ADDITIVE FUNCTIONALS AND EXCESSIVE FUNCTIONS'
By R. K. GETOOR

Stanford Univerversity and University of Washington

0. Introduction and summary. During the past five or six years there has been
much work done on the problem of representing excessive functions as the poten-
tials of additive functionals. This is a natural generalization to Markov processes
of the classical theorem of Riesz dealing with the representation of non-negative
superharmonic functions as the potentials of measures. These results (due mainly
to Meyer [9], Sur [12], and Volkonski [13]) are now in a fairly definitive state,
and the purpose of this paper is to give a cohesive account of them. In addition
to their intrinsic importance these representation theorems have been very useful
in several recent applications, for example, in the theory of time changes [2] and
the theory of local times [4].

Although the general theory of Markov processes is extremely rich, it is
necessary to set up a rather large amount of notation and machinery before
coming to grips with the problems of interest. Consequently Section 1 contains
a compact summary of the definitions and basic theorems of what is now called
the theory of Hunt processes, that is, Markov processes satisfying Hypothesis
(A) of Hunt’s fundamental memoir [8]. The author feels that such a summary
is worthwhile in itself, since it can serve as a source of definitions and notations
for many current research papers. The reader familiar with this material should
begin with Section 2 and refer back to Section 1 only as needed. The proofs of
most of the results quoted in Section 1 can be found in [1], [6], [11], or, of course,
[8].

Beginning with Section 2 the exposition becomes more leisurely. We have tried
not only to state definitions and theorems, but also to give some insight into
them and indicate some of the more important (in our opinion) open problems.
The proofs of all results quoted in Sections 2-5 (with the exception of 2.6.1(ii))
can be found in [7], as well as in the original papers cited in connection with each
theorem.

1. Preliminaries on Markov processes.

1.1. The state space. Let E be a locally compact separable metric space with
metric, d, and let A be a point adjoined to £ as the point at infinity if £ is not
compact, or as an isolated point if F is compact. We write £x» = E u {A}, and
we adopt the convention that any numerical (A numerical function is an ex-
tended real valued function, that is, a function taking values in the closed in-
terval [— «, «].) function f on F is extended to E4 by f(A) = 0 unless explicitly
stated otherwise. Let C denote the space of bounded (real valued) continuous
functions on K, C, the continuous functions on F vanishing at infinity, and Cg
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the continuous functions on £ with compact support. If L is any space of nu-
merical functions on E, then L™ denotes the non-negative elements in L. If f is
any numerical function on E we let ||f|| = sup |f(z)|. In particular C and C,
are Banach spaces under this norm.

Let ® and ®a denote the Borel sets of £ and Ej, respectively. If u is a finite
(non-negative) measure on (E, @) let ®&* denote the completion of & with re-
spect to u. The g-algebra, @, of universally measurable subsets of E is defined by
@ = n®" where the intersection is over all finite measures u on (E, ). A nu-
merical function f is universally measurable (i.e. measurable with respect to @)
if and only if for each u there exists a Borel measurable function that agrees u
almost everywhere with f. The ¢-algebra @a is defined similarly relative to
(EBa, ®a). If (M, 9) is any measurable space B(M, 9M) denotes the bounded
real valued 91 measurable functions on M.

1.2. Definition of a (stationary) Markov process with state space E. Consider
the following objects:

(1) A set @ with a distinguished point wa .

(2) A o-algebra 9N of subsets of Q.

(3) Foreach w e Qamapt— X,(w) from [0, «] to Es such that X,(w) = A,
X.(wa) = Aforallt = 0, and if X,(w) = A then X,(w) = Aforalls = ¢.

(4) For each t¢£[0, ] a map w — 6;(w) from @ into @ such that f.(w) = wa
for all w.

(5) For each z in Ea a probability measure P° on (2, 91).

The collection X = {Q, 9, P*, X;, 0} is called a (stationary) Markov process
with state space E provided the following conditions are satisfied:

(M;) Let ° be the c-algebra of subsets of @ generated by {X,e B} where
t&[0, »] and B ¢ ® (One obtains the same c¢-algebra §° if B is allowed to vary
over ®s.) We assume that < 9 and z — P*(A) is ®a measurable for each
Ain &°.

(M) Xin(w) = Xif8u(w)] for ¢, h e [0, ].

(M;) P[Xo = z] = 1 foreach zin Ea .

(M,) For each ¢ € [0, «] let & be the g-algebra of subsets of @ generated by
{X;eB},s < tand B¢ ®, then for each ¢, s [0, ],z e Ex,and Be ®

P[Xu,eB| %" = P*?[X,¢ B]

P® almost surely. Note that §.,) = §°.

