ASYMPTOTICALLY OPTIMAL TESTS FOR
MULTINOMIAL DISTRIBUTIONS'

By WassiLy HoEFFDING

Unaversity of North Carolina

Summary. Tests of simple and composite hypotheses for multinomial distribu-
tions are considered. It is assumed that the size ax of a test tends to 0 as the
sample size N increases. The main concern of this paper is to substantiate the
following proposition: If a given test of size ay is “sufficiently different”” from a
likelihood ratio test then there is a likelihood ratio test of size <ay which is
considerably more powerful than the given test at ‘“most” points in the set of
alternatives when N is large enough, provided that ay — 0 at a suitable rate. In
particular, it is shown that chi-square tests of simple and of some composite hy-
potheses are inferior, in the sense described, to the corresponding likelihood
ratio tests. Certain Bayes tests are shown to share the above-mentioned prop-
erty of a likelihood ratio test.

1. Introduction. This paper is concerned with asymptotic properties of tests
of simple and composite hypotheses concerning the parameter vector p =
(p1, -+, pr) of a multinomial distribution as the sample size N tends to in-
finity. In traditional asymptotic test theory the size « of the test is held fixed and
its power is investigated at alternatives p = p*” which approach the hypothesis
set as N — oo, in such a way as to keep the error probability away from 0. These
restrictions make it possible to apply the central limit theorem and its extensions.
However, it seems reasonable to let the size ay of a test tend to 0 as the number
N of observations increases. It is also of interest to consider alternatives not very
close to the hypothesis, at which, typically, the error probabilities will tend to
zero. To attack these problems, the theory of probabilities of large deviations is
needed. For the case of sums of independent real-valued random variables this
theory is by now well developed. It has been used by Chernoff [2] to compare the
performance of tests based on sums of independent, identically distributed
random variables when the error probabilities tend to zero. Sanov [7] made an
interesting contribution to a general theory of probabilities of large deviations.
He studied the asymptotic behavior of the probability that the empirical dis-
tribution function is contained in a given set A of distribution functions when the
true distribution function is not in A. For ‘the special case of a multinomial dis-
tribution a slight elaboration of one of Sanov’s results implies the following.

Let the random vector Z* take the values 2 = (ny/N, - -, n/N), where
ny, -+, N are nonnegative integers whose sum is N, and let the probability of
ZW = Y beN! H'E=1 (ps"/ni 1), where p = (p1, -+, pr) € Q, the set of points
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pwithp: 20, p1+ -+ + pe = 1. Let A be any subset of @, and let A”” denote
the set of points 2™ which are in A. Then for the probability Py(A |p) of
Z®™ < A we have (see Theorem 2.1)

(1.1) Py(A|p) = exp {—NI(A™, p) + O (log N)},
uniformly for A C @ and p ¢ Q, where

(12) I(z, p) = 2i-1x:log (2:/po),

(1.3) I(A,p) = inf {I(z, p) |z e A}.

This elementary and crude estimate of the probability Px(A | p) makes it
possible to study, to a first approximation, the asymptotic behavior of the error
probabilities of an arbitrary (non-randomized) test of a hypothesis concerning p
when these probabilities tend to 0 at a sufficiently rapid rate.

In Section 3 the special role of the likelihood ratio test is brought out. Let H
be the hypothesis that p ¢ A(A < Q). The likelihood ratio test, based on an ob-
servation 2 of ZV, for testing H against the alternatives p ¢ @ — A rejects H
when

I(z™,A) > const,

where I(x, A) = inf {I(z, p) | p € A}. For the size of an arbitrary test which re-
jects H when 2™ ¢ A we have from (1.1)

(1.4) suppes Pw(4 | p) = exp {—=NI(A™, A) + O (log N)},

uniformly for A € @ and A C @, where I(4, A) = inf {I(z, p)| z e A, peA}.
This easily implies the following: The union of the critical regions A of all
tests of size < ay for testing H is contained in the critical region B™ of a likeli-
hood ratio test for testing H against p ¢ @ — A whose size ay’ satisfies

log ax’ = log ax + O (log N).

Thus if ay tends to 0 faster than any power of N, the size of the B® test is, to
a first approximation, ay . Of course, ay’ Zay . It is trivial that the B™ test is
uniformly at least as powerful as any test of size Say .

We can also define a likelihood ratio test of size <ax whose critical region does
not differ much from B? in the sense that both critical regions are of the form

NI(z™,A) = —log ay + O (log N).

The main concern of this paper is to substantiate the following proposition:
If a given test of size ax is “sufficiently different’” from a likelihood ratio test, then
there is a likelihood ratio test of size < ax which is considerably more powerful than
the given test at “most” points p in the set of alternatives when N s large enough,
provided that ay — 0 at a suttable rate. The meaning of the words in quotation
marks will have to be made precise. By “considerably more powerful” we mean
that the ratio of the error probabilities at p of the two tests tends to 0 more
rapidly than any power of N.
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A general characterization of the set I'y of alternatives p at which a given test
is considerably less powerful than a comparable likelihood ratio test is contained
in Theorem 3.1. Sections 4 and 5 are preparatory to what follows and deal with
properties of the function I(z, p) and its infima. In Section 6 we restrict our-
selves to tests whose critical regions are regular in a sense which implies that the
expression (1.4) for the size of a test remains true with 7(4“”, A) replaced by
I(A, A), the infimum of I(x, A) with respect to all z € A (not only with respect to
the lattice points 2™ contained in A), and an analogous replacement may be
made in the expressions for the error probabilities Py(A’ | p), where A" =
Q@ — AandpeA’ = Q@ — A. (Sufficient conditions for regularity are given in the
Appendix.) Consider a test which rejects H when 2™ ¢ A (where A = Ay may
depend on N). Let B = {x | I(z,A) = I(A, M)}, so that BY is the critical region
of a likelihood ratio test. Note that A < B. It is shown that the set T'y essentially
depends on the set of common boundary points of the sets A and B. In particular,
if the A test differs sufficiently from a likelihood ratio test in the sense that the
sets A and B have only finitely many boundary points in common then, under
certain additional conditions, a likelihood ratio test whose size does not exceed
the size of the A test is considerably more powerful than the latter at all alterna-
tives except those points p which lie on certain curves in the (k¥ — 1)-dimensional
simplex Q and those at which both tests have zero error probabilities.

Approximations for the error probabilities of a likelihood ratio test of a simple
hypothesis are given in Section 7.

In Section 8 the result just described is shown to be true for a chi-square test
of a simple hypothesis whose size tends to 0 at a suitable rate (Theorem 8.4).
This is of special interest in view of the fact that if the size of the chi-square test
tends to a positive limit, its critical region and power differ little from those of a
likelihood ratio test. In Section 9 chi-square tests of composite hypotheses are
briefly discussed. An example shows that at least in some cases the situation is
similar to that in the case of a simple hypothesis. It is noted that one common
version of the chi-square test may have the property that its size cannot be
smaller than some power of N, which makes the theory of this paper inapplicable.
Certain competitors of the chi-square test are considered in Section 10.

It is pointed out that certain Bayes tests have the same asymptotic power
properties as the corresponding likelihood ratio test (Section 11).

The likelihood ratio test was introduced by J. Neyman and E. S. Pearson in
1928 [6]. It is known that the likelihood ratio test has certain asymptotically
optimal properties when the error probabilities are bounded away from 0 (Wald
[8]). The present results are of a different nature and appear to be of a novel type.

An extension of the results of this paper to certain classes of distributions
other than the multinomial class should be possible. (The extension to the case
of several independent multinomial random vectors is quite straightforward.)

It should be emphasized that throughout this paper the number £ is regarded
as fixed and is not allowed to increase with N. In particular, the results of Section
8, which suggest that the likelihood ratio test of a simple hypothesis is asymptoti-



372 WASSILY HOEFFDING

cally either equivalent or superior in a global sense to the chi-square test, are
subject to the limitation that £ is fixed or does not increase rapidly with N.
Otherwise the relation between the two tests may be reversed. This is shown by
the following unpublished result of Charles Stein, who kindly permitted to in-
clude it here.

