also follows from the preceding theorem, because, in view of (1.5), the
condition n(e) = N(e) implies that k(e) = I(e) = n(e). A question arises
whether § includes some non-regular functions also. We will show that the answer
is in the affirmative. We need a simple lemma.

Lemma 2. If {Y,} can be expressed as a function of a finite Markov chain in
such o woy that k(e) = l(e) = N(e), then n(e) = N(e).

Proor. If k(e) = I(e) = N(e), then we can find s;, t;, (4= 1,---, N(e)),
such that the ¢.(s;)’s and the 7.(¢;)’s are linearly independent. It follows from
(1.3) that the N(e) X N (e) matrix whose (7, j)th element is p(s:et;) is non-sing-
ular. Hence n(e¢) = N(e). This proves the lemma.

We have constructed before ([1], Section 3 and [2], Section 4) a 2-state sta-
tionary process {¥,} such that (a) n(0) = 3 and n(1) = 1; (b) {¥,} is not a
regular function of a Markov chain; and (¢) {¥,} is a function of a Markov
chain {X,} with 5 states in such a way that N(0) = 4 and N(1) = 1. For this
functional relationship suppose k(0) = 1(0) = 4. Then Lemma 2 shows that
n(0) = 4, which is false. Thus either £(0) = 3 or I(0) = 3. In any event {Y,}
belongs to &. This proves that § is wider than the class of regular functions.

The results of this paper pose the following question. Does § exhaust all
functions of finite Markov chains? The answer is not known.
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