The function P,(z, B) = P*[X,& B] defined for t = 0, x ¢ E, and Be ® is
called the transition function of X. Two Markov processes with the same state
space E are said to be equivalent provided that they have the same transition
function.

It follows easily from (M) that the shift operators, 6; , are measurable in the
sense that 6,7'5° < §°, and more precisely §,”'F,’ C F¢.. . The functions t — X,(w)
are called the trajectories or the paths of X. Sometimes it will be convenient to
write X (¢, w) in place of X;(w). The function {(w) = inf {¢: X (w) = A} is called
the lifetime of the process. If F is an 9 measurable numerical function and A € 91,
E*{F; A} will denote [4F(w)P"(dw) whenever this integral exists.
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1.3. The measures P*. For each finite measure u on (Ea, Ba) we may define a
measure P* on (2, 5°) by P*(A) = [ P*(A)u(dz). We use E* to denote integrals
with respect to P*. If u = ¢, (unit mass at z), then P* reduces to P°. We now
define  to be the intersection over all u of the P*-completions of §°. Each of the
measures P* extends uniquely to §. If G is any ¢-algebra contained in ¥ we define
the o-algebra G as follows: A £ § if for each u there exists A, in G such that
AN A, and A N\ A are in § and P*(AN\_A,) = P*(A,\ A) = 0. We next
define the definitive o-algebras &, of X by §, = & for each ¢t = 0. One also
defines F; = s>: Fs for each ¢ = 0. It follows that x — E*(F) is universally
measurable whenever F is in B(Q, §). Moreover 6§, & and the Markov
property (M,) extends as follows: Let F be in B(Q, ), then for each ¢ = 0, g,
and A £, one has

E*{F o0, ; A} = E*{E*°(F); A}.

1.4. Stopping times. A mapping T: Q — [0, «] is called a stopping time (relative
to {F:}) provided {T < ¢} € &, for each ¢ = 0. The s-algebra Fr of a stoppng
time consists of all A ¢F such that An{T < t} €5, for all £ = 0. Note that
§r = Fr. This notation is not yet consistent since if 7 = ¢ then F, = Fyy,
however we will shortly impose conditions which imply that F,, = F,. The
shift operator 8, associated with a stopping time is defined by 6 (w) = 01 (w).

1.5. Hunt processes. Let X = (@, o, P°, X,, 6,) be a Markov process with
state space E. We assume:

(M;) The path functions ¢ — X,(w) are right continuous and haveleft-hand
limits on [0, « ) almost surely. Here and in the sequel almost surely means almost
surely with respect to each P°.

Condition (Ms) implies that 6, 'F < & and that w — Xpw(w) is F — Qa
measurable for each stopping time 7'. It also implies that ¢ is a stopping time. A
Markov process X is called a Hunt process if in addition to (M;) through (Ms)
it satisfies:

(Ms) Strong Markov property. For each F ¢ B(Q, ) and stopping time 7' one
has

E*{F o0, ; A} = EY{EX"(F); A}

for all A £ F, and u.

(My) Quasi-left continuity. If {T,} is an increasing sequence of stopping times
with limit 7', then X(T,) — X (T) almost surely on {T < ¢}.

For a Hunt process the s-algebras &, are right continuous, that is, F; = F, .
Moreover one has the following characterization of the o-algebra & r of a stopping
time [5]. Let Gr be the c-algebra generated by sets of the form {X({ A T) & B}
wheret = 0and B e ®. Of course { A s = min (¢,s). Then §r = Gy .

1.6. Hitting times. We will assume throughout the rest of the paper that X
is a Hunt process. If A C Ea, then T,4(w) = inf {t > 0: X.(w) € A} is called
the hitting time (or entry time) of A. It is understood that if the set in braces is
empty, then T4(w) = . We next state the fundamental result that 7', is a
stopping time whenever A is an analytic subset of E4 . If A isanalytic P°(T4 = 0)
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is either 1 or 0. In the first case z is said to be regular for 4, in the second case
irregular for A. If A" denotes the regular points of 4, then A" is @1 measurable.
Note that due to the right continuity of the paths A" contains the interior of A
and is contained in the closure of 4.