For testing the hypothesis p; = -+ = pr = 1/k consider the class C of sym-
metric tests whose critical regions are of the form ) a,M, = ¢, where the q,
and ¢ are constants (which may depend on N') and M, is the number of n; which
are equal to ¢. Both the chi-square test and the likelihood ratio test belong to C.
If the significance level is moderate, k is large and N/k is moderate, then the
chi-square test is nearly most powerful in C against alternatives for which all of
the |p; — 1/k| are small compared with 1/k. In particular, it is appreciably more
powerful than the likelihood ratio test.

I wish to express my gratitude to Professor R. A. Wijsman whose comments on
the original manuscript led to substantial improvements of this paper. In par-
ticular, a result of his (Lemma 4.4 below), which is of independent interest,
helped to fill a gap in the author’s original proof of Lemma 5.1.

2. Probabilities of large deviations in multinomial distributions. Let Z* =

(2, -, Z,") be a random vector whose values are
(2.1) & = (™, -, a™) = (m/N, -, m/N),
where n;, - -+, ny are any nonnegative integers such that n; + --- 4+ nx = N,

and whose distribution is given by

(22) PriZ® ="} = Py(™ |p) = IVY/(m L Dpy™ - ™.
Here p = (p1, -+, p&) 18 any point in the simplex

(23) @={(z1, -, x) |z 20, , 2,20, &+ -+ x = 1}.

By convention, p"* = 1if p; = n; = 0.
We can write

(2.4) Py(2™ | p) = Pu(2" | 2™) exp {—=NI(=™, p)},
where, for any two points  and p in Q,
(2.5) I(z,p) = D i log (@:/ps).

Here it is understood that z; log (z;/p:;) = 0 if z; = 0.

We note that I(z, p) > 0 unless x = p (since log u > 1 — uw ' for u > 0,
u # 1). Also, I(z, p) < o unless p; = 0 and z; > 0 for some 7.

For any subset 4 of Q let

(2.6) Py(A|p) = Pr{Z™ e A} = D .an.a P(2™ | ).
The set of lattice points 2™ contained in A will be denoted by 4. We define
(2.7) I(A,p) = inf {I(z,p)|zeA}, I(4,p) = + o if A isempty.
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The following theorem is a slight elaboration of a result due to Sanov [7].
THEOREM 2.1. For any set A C Q and any point p € @ we have

25) CoN * P exp {—NI(A™, p)} < Pu(4 | p)
' < (Y exp {—NI(A™, )},

where Cy is a positive absolute constant. Hence

(2.9) Py(4 |p) = exp {—=NI(4™, p) + O(log N)},
uniformly for A C Q and p € Q. Also,
(2.10) Py(A|p) = exp{—NI(4,p) + O(log N)},

uniformly for A C Qand p e Q.

Proor. Clearly (2.8) implies (2.9) and since 4 < A, (2.8) implies (2.10).
It is sufficient to prove (2.8).

If A® is empty, Py(A | p) = 0 and (2.8) is trivially true. Assume that 4"
IS not empty.

The number of points 2™ in Q is easily found to be (*i*1'). By (2.4), 2V ¢ 4
implies Py(2™ | p) < exp {—=NI(A", p)}. Hence the second inequality (2.8)
follows from (2.6).

By Stirling’s formula, for m = 1,

m! = m™(2em)* exp [—m + (6/12m)], 0<6<1.
Hence it easily follows that if n; = 1 for all ¢,
(2.11) Py(z™ | 2%y = (NYN™) TIicin™ /nt = CoN~* 02

where C, is a positive absolute constant. (We can take Co = 3.) If n; = 0 for
some ¢, (2.11) is a fortiori true. The first inequality (2.8) follows from (2.4),
(2.6) and (2.11).

Theorem 2.1 is nontrivial only if the set A contains no points 2™ which are
too close to p. In this sense the theorem is concerned with probabilities of large
deviations of Z® from its mean p.

It should be noted that (2.9) gives an asymptotic expression for the logarithm
of the probability on the left but not for the probability itself. This crude result
is sufficient to study asymptotically the main features of any test whose size
tends to O fast enough as N increases.

The precise order of magnitude of Py(4 | p) for certain sets A will be con-
sidered in another paper. For the case A = {2 | ) aa: < ¢}, so that Py(4 | p)
is a value of the distribution function of a sum of N independent random vari-
ables, see Bahadur and Rao [1] and the references there given. For 4 =
{z | F(xz) = 0}, where F(x) satisfies certain regularity conditions, Sanov ([7],
Theorem 4) gave without proof a result which, however, is inaccurate in the
stated generality. (Compare the author’s abstract [3].)

3. The role of the likelihood ratio test. Consider the problem of testing, on the
basis of an observation 2 of the random vector Z the hypothesis H that the
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parameter vector p is contained in a subset A of Q. The likelihood ratio test for
testing H against the alternative p ¢ A" = @ — A is based on the statistic

sup {Py(z™ | ) | pea}

. . @

(1) sup (Px(z™ |p) | peq) 7 (=N, A,
where

(3.2) I(z,A) = inf {I(z, p) | p € A}.

The equality in (3.1) follows from (2.4). Thus the likelihood ratio test rejects
H if I1(z™, A) exceeds a constant.

Now consider an arbitrary test which rejects H if 2™ ¢ Ay , where Ay is any
subset of Q. For the size of the test (the supremum of its error probability for
p e A) we have from Theorem 2.1

(3.3)  sup{Py(Ax|p) |peA} = exp {—NI(Ax"™,A) + O(log N)},
uniformly for Ay C @ and A C Q, where
(3.4) I(A,A) =inf {I(z,p) |zcA,pecA}.

Clearly I(A,A) = inf {I(a,A) |z e A} = inf {I(A4,p) |peA)}.

The test of the preceding paragraph will be referred to as test Ay . The set
Ay of all points 2 contained in Ay will be called its critical region. (We
could have assumed that Ay contains no other points than the lattice points
2™ but it is often convenient to define the critical region in terms of a more
inclusive set.)

We may compare the test Ay with the likelihood ratio test which rejects H
if 2™ & By, where

(3.5) By = {z|I(2,A) Z ¢y}, v = I(Ax",A).

Its critical region By™ contains the critical region Ay™. In fact, By is the
union of the critical regions of all tests Ax* for which I(Ax*™, A) = cy . More-
over, the size of the test By is exp {—Ncy + O(log N)}, since I(By™,A) =
¢ . Thus if Ney/log N tends to infinity with N, which means that the size ay
of the test Ay tends to O faster than any power of N, then the size ay’ of the
test By is approximately equal to ay in the sense that log ay = log ay
+ O(log N).

In a similar way we can obtain the following conclusion: The union of the
critical regions of all tests of size< ay for testing the hypothesis p ¢ A is con-
tained in the critical region of a likelihood ratio test for testing p ¢ A against
p £ A whose size ay’ satisfies log ay’ = log ay + O(log N). The simple proof is
left to the reader.

Since Ax™ < By, the probability that test By rejects H is never smaller
than the probability that test Ay rejects H. Thus By is uniformly at least as
powerful as Ay, but the size of By is in general somewhat larger than the size
of Ay . It may be more appropriate to compare a given test with a likelihood
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ratio test whose size does not exceed the size of the former. Now it easily follows
from (3.3) that we can choose numbers

(3.6) 0<éy=0(N"logN)
such that the size of the likelihood ratio test
(3.7) BN* = {z|I(z,A) Z cv + on}

is not larger than the size of test Ay . If Ncwy/log N tends to infinity fast enough,
we may expect that the power of the test By™ will not be much smaller than the
power of By .

For any p e A'(A" = @ — A) the probabilities that the tests Ay and By falsely
accept the hypothesis are given by

(3.8) Py(Ay' | p) = exp {— NI(45'",p) + O(log N)},
(3.9) Py(By | p) = exp{— NI(By', p) + O(log N)}.

Always Px(By' | p) < Px(Ay | p) and I(By'™, p) = I(A5'™, p). At those
points p e A" for which Py(Ay | p) # 0 and

(3.10) limy—w N{I(By'™,p) — I(A5™, p)}/log N = + o,

the test By is considerably more powerful than Ay in the sense that the ratio of
the error probabilities at p, Px(By | p)/Px(Ax | p), tends to 0 more rapidly
than any power of N.