A set B C FE, is said to be nearly Borel (analytic) relative to X provided that
for each p there exist Borel (analytic) sets B; and B, such that By € B C B,
and P[X, e B, \ B for some ¢t = 0] = 0. The collection of nearly Borel sets
forms a o-algebra which we will denote by ®". If A is nearly analytic, then 7',
is a stopping time, and one can show that A" is nearly Borel measurable. If A
is nearly analytic, then for each u there exists an increasing sequence {K,} of
compact subsets of A such that Tk, | T, almost surely P*. Moreover if
u(AN A7) = 0, then there exists a decreasing sequence {@,} of open sets con-
taining A such that T'¢, T T4 almost surely P* on {T4 < }.

1.7. Existence of Hunt processes. A transition function P,(z, B) on E is a
non-negative function defined for ¢t = 0, z ¢ E, and B £ & such that:

(i) # — P(z, B) is ® measurable for each ¢t and B.

(ii) B — P(z, B) is a (non-negative) measure on (E, ®) for each ¢ and z
with P,(z, F) < 1.

(iii) The following relation holds identically

Pt+8(x} B) = fPt(x7 dy)PS(y} B)

In most applications of the present theory the basic data from which one starts
is a transition function. Thus it is of fundamental importance to give conditions
under which a Hunt process corresponds to a given transition function. The
following is the basic result in this direction. Let P;(z, B) be a transition function
on E and let P,f(z) = [ Pz, dy)f(y) for fe B(E, ®). If P,C, C C, for each
¢t = 0and |[P.,f — f|| — 0®as ¢ — 0 for each f & C,, then there exists a Hunt process
X with state space £ whose transition function is the given P,(z, B). In actual
fact the process constructed will satisfy a stronger condition than (M;); namely
the convergence asserted in (M;) will take place almost surely on {7 < oo}
and not merely on {7 < ¢}. In some of our earlier work a Hunt process was
assumed to satisfy this stronger condition, but (M) suffices for the results quoted
in this paper.

1.8. The fine topology. If A is an arbitrary subset of E, , then a point z is called
irregular for A provided that there exists a Borel set B D A such that z is irregu-
lar for B, i.e., P°(T’s > 0) = 1. A set A is finely open if each z in 4 is irregular
for A° = Ea ™\ A. Roughly speaking a set A is finely open if a trajectory starting
from a point in A remains in A for an initial interval of time with probability
one. The collection of all finely open sets is a topology for Ea and is called the
fine topology. Note that any open set is finely open. One can show that the fine
topology is completely regular and that if A ¢ ®&", then 4 u A" is the fine closure
of A.

2If P,Co C Coforall £ = 0, then it can be shown that P,f(z) — f(z) as ¢t — 0 for each
z in B and f in C, implies that |P,f — f]| — 0 as £ — 0 for each f in C,.
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1.9. Transition and potential operators. We have already introduced the nota-
tion

Pif(z) = [Puz, dy)f(y) = Ef(X,).
More generally for any A > 0 we define

P/f(z) = ePf(x) = E*{e™f(X0)}.

For any A = 0 the family {P*;¢ = 0} isa semi-group of non-negative contraction
operators on B(E, ®) or B(E, @) with P;" being the identity operator. If T
is a stopping time we define

Prf(z) = E"{e™f(X1)} = B{e " "f(X1); T < ¢}.

The last equality holds since by convention f(A) = 0. If A = 0 we write Py in
place of P,’, and when T = T, we write P" for P} 4 orjust P, when A = 0.
Our notation for the resolvent of the semi-group is

Uf(x) = [0° PMf(z) dt = E° [ e ™f(X,) di.

Also U is called the )\-potentzal operator and as above we will write U in place of
U’ when A = 0. If A > 0, U" is a non-negative operator on B(E, ®) or B(E, @)
of norm not exceeding 1/X. Of course, the resolvent equation, U* — U? =
(8 — a)UU?, holds for o, 8 > 0. If f = 0 is @ measurable then U f is called
the \-potential of f (the potential of f when A = 0). The operators U" are given
by kernels, U(z, dy), called the potential kernels of X, i.e. Uf(z) =

J UNa, dy)f(y).

1.10. Excessive functions. A non- negatlve @ measurable function f is \-excessive

prov1ded P} < ffor all{ = 0and P, Mo fast— 0 pointwise. As usual when

= 0 we say that f is excessive. If g = 0 is @ measurable, then the \-potential
of g, U'g, is \-excessive for any A = 0. Any statement involving A will be under-
stood to hold for all A = 0 unless explicitly stated otherwise. We will use E*
to denote the \-excessive functions (E when A = 0). If f ¢ E, then so is Py
for any nearly analytic set A. Excessive functions may be characterized in terms
of the resolvent { U} as follows: f ¢ E* if and only if (i) aU*f < fforalla > 0
and (ii) aU""f — f pointwise as o — .

The following is the main result on excessive functions [8].

1.10.1. TeEOREM. Let f be N-excessive, then

(1) f s nearly Borel measurable,

(i) the function t — f(X,) is right continuous, and it is finite for all t = s if
f(Xs) s finite, both statements holding almost surely,

(iii) ¢f u 7s a probability measure on (E, @) such that [ f du < o then
{ef(X.), %, P} is a supermartingale and t — f(X,) has left hand limits on
[0, = )almost surely.

A consequence of this theorem is the fact that if f and g are in E* so is min (7, g).
Also any fin Eis finely continuous. In fact for any A > 0 the fine topology is the
coarsest topology relative to which the elements of E* are continuous.
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1.11. Exceptional sets. A set A is approximately null if it is contained in a
universally measurable set B such that U*(z, B) = Ul s(x) vanishes identically
in z for one, and hence, all, A = 0. Here I is the indicator function of B. A set A
is then if it is contained in a nearly analytic set B for which no point is regular,
i.e., B" is empty. A set is semi-polar if it can be covered by a countable union of
thin sets. A set A is polar provided it is contained in a nearly analytic set B
such that P°(T3 < «) = 0 for all z. Thus, roughly speaking, a polar set is a
set that the process never enters at positive times almost surely. The following
implications hold,

polar = semi-polar = approximately null.

The converse implications are not valid in general.

Two \-excessive functions which agree except on an approximately null set
are identical. In particular the complement of an approximately null set is finely
dense. If a \-excessive function f is finite except on an approximately null set,
then {f = «} is actually polar. If A is nearly analytic, then A \ A" is semi-
polar. If B is semi-polar then X, is in B for at most countably many values of ¢
almost surely.

2. Additive functionals and their potentials. Throughout the remainder of
this paper X = (@, 91, P*, X., 6,) is a fixed Hunt process with state space E.

2.1. Motivation. Let f be a non-negative bounded Borel measurable function
on E and consider

Adw) = At @) = [o fIXo(w)] ds.

Clearly ¢t — A, is continuous, non-decreasing, and A, = 0. Moreover 4, is F;
measurable. Also we may calculate 4. as follows

At +s,0) = [0 fIXu(@) du + [ f1Xu(0)] du

= A(t, 0) + [0 fIXure(w)] du

= A(t, w) + A(s, 61w),
since X, = X, 00;. The potential of f is easily expressed in terms of A4,

Uf(z) = E"[s f(X,) dt = E"A(w),
where A(®) = lim « A(#), and more generally the \-potential of f is given by
Uf(x) = B°[7 ¢ " f(X.) dt
= E° [y e MdA(L).

Notice finally that A(¢) is constant on [{, «] since X, = A on this interval and
f(A) = 0, thatis, A() = [§f(X,) dt.

In the classical potential theory of three dimensional Euclidean space (i.e.
three dimensional Brownian motion) the potential kernel U(zx, dy) has the form
U(z, dy) = u(z, y) dy where dy is three dimensional Lebesgue measure and
u(z, y) is the Newtonian kernel, ¢[z — y|™". Thus in addition to the potential of a
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function one can define the potential of a (non-negative) measure u by Uu(z) =
[ u(z, y)u(dy). In fact if one wishes to represent non-negative superharmonic
functions as a harmonic part plus a potential (Riesz Theorem) itisnecessary to
use the potential of a measure, the potential of a function will not suffice. For a
general Hunt process the excessive functions are analogous to the non-negative
superharmonic functions for Brownian motion. Thus it is natural to try and
represent excessive functions (or, at least, certain large classes of excessive func-
tions) as “potentials.”

This immediately raises the question ‘“potentials of what?”’. As we have seen
even in the classical case potentials of functions do not suffice, and for a general
Hunt process X the potential kernel U(z, dy) can not be used to define the po-
tential of a measure as a function. We will see that a reasonable answer to this
question is furnished by the “potentials” of additive functionals.

2.2. Definitions. A family {A:; ¢ = 0} of numerical random variables on
(Q, F) is called a (non-negative, right continuous) additive functional of X
provided:

(1) The following statements hold almost surely; ¢ — A:(w) is right contin-
uous, non-decreasing, Ao = 0, and 4;(w) = limg ;¢ As(w) for all ¢ = ¢(w).

(ii) A.is &, measurable.

(ii1) Foreacht, s = Oone has A;. = A; + A, o 6, almost surely.