For the test By" whose size does not exceed the size of Ay we have a similar
conclusion. Note that By" is not necessarily more powerful than Ay, and the
difference in (3.10) with By replaced by By* may be negative. However, if
Px(Ay,p) #0, if (3.10) is satisfied, and

I(BNl(N), p) _ I(BN*,(N), p) B
I(By'™, p) — I(Ay'™, p)

then the ratio Py(By" | p)/Px(Ax" | p) tends to 0 more rapidly than any power
of N.

The main conclusions of the preceding discussion are summarized in the fol-
lowing theorem.

TuroreM 3.1. Let A and Ay be non-empty subsets of Q. Then

(a) the size of the test Ay for testing the hypothesis p € A is given by (3.3) and its
error probability at p e A" by (3.8).

(b) There exist positive numbers 8y = O(N “log N) such that the size of the
likelihood ratio test By* = {x | I(z,A) = I(Ax™,A) + 65} does not exceed the
size of the test Ay .

(¢) For each p € A" such that Px(Ay | p) # 0 and Conditions (3.10) and (3.11)
are satisfied, the ratio Py(Byx™ | p)/Px(Ax | p) of the error probabilities at p
tends to O faster than any power of N.

In Section 6 we shall continue in more detail the study of the set of alternatives
at which a given test is less powerful than a comparable likelihood ratio test,

(3.1 1 ) limy->ce 0
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assuming that the sets Ay are regular in a certain sense. The following two sec-
tions are preparatory to what follows.

4. The function I(z, p) and its infima. In this section properties of the function
I(z,p) = 2 iz log (x:/p:)

and its infima for x ¢ A or p ¢ A are studied.

The function I(x, p) is denfied for x and p in the simplex Q given by (2.3).
Throughout, € is considered as the space of the points x and p, with the Euclidean
metric. Thus the complement A" of a subset A of @ is @ — A. The closure of A
is denoted by A. The boundary of 4 is A n A’.

We define the subsets Q, and 2(p) (for p £ @) of 2 by

(4.1) Q% ={e|e>0, i=1,---,k,
(4.2) Qp) ={z|z: =0 if p;=0}.

Thus if p ¢ Q, Qp) = @ If p ¢ Q, Q(p) is the intersection of those
faces {z | ; = 0} of the simplex Q for which p; = 0.

LemMma 4.1.

(a) 0= I(z,p) = . I(z,p) =04 and only of x = p. I(x,p) < o« if and
only if xeQ(p).

(b) For each p e, I(-, p) is continuous and bounded in Q. For each p £ Q)
I(-, p) is continuous and bounded in Q(p).

(¢) Foreachz € Q, I(x, -) is continuous in Q. That is, p’ — p implies I (z, p’) —
I(x, p), even when I(z, p) = .

(d) For each p e Q, I(-, p) is convex in Q. For each x ¢ Q, I(x, -) is convex in
Q.

Proor.

(a) See Section 2 after (2.5).

(b) If pe,I(-,p) is bounded since I(x, p) = > z:log (1/p:) < max;
log (1/p:). The proof of continuity is obvious. For p & Q the proof is similar.

(¢) If z£Q(p) then I(x, p) < o« and the continuity at p is obvious. If z ¢
Q' (p) then I(z, p) = o. If p’ — p then p,’ — 0 for some ¢ with z; > 0. Hence
I(z,p) > » = I(z,p).

(d) The convexity of I(-, p) and I(z, -) follows from the convexity of « log u
and —log u for u > 0.

The next lemma is concerned with (A, p), the infimum of I(z, p) forx c A.
The relevance of 1(A", p) for the approximation of Py(4 | p) is clear from
Theorem 2.1. If the set A is sufficiently regular, the approximation (2.9) is true
with I7(A"”, p) replaced by I(A, p) (see Section 6 and the Appendix).

Levma 4.2. Let A be a non-empty subset of Q.

(a) Let p € Qo . Then there s at least one point y such that

(4.3) yed, I(y,p)=1I(4,p).

If pe A then I(A, p) = 0 and (4.3) s satisfied only with y = p. If p 2 A then
I(A, p) > 0and any y which satisfies (4.3) is in the boundary of A.
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(b) Let p2 Q. Then I(A, p) < «if and only if the intersection A n Q(p) s
not empty. If this is the case, then I(A, p) = I1(A n Q(p), p) and the statements of
Part (a) are true with A replaced by A n Q(p).

Proor. The lemma follows easily from Lemma 4.1. We prove only the last
assertion of Part (a). Let peQ, p 2 A. Then (since I(-, p) is continuous)
I(A, p) > 0. Suppose that I(y, p) = I(A, p) for some y in the interior of A.
Then the point z = (1 — t)y + ¢p is in A for some positive ¢ < 1. Since I(-, p)
is convex,

I(z,p) = (1 = )I(y,p) + tU(p,p) = (1 — O)I(4,p) <I(4,p).

This contradicts the definition of 7(A, p). Hence any y which satisfies (4.3) is
in the boundary of A.

A maximum likelihood estimate of p under the assumption p ¢ A is a point
p = p(z") which maximizes Py(2"™ | p) for p e A (or A). From (2.4) we see
that p minimizes I (2™, p), so that I (2", p) = I(2"”, A). By extension, we may
define p(x) for any z ¢ Q as a point in A for which I(z, p(z)) = I(z, A). The
next lemma asserts the existence of at least one p(x) for each x.

LeMMma 4.3. Let A be a non-empty subset of Q.

(a) For each x & Q there is at least one point p(z) such that
(4.4) p(x) ed,  I(z,p(x)) = I(z,4).

(b) If x e A then I(z, A) = 0 and (4.4) s satisfied only for p(x) = =.

(¢) If x g A then I(z, A) > 0 and any p(x) which satisfies (4.4) s in the bound-
ary of A.

(d) I(z, A) is bounded in Q if and only if A n Qo 7s not empty.

The lemma follows easily from Lemma 4.1.

The function (-, A) may be bounded and not continuous. For example, let
k = 3 and let A consist of the two points p' = (%, 3, 0) and p* = (%, &, 3). If
23 =0, I(z, p') <log2 <log (%) < I(z,p"). If 23 =0, I(x, p') = . Hence
I(z, A) = I(z, p') or I(x, p*) according as z; = 0 or z; % 0, and I(-, A) is dis-
continuous at the points z with z; = 0.

The following lemma is due to R. A. Wijsman, who kindly permitted to in-
clude it here with his proof.

Lemma 4.4 (Wijsman).

(a) The function I( -, A) vs lower semicontinuous.

(b) If A C Qo , or if A s the closure of a subset of Qo , then I(-, A) is continuous.

(e) I(-, A) is continuous in Q.

Proor.

(a) It follows from Lemma 4.3 that I(-,A) = I(-,A), so that we may assume
A closed and therefore compact. Put J(z, p) = 2 z:(—logp:), J(z, A) =
inf {J(z,p) |peA}. Then I(x, A) = > x:loga: + J(z,A), where the first
sum on the right is continuous. Hence it is sufficient to show that J(-, A) is
lower semicontinuous, that is, 2" — y implies J(y, A) = lim inf J (2", A).

Let 2" — y and lim inf J(z", A) = ¢. If ¢ = oo the claim is trivially true, so
assume ¢ < . By taking a suitable subsequence we may assume J(z", A) —c.
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Using compactness of A, for each n there exists p” ¢ A such that J(2", A) =
J(z", p"), and by taking a subsequence if necessary we may assume p" — p’,
say, where p° ¢ A.

All terms in the sum J(z", p") = 2 z:"(—log p:") are =0. Since the sum
converges to ¢, each sequence {z;"(—log p.")} is bounded from some n on. Sup-
pose now y; > 0if ¢ e M,y: = 0if 5¢ M'. If for some 7 ¢ M we would have p.’ = 0,
then since x." — y; > 0 and p." — p.° = 0, we would have z;"(—log p.") — =
which was excluded. Therefore if 7¢ M then p” > 0 and z."(—log p;") —
y:(—log pi’). For i ¢ M’ we have y. log p’ = 0. Hence
J(y,A) £ J(y,p") = 2iewyi(—logps)

= lim 2 ew 2" (—log pi") < lim 2 5, 2" (—log p.") = c.

(b) Suppose that A C Q. For every peQ, I(-, p) is continuous, so that
I(-,A) is the infimum of a family of continuous functions, therefore upper semi-
continuous and, by Part (a), continuous. Since I(-, A) = I(-, A), the same
result holds if A is the closure of a subset of Q.

() If A n Qis empty then 7( -, A) is identically o on Q. Otherwise I(z, A) =
I(x, An Q) for z £ Qy, and I(-, An Q) is continuous by Part (b).

LemMA 4.5 Let A and A be non-empty subsets of Q. Suppose that I(x, A) is con-
tinuous i Q and I(A, A) > 0. Then there s at least one point y such that

(4.5) yed, I(y,A) =I(4,1),

and any point y which satisfies (4.5) is in the boundary of A.

Proor. The existence of a point y which satisfies (4.5) follows from the as-
sumed continuity of I(z, A). Suppose that I(y, A) = I(A, A) for some y in the
interior of A. By Lemma 4.3 there is a p ¢ A such that I(y, p) = I(y, A). The
point z = (1 — ¢)y + tp is in A for some positive ¢ < 1. Since I( -, ) is convex,

(4.6) I(z,p) = (1 = )I(y, ) = (1 — HI(4,A) <I(4,47),

due to I(4, A) > 0. But since p ¢ A, since I(z, -) is continuous, and z ¢ A, we
have I(z, p) = I(2, A) = I(A, A), which contradicts (4.6). This implies the
lemma.

We conclude this section with some remarks on the determination of the infi-
mum I (A, p) and on the set of points in A4 at which the infimum is attained.

We restrict ourselves to the case p € Q. (Lemma 4.2 implies that the general
case can be reduced to this case.) The set 4 is contained in the set {z | I(x, p) =
I(A, p)}, whose complement C is convex. The following lemma gives information
about the boundary of C. A hyperplane (briefly: plane) in Q is a non-empty set
{x| X ax: = ¢}, where a, , - - - , ax are not all equal. The dimension of a hyper-
plane is at most k£ — 2; in degenerate cases, such as {z | z; = 1}, the dimension
may be less than k — 2.

Lemma 4.6. Let peQ,

4.7 C={z|I(z,p) <¢l, 0 <c¢ < max, I(z, p),
and let y be a boundary point of C.
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(a) If yeQ then

(4.8) I(z,p) — ¢ = 2im (log (y:/p:)) (2 — y:) + I(z, y)

and the unique tangent plane of C aty is T = {z | > (log (y:/pe)) (®: — y:) = 0}.
(b) If y 2 Qo then, for each j with y; = 0, T; = {z | ; = 0} is a tangent plane of

C at y, and C has no tangent planes at y other than these T ; and their intersections.
(e) All boundary points of C are in Qq if and only if

(4.9) ¢ < —log (1 — Pmin), Pmin = Min; p; .

Proor.

(a) The identity (4.8) follows immediately from the fact that I(y, p) = ¢
and y and p are in @ . Hence T is a tangent plane of C at y. It is unique since
the derivatives 9 (z, p)/dz; = log (x:/p:) + 1 are continuous in Q.

(b) Clearly, if y; = 0, then T; = {z | z; = 0} is a tangent plane of C at y. It
is sufficient to prove that no hyperplane containing points in Qp is a tangent
plane at y. This will follow if we show that every straight line containing y and
some point in Q intersects the open convex set C.

Let 2° be a point in Q ,

() = (1=ty+ &’ F@) =I®1),p).

We must show that F(¢) < ¢ forsomete (0, 1).
We have for t e (0, 1)

F'(1) = aI(a(1), p) /3t = 205a (2 — ys) log (2:(1)/py)
= D u=oi’ log (tz:"/p:) + O(1)
= D = logt + O(1) ast— 0.
Since F” (t) > 0, we have by Taylor’s formula for ¢ ¢ (0, 1)
= I(y,p) = F(0) 2 F(1) — tF'(1).

It follows that F(¢) < c for ¢ positive and sufficiently small, as was to be proved.
(¢) Let z be a point with z; = 0. Let § be defined by 5; = 0, p: = p:/(1 — p;),
© # j. Then

I(z,p) = D ixilog (z:/p:) — log (1 — p;) = — log (1 — p;),

with equality for z = $. Hence {z|I(z, p) = ¢} C Q if, and only if, ¢ <
—log (1 — Pmin). Part (c¢) follows.
LemmaA 4.7, Let

(4.10) A = {z|f(z) > 0},

where the function f(x) is continuous in @ and max f(x) > 0. Let p be a point in
Qo such that f(p) < 0. Suppose further that the derivatives fi(z) = of(x)/dx: ,
i=1, -k, exist and are continuous at all  in Qo for which f(z) = 0.
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Let y be any point in A such that I(y,p) = I(A,p). Thenif y € Qo , it is necessary
that f(y) = 0 and

(4.11) log (y:/p:) = afi (y) + b t=1,--,k

where a > 0 and b are constants.

Proor. By Lemma 4.2, any point y in A for which I(y, p) = I(4, p) is in
the boundary of A. Since f(x) is continuous, this means that f(y) = 0. The
method of Lagrange multipliers yields the necessary condition (4.11) with some
constants ¢ and b. That a must be positive follows from

f(x) = f() — fly) = 2 f' (W) (zi — y:) + o(|z — y])

and (4.8) since f(z) > 0 implies I(z, p) > I(y, p). (Note that in (4.8), I(z, y)
=o(lz —y).)

Lemma 4.8. If A is convex and A n Q is not empty, and if p e, p 2 A, then
there is exactly one point y € A such that I(y, p) = I(A, p).

Proor. The point y is a common boundary point of the disjoint convex sets
A and B = (x| I(z, p) < I(A,p)}. Since 4 and B’ contain points in Q, it
follows from Lemma 4.6(b) that y is in Q. Lemma 4.6(a) implies that the
separating hyperplane of the sets A and B’ is unique, and y is the unique point
in B’ which is in that hyperplane.

6. The infimum of I(z, p) subject to the condition I(z, A) < c¢. The infimum
I(B,p), where B = {z | I(z,A) < ¢}, is needed for the approximation of the
power of a likelihood ratio test for testing the hypothesis p ¢ A. For the case of
a simple hypothesis, where A consists of a single point p’, the problem is solved
explicitly (Theorem 5.1) and an asymptotic expression for the infimum is ob-
tained (Theorem 5.2). The case of an arbitrary A is then briefly discussed.

TueoreM 5.1. Let p° and p be points in Q, ¢ a finite positive number,

(5.1) B = {z|I(z,9") <.
(I) We have I(B', p) < o if and only if
(5.2) max; pip: # 0 and —log 2 ppi < c.

(I1) Suppose that Condition (5.2) is satisfied. Then there is a unique point y
such that

(5.3) I(y,p") =¢, I(B,p)=1(y,p).
If I(p,p°) < c then y = P, where
(5.4) Pe= Do/ Zopoeps YD #0;  pi=0 i p’=0.
If ¢ < I(p,p°) then
(5.5) yi = (p)' 7°pS /M (s), i=1,---,k,
and

(5.6) I(B',p) = ¢— M'(s)/M(s),
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where, for 0 <t <1,

(5.7) M(t) = 2iae)™'pd,  M'(t) = dM(4)/dt,
and the number s(0 < s < 1) s uniquely determined by
(5.8) [sM'(s)/M(s)] — log M(s) = c.

PROOF First assume that p° and p are in Q. Then = p and the functions
I(-,p’) and I(-, p) are continuous and bounded in Q. By Lemma 4.2 there is
at least one pomt y such that (5.3) is satisfied, and if I(p, p ’) < ¢, then neces-
sarily y = p.

Now suppose that 0 < ¢ < I(p, p ) Then y is a common boundary point of
the disjoint convex sets B" and C = {z | I(z,p) <1 (B, p)}. Since B’ contains
points in @y, Lemma 4.6(b) implies that y must be in Q. By Lemma 4.7 with
f(z) = —I(z,p") + ¢ we must have

log (y:/p:) = —alog (y:/p) + b, i=1 -,k

where ¢ > 0. This is equivalent to (5.5) with s = 1/(1 4+ @) > 0. The point y
must satisfy the conditions Y y; = 1 and I(y, p’) = c. This implies that M (s)
is given by (5.7) and s must satlsfy (5.8). Thus s is a positive root of the equa-
tion F(t) = ¢, where F(¢) = (L' (¢) — L(t), L(t) = log M(t) Now F'(t) =
tL" (1) >0 for ¢> 0. Also, F(1) = L'(1) — L(1) = M'(1) = I(p,p") > .
Hence s is uniquely determmed by (5.8),and 0 < s < 1.