Wedefine A, (w) = limt » A:(w). This exists almost surely and A, = A; = A;_
almost surely. We will sometimes write A (¢) for A; and A (¢, ») for A;(w). The
family of random variables defined in Section (2.1) is an example of a (con-
tinuous) additive functional. We emphasize that the exceptional set in (iii)
depends, in general, on ¢ and s. If it can be chosen independent of ¢ and s the
additive functional is called perfect.

A continuous additive functional (CAF) is an additive functional such that
t — A; is almost surely continuous. An additive functional is called natural
(NAF) provided ¢t — A and ¢{ — X; have no common discontinuities almost
surely. Note that any CAF is natural, while if X has continuous paths every
additive functional is natural. The importance of the concept of NAF will appear
shortly. Finally two additive functionals A = {A,} and B = {B,} aresaid to be
equivalent provided P°[A; % B,] = 0 for all z and ¢. In view of the right continuity
of A and B this is equivalent to the statement that the functions ¢ — A, and
t — B; are identical almost surely.

2.3. The strong Markov property. The followmg result of Meyer (9] is of basic
importance for the present theory.

2.3.1. TaEoREM. Let A be an additive functional, then if T is a stopping time
and R any non-negative random variable on (Q, F) one has

AlT(0) + B(w), 0] = A[T(), o] + A[R(w), 070]

almost surely.
In the future we will omit the »’s when writing such a relationship. For ex-
ample the above equation would be written A(7T + R) = A(T) + A(R, 6r).
2.4. Potentials of additive functionals. Let A = {A.} be an additive functional
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of X. If f is a non-negative nearly Borel measurable function on E, we define the
A-potential of f with respect to A by

Uﬁf(x) = FE 3°e‘”f(X,) dA(t)
= E°[§ e (X)) dA(2).

In particular if f = 1 we write U," in place of U1, and the function U," is
called the A-potential of A. As usual when A = 0 we drop it entirely from our
notation. One can show that the definition given above makes sense; in fact

v e f(X.) dA; is F measurable and so U Axf is @ measurable. If U, is finite,
then f — U.'f is given by kernel which we denote by U.’(z, dy), that is

Uddf(z) = [ U=, dy)f(y).

If f = 0is nearly Borel measurable then U.,'f is A-excessive and hence nearly
Borel measurable. The operators f — U,"f are not in general a resolvent. How-
ever the following equation is analogous to the resolvent equation. If &, 8 = 0
and U.,°f and U.’f are finite, then

Usf — ULf = (8= )UULS = (B — ) U ULS.

2.5. Unigueness theorems. The results of this subsection are due to Meyer [9].
They give conditions under which the potential of an additive functional de-
termines the additive functional.

2.5.1. THEOREM. Let A and B be additive functionals with finite N-potentials
for some fixed \ = 0. If U = Us'ffor all f in Cx*; then A and B are equivalent.

2.5.2. THEOREM. Let A and B be natural additive functionals with finite \-poten-
tials for some fized N = 0. If U,* = Uy, then A and B are equivalent.

It is easy to see that Theorem 2.5.2 is not valid if the word “natural’’ is omitted
from its statement. For example, take X to be the Poisson process with parameter
1 and let A(¢) = ¢ and B(¢) be the number of jumps of the sample path in the
interval [0, #]. A simple computation shows that U,* = Uz* = X forall A > 0.

2.6. A characterization of CAF’s and NAF’s. Let A be an additive functional
with a finite A-potential for some A = 0. If A is natural and G is an open subset
of E, then PJ*U,"f = U,f whenever f is a nearly Borel measurable function
vanishing outside of G. If A4 is continuous one may replace the open set G by an
arbitrary nearly analytic set D in the above statement. These statements are
almost obvious. However we also have the following converses.

2.6.1. THEOREM. Let A be an additive funciional with a finite A-potential for
some fized A = 0.

(i) If for each f in Cx* and open meighborhood G of the support of f one has
PlULY = UL, then A is natural.

(ii) If PRU Mk = UL Ik for all compact K where I is the indicator function
of K, then A is continuous.

Statement (i) is due to Meyer [9]. Meyer also proved (ii) under an additional
hypothesis (Hyp (L) of Section 5). However, (ii) can be established in general
by an argument which is completely different from the one in [9].
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It is easy to see that for any additive functional with finite A-potential
UdIx(z) — Pe'UsIx(z) = E'{e7™F[A(Tx) — A(Tx—)]}.

Thus Theorem 2.6.1(ii) states that if A is not continuous, then there exist an
z and a compact set K such that ¢ — A, is discontinuous at Tx with positive
P? probability.