One easily calculates that I (B, p) = I(y, p) is equal to the right-hand side
of (5.6). This completes the proof for the case where p° and p are in Q .

Now consider the general case. Define 7° by

P8 =/ D pmps Hpi#0; B’ =0 if pi=0.

In order that I(z, p) be finite for some z such that I(z, p’) < ¢, it is necessary
that z & Q(p°) n Q(p). If this is the case, then

I(z,p") = I(z, ") + I(7", ") = (7", p°) = —log 2 p;ops’.

These facts imply Part (I) of the theorem.
If Condition (5.2) is satisfied, it follows from the preceding paragraph and
the identity

I(z,p) = I(z,p) — log 2poup: for ze(p’) nQ(p)

that I(B’, p) is the infimum of I(z, p) — log D piosap: subject to the conditions
zeQ(p") nQ(p) and I(z, p’) < ¢ + log > pispi. = ¢, say. The solution of this
problem follows 1mmedlately from the first part of the proof, with @, p°, p, ¢
replaced by Q(p ) n Q(p), 7, B, € It can be verified that the result is equlvalent
to that stated in the theorem.

We now derive an asymptotic expression for the infimum (B, p) of Theorem
5.1 as ¢ — 0. We confine ourselves to the case p ¢ Qo In this case, by Theorem
5.1, I(B', p) is finite for small values of ¢ only if p’ € Q. To emphasize the de-
pendence on ¢ we write B'(¢) for B'.



382 WASSILY HOEFFDING

TarorEM 5.2. Let p’ e Q,p e, B'(¢) = {x|I(z,p") < c}. Then as ¢ — 0,
(5.9) I(B'(c),p) = I(p,p) — (2my)’e" + [1 + (ms/3ma)] ¢ + O(ch),

where

(5.10) m; = 2 iapd log (p/ps) — I(p’, p)}'.
Proor. By Theorem 5.1,
(5.11) _ I(B'(¢),p) = ¢ — L'(s),
where L(t) = log M(t), M(t) = > (p")* 'ps’, and s, > 0 is determined by
(5.12) F(s,)) =¢, F(t) =tL'(t) — L().

All derivatives of L(t) and F(t) exist for all real ¢, and we have
F'(t) =tL"(1), F"(t) = L"(1) + L"),
F"(t) = 2L"(¢) + (L (¢).

Since F(0) = 0 and F(t) is strictly increasing for ¢ > 0, we have s, — 0 as
c— 0.
Ast—0,

(5.13) F(t) = 1 L"(0)¢ + 2 L"(0)8 + 0(tY).

It is easy to calculate that

(5.14) L(0) =0, L'(0) = —I(¢",p), L'(0) =m, L"(0) = —ms,
where m; is defined by (5.10). Hence as ¢ — 0,

(5.15) ¢ = Lmes’ — Emgs’ + 0(s1).
This implies

(5.16) e = (2/me)e* + 2 (my/ms’) ¢ + O(cH).
Now

L'(s) = L'(0) + L"(0)s. + 3L”(0)s.’ + O(s.”)
= —I1(9’, p) + mas. — dmgs” + O(s).
With (5.16) this yields
(5.17) L'(s) = —I1(p°, p) + (2ma)ic — L(my/my)c + O(ct).

The expansion (5.9) follows from (5.11) and (5.17).
Now let A be a non-empty subset of @ and

(5.18) B = {z|I(z,A) <c}.
We have
(5.19) B = UpaB' ("), B'®") ={z|I(z,p") <d.
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Hence
(5.20) I(B,p) = inf {I(B'(p"), p) | P’ £ A}.

For each p°, I(B'(p"), p) can be obtained from Theorem 5.1. Thus the problem
of evaluating I(B’, p) is reduced to that of minimizing I(B'(p°), p) for p° € A.
Alternatively, if the function I(z, A) is sufficiently regular, I(B’, p) can be
evaluated by applying Lemma 4.7 with f(x) = ¢ — I(a, A).
We conclude this section with a lemma which will be used in Section 6. Sup-
pose that p ¢ @ and

(5.21) 0<c<I(pA).
By Lemma 4.2 there is at least one point y such that

(5.22) yeB, I(y,p)=1I(B,p),

and y must be in the boundary of B’. (Note that in general the set B’ is not con-
vex and there may be more than one minimizing point ¥.)
By Lemma 4.3, for each y there is at least one point p(y) such that

(5.23) P(y) ed,  I(y,p(y)) = I(y,A).
Let
(5.24) B, = {x|I(z,p(y)) < I(y,p(y))}.

(Note that if (-, A) is continuous then I(y, A) = ¢.)

LemMma 5.1. Let B' be defined by (5.18). Suppose that p & Q and Condition
(5.21) 4s fulfilled. Let y and p(y) be points which satisfy (5.22) and (5.23). Then
the set B, defined by (5.24) is a subset of B and

(5.25) I(B',p) = I(B/, p).

Proor. Since p(y) ¢ A and, by Lemma 4.3, I(z,A) = I(z,A), we have I(z, A)
< I(z, p(y)) for all x. Since y ¢ B’ and I(-, A) is lower semicontinuous by
Lemma 4.4, I(y, p(y)) = I(y,A) =< c. It follows that B, < B'.

This implies I(B’, p) < I(B,’, p). On the other hand, since I(y, p(y)) < ¢ <
o and I(-, p(y)) is continuous in Q(p(y)), we have y ¢ B,’. Hence I(B’, p) =
I(y,p) =2 I(B/, p) = I(B/, p), and (5.25) follows.

6. The set of alternatives at which a likelihood ratio test is better than a given
test. In this section we shall consider tests which satisfy certain regularity condi-
tions and shall investigate the set of alternatives at which a likelihood ratio test
of approximately the same size has a smaller error probability than the given test
when N is sufficiently large.

DEerFINITION 6.1. A sequence { Ay} of subsets of Q is said to be regular relative
to a point p in Q if

(6.1) I(Ax", p) = I(An,p) + O(N 'log N).
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A sequence {A} is said to be regular relative to a subset A of @ if
(6.2) I(Ax™,A) = I(Ay,A) + O(N ' log N).

A subset A of Q is said to be regular relative to p (or A) if (6.1) (or (6.2)) holds
with Ay = 4.

Sufficient conditions for a sequence of sets to be regular relative to p are de-
rived in the Appendix.

From Theorem 2.1 and Definition 6.1 we immediately obtain

TraEOREM 6.1. If the sequence {An} is regular relative to p then

(6.3) Py(Ay|p) = exp {—NI(Ax,p) + O(log N)}.
If {Ax} is regular relative to A then
(6.4) sup,aPn(Axy | p) = exp {—NI(Axy,A) + O(log N)}.

We now state another version of Theorem 3.1 which compares a test Ay for
testing the hypothesis p ¢ A with a likelihood ratio test. Let

(6.5) B(e) = {z | I(z,A) = c}.

TrEOREM 6.2. Let { A} be a sequence of sets regular relative to A and let
(6.6) ey = I(Ax, A).
There exist positive numbers 8y = O(N ' log N) such that
(6.7) suppeaPn(B(cy + 8x) | p) = suppeaaPn(Ax| p),
and for any p € Q such that the sequence {Ay'} is regular relative to p,
Px(B'(cx + 85) | )

< exp (—Ndx(p) + Nex(p) + O(log N)}Px(4x' | p),

provided that the two probabilities in (6.8) are different from 0, where
(6.9) dx(p) = I(B'(cx), p) — I(Ax',p) 2 0,
(6.10) ex(p) = I(B'(cx), p) — I(B'(cx + bx),p) 2 0.