3. Representation theorems. In the remainder of this paper we will state re-
sults only in the case A = 0. However, all of these results remain valid for arbitrary
A\ with obvious modifications.

3.1. Motiation. Suppose A is a CAF with a finite potential. If {7} is an in-
creasing sequence of stopping times with limit 7', then using the strong Markov
property we may compute

EUA(Xr,) = E{E*™A(w)}
= E*{A(e, 0r,)}
= E'{A(o) — A(T.)}
— E*{A(») — A(T)}
= E°U(X0).

Note that if 4 is not assumed to be continuous but 7 = ¢ almost surely P°, then
the same computation shows that

ExUA(XTn) — ExUA(XI') = O)

since U4(A) = 0.

3.2. The representation theorems. A finite excessive function f is called a regular
potential provided E°f(X r,) — E*f(Xr) for all  whenever {7’} is an increasing
sequence of stopping times and 7' = lim 7', . We saw in Section 3.1 that the finite
potential of a CAF is a regular potential. The next result is due to Sur [12] for
bounded f. His proof contained a slight gap which was filled in [2]. The extension
to finite f is standard. See [7]. The general result was also obtained by Meyer
[9] but under an additional hypothesis (Hyp(L) of Section 5).

3.2.1. TurorEM. Let f be a finite regular potential, then there exists a unique
(up to equivalence) continuous additive functional A such that f = U, .

A finite excessive function f is called a potential of class (D) if for each z
whenever {71,} is a sequence of stopping times that increases to ¢ almost surely
P, then E'f(Xr) > 0asn — . It follows from the comments in Section 3.1
that if A is an (arbitrary) additive functional with finite potential then U, is a
potential of class (D). The next result is due to Meyer [9].

3.2.2. TuroreM. Let f be a finite potential of class (D), then there exists a unique
(up to equivalence) natural additive functional A such that f = Uy .

This result implies that there is a mapping 4 — A ™ from the set of all additive
functionals with finite potential onto the set of all natural additive functionals
with finite potential such that U, = U« ,and A™ = B*ifand onlyif U, = Uj.
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Here and in the sequel equality between additive functionals means equivalence.
Roughly speaking one obtains A™ from A by the following construction. One
takes all the jumps of ¢ — A, which occur at times when ¢ — X is continuous and
lumps them together to form a “pure jump” natural additive functional A7
It is then possible to show that U, — Uy, is a regular potential, and hence the
potential of a CAF, 4°. Consequently A* = A’ + A°. Thus among all additive
functionals which have the same finite potential, f, the unique natural one,
A”, has the least number of discontinuities. In fact one can show that the
jumps of A* are precisely those jumps of ¢ — f(X;) which occur at times when
t — X is continuous.

3.3. Classification of excessive functions. An excessive function, f, is regular
provided ¢ — f(X,) is continuous wherever { — X, is continuous almost surely.
Thus the only possible discontinuities of { — f(X;) when f is a regular excessive
function are the discontinuities of the path function ¢ — X, almost surely. It is
implicit in the discussion at the end of Section 3.2 that a regular potential is
regular. An excessive function f is of class (D) provided the family {f(X,); T a
stopping time} is uniformly integrable with respect to P” for each z. One can
show that a potential of class (D), and hence a regular potential, is of class (D), so
that the terminology is consistent.

Thus we are led to consider the following two conditions on X. (The above dis-
cussion shows that these conditions are closely related, and, in fact, it is not
difficult to see that they are equivalent.)

(K) Every (finite) excessive function is regular.

(M) Every NAF (with finite potential) is continuous.

Hunt has shown [8] that, under the set up in Part III of [8], (K), and hence
(M), is equivalent to the following condition.

(H) Every semi-polar set is polar.

In the set up of Hunt’s Part III there is a positive Radon measure ¢ on F
such that the potential kernel U(z, dy) has the form U(z, dy) = u(z, y)&(dy),
and Hunt showed that under these assumptions a sufficient condition that (H),
and hence (K) and (M), hold is that w(x, y) be symmetric in x and y. Thus
(H), (K), and (M) hold for Brownian motion, the symmetric stable processes,
and many other familiar processes.

The typical example in which (H) fails to hold is translation to the right along
the real line with uniform velocity. In this example a set consisting of a single
point is thin, but not polar. More generally the space-time Brownian motion
process, i.e., the process whose generator is the heat operator, does not satisfy
(H). In a certain rough sense (H) should correspond to the “ellipticity’ of the
generator of X. Thus it should hold for processes corresponding to Brelot’s
axiomatic potential theory, but not for those corresponding to Bauer’s axiomatic
theory. We should remark that the two processes mentioned above, translation
and space-time Brownian motion, do satisfy the assumptions of Hunt’s Part III.