The proof is clear is we note that relations (6.3) and (6.4) with = replaced
by = are true for arbitrary sets Ax. Hence to obtain inequalities (6.7) and
(6.8) it is not necessary to assume that the sets B(cy + 8») and their comple-
ments are regular.

The assumption that the probabilities in (6.8) are positive implies that
I(Ay, p) and I(B'(cy + 8x), p) are finite, so that the differences dx(p) and
ex(p) are defined.

By (6.8), if (i) N dx(p)/log N — « and (ii) ex(p)/dn(p) — 0, then the ratio
Py(B'(cy + 8y) | p)/Py(Ax’ | p) tends to O faster than any power of N. If
Ay = A is independent of N, so are ¢y = ¢ and dy(p) = d(p), and Conditions
(i) and (ii) reduce to d(p) > 0 and ex(p) — 0. The latter is true if I(B'(c), p)

(6.8)
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is a continuous function of ¢, and then we need only determine the set of points
p for which d(p) is positive. In the general case the set where dy(p) > 0 is also
of primary importance, as will be seen in the sequel. The following theorem gives
a characterization of this set. To simplify the notation we omit the subscripts N.

THEOREM 6.3. Let A and A be non-empty subsets of @ such that 0 < I(A,A) <
o, Let

(6.11) B ={z|I(z,A) = I(4,A)},

and for any p such that I(A', p) < o, let

(6.12) d(p) = I(B',p) — I(4, p).
(I) Always d(p) = 0;d(p) = 0 if and only if

(6.13) (x| I(z,p) <I(B,p)} C A.

(I1) If d(p) = 0 and 0 < I(B', p) < w then I(B', p) = I(y, p) for some
common boundary point y of A and B.

(II1) Suppose that d(p) = 0 and 0 < I(B',p) < o. Lety be a common bound-
ary point of A and B such that I(y, p) = I(B', p), and let p(y) be a point in A
such that I(y, p(y)) = I(y, A). If p and y are in Q then p(y) & Q and p is on the
curve

(6.14) p = p(t), — o <t <0,

where

(6.15) pi(t) = p(y) 'y ™"/ Liabi(y) yi ™ i=1-,k
Proor.

(I) Since A C B, d(p) = 0. If d(p) = O then ze A’ implies I(z, p) =
I(B, p), which is equivalent to (6.13). If (6.13) is satisfied then z ¢ A" implies
I(z,p) = I(B, p), hence I(A’, p) = I(B’, p) and therefore d(p) = 0.

(I1) Suppose that d(p) = 0 and 0 < I(B’,p) < . First assume pe.
By Lemma 4.2, I(B’, p) = I(y, p), where y is in the boundary of B’. Since B’
A’ yisin 47, and I(y, p) = I(4’, p). Again by Lemma 4.2, y is in the boundary
of A'. Thus y is a common boundary point of A and B.

If p £ Q, the proof is analogous, with reference to Lemma 4.2(b).

(III) Under the assumptions of Part (III) the conditions of Lemma 5.1 with
¢ = I(A, A) are satisfied. Hence the set

B/ = (e |I(z, p(y)) < I(y, p(y))}

is a subset of B" and I(y, p) = I(B',p) = I(B,’, p). (This is true without the
assumption y £ @ .) Since y & B', we have I(y, p(y)) = I(y,A) < I(A,A) < oo,
Hence y ¢ Q(p(y)). In particular, if y £ Q then p(y) € Q.

It follows from Theorem 5.1 with p’ = p(y) (or, more directly, by an argu-
ment used in the proof of that theorem) that

log (y:/p:) = —alog (y:/p:(y)) + b, t=1,---,k
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where a > 0. This is equivalent to (6.14) and (6.15) with { = —a < 0. The
proof is complete.

REMARKS ON THEOREM 6.3. We have excluded the case I(A’, p) = o, which
implies I(B', p) = « and Py(4’, p) = Px(B, p) = 0.

If I(B', p) = 0, that is, p ¢ B’, then clearly d(p) = 0. (In this case the set
on the left of (6.13) is empty.) At such alternatives p the error probabilities
Py(A' | p) and Px(B’ | p) can not be very small.

The alternatives p of interest to us are those for which I(B’, p) > 0. The
conditions I(A4', p) <  and d(p) = 0 imply I(B’, p) < o. If I(-, A) is con-
tinuous then I(B’, p) > 0 if and only if I(p, A) > I(A4, A). (Note that if A =
Ay depends on N in such a way that I(Ay, A) — 0 then I(p, A) > I(Ax, A)
for each p £ A for N large enough.)

Theorem 6.3 shows that the set of points p for which I(B’, p) > 0and d(p) =
0 essentially depends on the set of common boundary points of A and B. Sup-
pose, in particular, that the test with critical region A™. differs sufficiently from
a likelihood ratio test in the sense that the sets A and B have only finitely many
common boundary points y. Under some additional conditions Theorem 6.3
implies that the set of points p with d(p) = 0 is small in a specified sense; this
is made precise in the corollary stated below.

To simplify the statement of the theorem we have assumed in Part (III) that
y as well as p are in Q. For the general case Theorem 5.1 implies a similar result
except that, for given points y and p(y), the set where d(p) = 0 may be of more
than one dimension. (Compare Example 9.2 in Section 9.)

Under the assumptions of Part (III) the condition that p is on the curve
(6.14) is necessary but not in general sufficient for d(p) = 0. It is sufficient if,
for instance, the complement 4’ of A is convex.

We state the following implication of Theorem 6.3.

CoroLLARY 6.3.1. Let 0 < I(A,A) < wand let B and d(p) be defined by
(6.11) and (6.12). Suppose that the number of common boundary points y of A
and B s finite; that all these points y are in Qo ; and that for each y there are only
findtely many points p(y) € & such that I(y, p(y)) = I(y, A). Then if I(B', p) >
0 and p e Q, we have d(p) > 0 except perhaps when p is on one of the finitely
many curves (one for each pair (y, p(y)) defined by (6.14) and (6.15).

In the special case of a simple hypothesis, where A consists of a single point
p°, we have B = {z | I(z, p°) = I(4, p°)}. Here p(y) = p° for all y. If P’ e
then, by Lemma 4.6, the condition I(4, p’) < — log (1 — pmia) is sufficient
for all common boundary points of A and B to be in Q.

We conclude this section with a lemma concerning the behavior of ex(p) as
defined in (6.10) for the case where A consists of a single point p’.

Lemma 6.1, Let p°eQo,p e, B'(¢c) = {z| I(z,p°) <c}. Then as § — 0+,

(6.16) I(B'(c),p) — I(B'(c + 8),p) = O(sc”?)

uniformly for 0 < ¢ < I(p, p°) — v, where v is any fized positive number.
Proor. Let J(¢) = I(B'(¢),p). By Theorem 5.1, J(c) =c¢ — L'(s,) for
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0<c<I(pp"), where 0 <s, < 1,F(s.) = ¢, F(t) = tL'(t) — L(t), L(t) =
log M (t), and M(t) is defined in (5.7). For the derivative s,” = ds,/dc we have
F'(s.)s,” = 1. Since F'(t) = tL"(t), we obtain L”(s.)s,s, = 1. Hence

J'() =1 —L"(s)s =1—s7,
J'(¢) = 8.7 %, =8 L"(s)™ > 0.
Therefore for 6 > 0,
0> J(c+8) — J(c) Z8J'(c) = —8(1 — &) /5. .

For ¢ bounded away from 0 and I(p, p°), s. is bounded away from 0 and 1. As
¢— 0,8, ~ (2/my)¥ by (5.16), where m, > 0. This implies the lemma.

7. The likelihood ratio test of a simple hypothesis. The likelihood ratio test for
testing the simple hypothesis p = p° rejects the hypothesis if #" & B(cw), where

(7.1) B(c) = {z | I(z,p") Z d}.

The following theorem gives approximations for the error probabilities of this
test.
TureorREM 7.1. For any p° & @ and any number sequence {cx} we have

(7.2) Px(B(cx) | p°) = exp {—Necy + O(log N)}.
Ifp"eQ,pe, and

(7.3) Nley— © as N— o,
then
(7.4) Pu(B (cx) | p) = exp {—NI(B'(cx), p) + O(log N)},

where I(B'(cy), p) = I(B', p) is evaluated in Theorem 5.1 with ¢ = cx .