It is tempting to conjecture that the equivalence of (H), (K), and (M) holds
for general Hunt processes. However, this is not the case as the following ex-
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ample shows. Let F be the closed left half-plane, £ = {(z, y); 2z < 0},zand y
real. Let X be two dimensional Brownian motion until it first hits the y-axis at
which time it becomes one dimensional Brownian motion along the y-axis. This
process has continuous paths and satisfies (H). It also satisfies Hypotheses (B)
and (C) of [8]. However, it doesn’t satisfy (K). Let f be one in the open left half-
plane and zero on the y-axis, then f is excessive but ¢ — f(X,) is discontinuous at
the time X first reaches the y-axis. It would be very interesting to formulate more
general conditions than those of Hunt’s Part IIT under which (H) and (X) are
equivalent.

In general one can decompose a NAF into a CAF and a “pure jump” NAF, and
under the assumptions of Hunt’s Part IIT one has the following very nice descrip-
tion of the “pure jump’” component. Let A be a “pure jump”’ NAF, then there
exists a semi-polar set @ and a function ¢ = 0 on F such that

A(t) = Dr<io(Xr,)

where the T, (a a countable ordinal) are the successive times at which the
process X hits Q. Again it would be of interest to formulate more general con-
ditions under which this representation is valid. The example of the previous
paragraph shows that it fails to hold for Hunt processes in general. (If 7' is the
hitting time of the y-axis for the process in the previous paragraph, then
A(t) = 0fort < T and A(¢) = 1fort = T if the process starts in the open left
half-plane and A (¢) = 0 if the process starts on the y-axis is a counterexample.)

4. The fine support of a CAF. Throughout this section 4 will be an additive
functional with finite potential. The results of this section are valid if one only
assumes that 4 has a finite A\-potential for some fixed A = 0, but we will assume
A = 0 for simplicity. We say that A vanishes on a nearly Borel set D provided
Ui(z, D) = Uulp(z) = 0 for all z. We can then define the support of A as the
smallest closed set on whole complement 4 vanishes. A standard argument yields
the existence and uniqueness of the support of A. However, the support of 4 is a
very crude notion and it is natural to try and define the fine support of A as the
smallest finely closed set on whose complement 4 vanishes. But the fine topology
is not locally compact in general and so one can not establish the existence of the
fine support of 4 in the usual manner. Nevertheless one can establish the existence
of the fine support of a conttnuous additive functional by a direct argument.

In the remainder of this section A will be a CAF with finite potential. Define

R =inf{t: A; > 0} ="sup {¢t: 4; = 0},

and note that Az = 0 almost surely on {R < «} since 4 is continuous. It is easy
to see that R is a stopping time and that ¢(2) = E°(¢ ") is 1-excessive. We now
define

F={z:P(R=0) =1} = {z:e(x) = 1}.

Intuitively, z is in F if and only if ¢ — A, begins to increase immediately with
probability one when the process starts at . One can now establish, [7], the follow-
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ing properties of F':
(i) F is a finely closed nearly Borel set.
(ii) Fis empty ©®A;: = 0a.s <R = «© a.s.
(iii) Tr = R a.s.
(iv) Each z in F is regular for F.
If A is not continuous, F may be empty even though A is not identically zero.
Next define the following sets, each of which depends on w.

I'={t:A(t+e) —A() >0 forall > 0}
I=1{t:A(t+e¢ — At —e) >0 forall > 0}
Z = {t: X, e F}.

Clearly T is the closure of I almost surely. I is the set of points of right increase of
A, while T is the set of points of ncrease of A. Moreover I(w) is the support of the
measure dA (¢, w) on [0, »), and since I \_I is almost surely countable, the con-
tinuity of A implies that dA(¢) is carried by I almost surely. The following
theorem is the main result of this development. See [7].

4.1. TaEOREM. Almost surely I < Z < 1.

A corollary of this is the fact that F is the fine support of A. Also A and Iz4 are
equivalent. Here IrA4 is the additive functional ¢ — [o' I»(X,) d4,. (More
generally if f is any non-negative nearly Borel function we will write fA for the
family of random variables ¢ — [o° f(X,) d4, . Of course fA4 is an additive func-
tional under some finiteness assumption, for example, if f is bounded and A has
a finite potential, then f4 is an AF with a finite potential, U;s = U,f.) Two final
remarks:

(i) A is strictly increasing if and only if £ = F, and

(ii) the closure of F is the support of A.