Proor. Since the sets B’(cy) are convex, the sequence { B(cy)} is regular relative
to p° by Theorem A.1 of the Appendix. We have I (B(cx), p’) = cx . Hence (7.2)
follows from Theorem 6.1.

Now suppose that p’ e % and p £ Q. Let ¢y > 0 and assume with no loss of
generality that cy < . We apply Theorem A.2 of the Appendix with f(x) =
—1I(z,p") and cy replaced by —cw . It follows from Theorem 5.1 with ¢ = cx
that for each N there is a unique point y™ such that I (3", p°) £ cyand I(y™,
p) = I(B'(cy), p). Moreover, y:"” = min (p.’,p:) > 0 for all ¢ and all N.
Hence the conditions of Theorem A.2 up to (A.9) are satisfied. Condition (A.10)
is satisfied if Nsy — o as N — o, where sy = s > 0 is defined in Theorem 5.1.
If cx is bounded away from 0, so is sy . If ¢y — 0 then, by (5.16), sy is asymp-
totically proportional to cx'. Thus Condition (7.3) is sufficient for the sequence
{B'(cy)} toberegular relative to p. Equation (7.4) now follows from Theorem 6.1.

ReMARK. The case where Condition (7.3) is not satisfied is of no statistical
interest since if N’y is bounded, the size of the test tends to 1. If ¢y < a’/N°
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and q is sufficiently small, the set B'(cy)™ is empty for infinitely many N and
hence the sequence { B’(cy)} is not regular relative to any p in Q.

8. Chi-square and likelihood ratio tests of a simple hypothesis. Let p’ be a
point in Q. Let

(8-1) Qz(x, po) = ZLl(xi — p¢0)2/pio.

The chi-square test for testing the simple hypothesis H:p = p° rejects H if
Q(#", p°) = ev’, where ey is a positive number. We shall compare this test
with the likelihood ratio test which rejects H if I(z", p°) = cx, where cy is so
chosen that the two tests have approximately the same size.

It is well known that if p = p° then the random variables N Qz(Z(N), p") and
oNI(Z™, p°) have the same limiting x* distribution with k& — 1 degrees of
freedom. Hence if ey’ = 2cx = 2¢/N, where ¢ is a positive constant, the sizes
of the two tests converge to the same positive limit. In fact, in this case the critical
regions of the two tests differ very little from each other when N is large. Indeed,
we have

(8.2) I(z,p") = 3Q'(2, p") + O(|z — "),

where |z — p”| denotes the Euclidean distance between z and p°. This implies
that the set {z | @*(x, p°) < 2¢/N} both contains and is contained in a set of
the form {z | I(z, p°) < ¢/N + O(N~*)}. Hence it can be shown that at any point
p # p’ which is in Qo the ratio of the error probabilities of the two tests is bounded
away from 0 and « as N — . (If p £Q, the error probabilities at p of both
tests are zero for N sufficiently large.)

In this section it will be shown that if ey tends to 0 not too rapidly, then at
“most”’ points p the error probability of the likelihood ratio test is much smaller
than that of the chi-square test when N is large enough.

We first observe that

Q(z, p") = D iawi(z — p)/pd £ 2iawi(1 — pl)/pd
< max (1 — p)/p’ = (1 — Pin)/Poin »

Il

(8.3)

where pmin = min p.’. The upper bound is attained if and only if z; = 1 and
z: = 0,1 # 7, for some j such that p,’ = paia -

Hence when we consider the test defined by @*(x, p°) = €, we may assume
that € £ (1 — Pmin)/Pwmin. The case € = (1 — Phin)/Pmin is trivial, and we
shall restrict ourselves to the case of strict inequality. Note that pmia < 1/k, and

p?nin < Y unlessk = 2andp° = (4,1).
Let
(84) A(e) = (2| @z, ") 2 ).

TuroreM 8.1. Suppose that p° & Qo and
(8.5) 0<e< ((1— phia)/Phin)t.
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If r is the number of components p;’ equal to Puia , there are exactly r points y such.
that '
(8.6) yeA(e), I(A(e),p") = I(y,p").
Ezxplicitly, for each j such that p; = phin the corresponding point y is given by
(8.7) Yo = bpmin =4, yi=apd fiFj,
(88) a=1— (Pmin/(1 — pmin))'e, b =14 ((1 — prin)/Pin)’e,
and we have
(8.9) I(A(€), p") = prinblogb + (1 — phia)a log a.
Furthermore,

0 0 0
(810) 2phia(l — Pain)é = p““ln(i 2p§’fm) log - T S 14, 7) 5 4,

where the second expression is to be replaced by L€ if phin = . As e — 0,

0y _ 1, 1 2p(r)nin -1

(8.11) I(A(e),p) = 3¢ +6(p?nin(1 — p?nin))%

Proor. Let y denote any point which satisfies (8.6). By Lemma 4.2 we must
have @*(y, p°) = €. It can be shown that necessarily y £ Qo . (For e small enough,
Q' (y, p) = € implies y € Q. In general this result can be proved with the help
of Lemma 4.6(b). The details are left to the reader.) By Lemma 4.7 we must
have log (y:/p) = sys/pd +t,i =1, -,k where s > 0. Hence y:/p.’ can
take at most two different values, say

(8.12) yi=ap’ ifieM, y;=bp fieM,

€ + 0(é).

where M is a non-empty proper subset of {1, - - - , k}. The conditions > y: = 1
and Q*(y, p°) = € are equivalent to

(813) ah+b(1—h)=1, (a—1%h+ (b—-1)>*1—h)=2¢,

(8'14) h = ZieMpiO.
We may assume a < b. Then
(8.15) a=1—((1—=h)/h)te b=1+ (h/(1—h))te

To satisfy y: > 0 we must have a > 0, that is, € < h/(1 — h). If € is close
to its upper bound (1 — Phin)/Pmin , this condition is satisfied only when & takes
its largest possible value, 1 — pmia . It will be shown that, for any e, y satisfies
(8.6) ifand only if b = 1 — phhis .

For y defined by (8.12) we have I(y, p°) = haloga + (1 — h)blogb = f(h),
say, where a = a(h) and b = b(h) are given by (8.15). By a straightforward
calculation we obtain for the derivative of f(h)

F'(h) = b{1 — (a/b) + 3[1 + (a/b)]log (a/b)}.
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The expression on the right is negative. Hence as & ranges over the values (8.14),
f(h) attains its minimum at A = 1 — pia . This implies that Condition (8.6) is
satisfied if and only if y is one of the points defined by (8.7) and (8.8), and that
I(A(e), p°) is given by (8.9).

The inequality I(A(e), p°) < € in (8.10) follows from the general inequality

(816) I(z,p) = 2 ailog (z:/p:) = 2 w:(w:/pe) — 1) = & (=, p).

The first two inequalities in (8.10) are contained in Theorem 1 of Hoeffding
[4]. (Note that the closer lower bound in (8.10) is attained for € = (1 — 2phia)/
(p?nin(]- - p?min))f-)

The expansion (8.11) is easily verified. The proof is complete.

The next theorem gives the infimum of I(x, p) subject to the condition
ze A'(e), that is, Q*(z, p°) < €.

TuEOREM 8.2. Let p’ e Q, pe, € >0, € < Q'(p, p°). Then there is a unique
point z such that ’

(8.17) zed'(e), I(A'(e),p) = I(zp).
The point z 1s determined by the conditions
(8.18) (2: — p°)/pd = —sclog (2:/pi) +te, ©=1,-+,k;5.>0,
(8.19) Sham=1, @) =¢é
As e— 0,
(820) 2 = p’ — ma(p)'p(log (p/p:) — 1(p', p))e + O(&),
(8.21) I(A'(e),p) = I(p", p) — ma(p)'e + 3¢ + O(&),
where
(8.22) mi(p) = 2iaps(log (p/p) — 1(p, p))’.

Proor. By Lemma 4.8 there is exactly one point z which satisfies (8.17). By
Lemma 4.7, z must satisfy (8.18) with s, > 0. The constants s, and {. are de-
termined by (8.19).