5. An analog of the Radon-Nikodym theorem. Again in this section A
will be an AF with finite potential, although the results are valid with obvious
modifications if one only assumes that A has a finite N\-potential. The following
hypothesis will be assumed throughout this section.

(L) There exists a (non-negative) Radon measure £ on E such that an exces-
sive function which vanishes a.e. (£) is identically zero.

Note that (L) is certainly satisfied if excessive functions are lower semicon-
tinuous. In particular (L) holds in the set up of Hunt’s Part III.

The following is the key result in this section and it is due to Motoo [10].

5.1. TueoreM. Let A be a CAF with a finite potential and assume (L) holds.
Then an excessive function f has the representation f = Ush with h a Borel meas-
urable function satisfying 0 = h = 1 i¢fand only if f < U4 and

@) — Pf(z) = E°A()

for all x and t.
Let A be the class of all continuous additive functionals with finite potential.
If 4 and B arein A an « = 0, define A + B and a4 in the obvious manner.
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If A and B are any two additive functionals we write A < B provided there exists
an additive functional C such that A + C = B. It is immediate that “<” is a
partial ordering and that if Bisin A and A =< B, then 4 is in A. We now con-
sider A with this partial ordering,.

5.2. THEOREM.

(1) A is a boundedly complete lattice.

(ii) The following three statements are equivalent:

(a) A £B

(b) E°A(t) < E°B(%) for all t,

(¢) A = fB for a Borel measurable f with0 < f < 1.

Clearly A is a convex cone and it is easy to see that ‘“local times” at points
(when they exist) determine extremal rays in A. Most likely these are the only
extremal rays.

The following result is what we call the analog of the Radon-Nikodym theorem.

5.3. THEOREM. If A and B are in A, then a necessary and sufficient condition
that A = fB with f a non-negative Borel measurable function is that for each x the
measure Us(z, -) be absolutely continuous with respect to Ug(z, - ).

It would seem that the non-trivial part of Theorem 5.3 could be proved in the
following manner. By the Radon-Nikodym theorem, for each x there exists a
function f, such that Us(z, dy) = f.(y)Us(x, dy). One should then be able
to show that f, is independent of x, and consequently it would follow that the
resulting function f does the required job. However, it seems to be difficult to
carry out this argument. In fact, Theorem 5.3 and Theorem 5.1 are not valid for
natural additive functionals as one can see from simple examples. See [7], p. 63.
The proofs of Theorems 5.2 and 5.3 are given in [7], although they are relatively
simple consequences of Theorem 5.1.

There are two interesting questions that one can ask about the results of this
section. First of all, (L) is not needed in the statement of these results and so it
would be interesting to know if they are valid without assuming (L). Secondly,
and perhaps of more importance, Theorems 5.1 and 5.3 are valid for natural
additive functionals under the assumptions of Hunt’s Part III, and hence it
would be very interesting to formulate the ‘“most general” conditions under
which they are valid for natural additive functionals.

6. Potentials of measures. In this section we will mention briefly the con-
nection between additive functionals and measures under the assumptions of
Hunt’s Part III. We will not go into detail on these assumptions. The interested
reader may consult [3] or [9], Part II, Section 6, for a summary or, of course, (8],
Part ITI. The main thing to remember is that the potential kernel U(z, dy) is of
the form u(z, y)&(dy), and that most familiar processes (Brownian motion,
processes with independent increments, ete.) satisfy these assumptions. We are
assuming that we can take A = 0 as usual.

Since the potential kernel is given by a point function one can define the po-
tential of a measure u = 0 by

Uu(z) = [u(z, y)u(dy).
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If Up is finite, then it is excessive and determines u. The following result of Meyer
[9] establishes the relationship between u and the concepts developed above.
6.1. THEOREM. Let u be a non-negative measure with Uy finite, then
(1) Uw is a potential of class (D) if and only if u charges no polar set,

(ii) Uw s a regular potential if and only if u charges no semi-polar set.

The next result is also due to Meyer [8], but a much simpler proof is given in
[3].
6.2. THEOREM. Let A be a NATF with a finite potential and u a non-negative meas-
ure such that Uy = U, then Uu(z, dy) = u(z, y)u(dy).

Finally let us mention that it follows from results of Hunt that if f is a po-
tential of class (D) then f = Uy for an appropriate measure u. Hence to each
NAF, A, with finite potential there corresponds a unique measure u such that
U4 = Un. Theorem 6.2 states that if A corresponds to u, then fA corresponds

to fu.
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