Now let ¢ — 0. The condition Q*(z, p°) = ¢ implies z; — p’ = O(e), 7 = 1,
-++, k. Hence

log (2:/p:) = log (p’/p:) + (2 — p)/pd’ + O(&).
With (8.18) this gives '
(8.23) (14 5) (2 — p)/p =t — s(log (pi'/ps) + O()).
Moultiplication of both sides with p.’ and summation yields
(8.24) te = s.(I(p", p) + O()).
From (8.23) and (8.24) we obtain
(825) (2 — p)/pd = —lso/(1 + s)1(log (p'/ps) — I(p', p) + O(&)).
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If we square both sides of (8.25), multiply with p.” and sum with respect to
i, we find that ¢ = [s./(1 + s.)*(ma(p) + O(€)). Hence

(8.26) 8o/ (14 s0) = ma(p) e + O(E).
From (8.25) and (8.26) we obtain relation (8.20).
Now

(827) I(z,p) = I(p",p) + 22 (2 — p) log (p’/ps) + 3¢ + O(&).

With (8.17) and (8.20) this implies (8.21). This completes the proof.
Let A(e) be defined by (8.4) and let

(8.28) B(e) = {z | I(z,p") 2 I(4(e), p")},
(8.29) d(p, €) = I(B'(e), p) — I(4'(e), p).

TurorReM 8.3. Let p’ e, 0 < e < ((1 — Donin)/Demin)’.
(1) If p £ Q and Q@ (p, p°) > € then d(p, €) > 0 unless for some j with p;° =
0
Pmin

(8.30) pi=1—a+ap’; p:i=apd T ¥ 7,
(8.31) 0<a<1— (pui/(1— pgnin))} e

(I1) As e—0,
(8.32) d(p, €) = $ma(p)*A(p)€ + O(€),

where m;(p) is defined in (8.22) and

’ m2(p)§ (p?xun(l - pgnin))*

(II1) We have A(p) = O for all p e Qo , p 5 p°; and A(p) > 0 unless p satisfies
(8.30) witha % 1,0 < a < (1 — Doin) " for some j such that p;° = Puia.

Proor. Part (I) follows from Theorems 6.3, 8.1 and 8.2. (The parameter a
in (8.30) is a function of the parameter ¢ in Theorem 6.3.)

(I1) By Theorem 8.1, as e — 0,

1 2puin—1
6 (p?nm(l - p?min))

(838)  I(A(,p) =3¢ + &+ 0,

By Theorem 5.2,

(835) 1(B(9,p) = 169 — Gma(p)@ + (1+ 2221) o 1 o(e),

where ¢ = I(A(e), p°). From (8.34) and (8.35) we obtain after simplification
I(B'(e),p) = I(p’, p) — ma(p)*e

(8.36) 1, 1m(p) 1 4 2pmin — 1 2 3
T {5 + 6 ma(p) (—3'mz(p) (Pamin(1 — p?nin))i} <t 0(<).
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By Theorem 8.2,
(8.37) I(4'(e),p) = I(p°, p) — m'(p)t e + 1 + O(&).

The expression (8.32) for d(p, ¢) follows from (8.36) and (8.37).
(II1) Let w = (log (p’/p:) — I(p", p))/ma(p)’,

(8.38) u= (U, ", ), pi(u) = 2 fapiui.

Then w(u) = 0, pe(u) = 1, ps(u) = my(p)/me(p)?. Part (III) of Theorem 8.3
is an immediate consequence of the following lemma. (Note that A(p) = 0 is
implied by d(p, €¢) = 0. The lemma gives the conditions for equality.)

Lemma 8.1. Let uj(u) be defined by (8.38), where p° ¢ Q and uy, -+ - , ux are
any real numbers such that p(u) = 0 and ps(u) = 1. Then

(8.39) us(4) Z (2Pmin — 1)/ (Phaia(1 — Puin)).
The sign of equality holds if and only if for some j such that p £ = pPin
(8.40) uj = —((1— pglin)/p?nin)%; Ui = (p?nin/(l — p?nin))%, RN R

Proor. Since p’ & Q, the set of points u defined by w(u) = 0, uo(u) = 1 is
bounded and closed. Hence u3(u%) has a finite minimum in this set. An applica-
tion of the method of Lagrange multipliers shows that for u to be a minimizing
point it is necessary that u. take only two values, say u; = a if e M, u; = b
if 2 M, a > b. The conditions p;(u) = 0, pe(u) = 1 imply ps(u) = (1 — 2h)/
(h(1 — h))}, where h = > ieups. The minimum with respect to & of this ratio
is attained at A = 1 — Pin , and the lemma follows.

The following lemma establishes the regularity of the sequences of sets {A (ex)}
and {A'(ex)} under general conditions.

Lemma 8.2. Let A(¢) = {z | Q*(z,p°) = €}. For any p° and any ex the se-
quence {A (ex)} is regular relative to 2. If poe, peQ,and

(8.41) Ny’ — o as N— o,

the sequence {A'(en)} is regular relative to p.

The proof closely parallels the proof of Theorem 7.1 and uses Theorem 8.2
and Equation (8.20). A remark analogous to that after the proof of Theorem
7.1 applies to the present case.

We now can state the following result about the relative performance of a
chi-square test and a likelihood ratio test of a simple hypothesis.

TuEoREM 8.4. Let p’ e and 0 < ey < ((1 — Donin) /Donin) -

(I) For the error probabilities of the chi-square test which rejects the hypothesis
p=7p"if &V eA(en) = {x| Q(z,p") 2 ex’} we have

(8.42) Py(A(en) | p°) = exp {—NI(A(en), p") + O(log N)},
where [(A(¢€), p°) is given explicitly in Theorem 8.1; and if
(8.43) pPeEQ, Nley’'— © as N — o,
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then
(8.44) Py(A'(ex) | p) = exp {—NI(A'(ex), p) + O(log N)},

where I(A(ex), p) is given in Theorem 8.2.
(II) There exist positive constants 5y = O(N " log N) such that for the likelihood
ratio test which rejects p = p° if

¢ e By = {z|I(z,p") = I(A(ex), p") + oa}
we have
(8.45) Py(By | PO) < Py(A(en) | PO)$
and if Conditions (8.43) are satistied and e’ < Q*(p, p°) — B for some B > 0, then
Py(By' | p) = exp {—N d(p, ex)
+ 0(log N/I'(A(ex), "))} Pu(4 (ex) | ),

where d(p, €) 1s defined in8.29) and has the properties stated in Theorem 8.3.
In particular, if

(8.47) ev — 0, Nex'/log N — o as N — «,

then at each point p € Qo , p #= p’ which does not lie on one of the line segments

(8.46)

(848) pij=1—a+ap’; pi=ap’i=j; 0<a<1;p/ = pun,

the likelihood ratio test By is more powerful than the chi-square test A (ex) when N
1s sufficiently large.

Proor. Part (I) follows from Theorem 6.1 and Lemma 8.2.

Part (II) follows from Theorem 6.2, Lemma 6.1, and Theorems 7.1, 8.1 and
8.3. The assumption ey’ < Q*(p, p°) — 8,8 > 0, implies I(A (ex), p°) < I(p, p")
—~ for some v > 0, as required in Lemma 6.1. The equality in (8.46) follows
from Theorem 7.1.

ReMaRK. The line segments (8.48) connect the point p° with some of the ver-
tices of the simplex Q. For any finite N the likelihood ratio test is more powerful
than the chi-square test except in a certain neighborhood of these line segments,
which depends on ey . It would be interesting to determine the extent of this
neighborhood for moderate values of N and selected values of ey (that is, of the
size of the test).

9. Chi-square and likelihood ratio tests of a composite hypothesis. There is
reason to believe that in the case of a composite hypothesis the relation between
a chi-square test and a likelihood ratio test in general is analogous to that in the
case of a simple hypothesis (see Section 8), with a notable exception mentioned
below. For a chi-square test of a composite hypothesis the determination of the
common boundary points of the sets A and B (in the notation of Theorem 6.3)
is somewhat cumbersome. We therefore present no general results. We first shall
show by an example that for one common version of the chi-square test it may
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happen that the size of the test is never smaller than some power of N; if this is
the case, our theory is not applicable. We then give a simple example where the
situation is analogous to the case of a simple hypothesis.

There are several versions of the chi-square test for testing a composite hy-
pothesis, p € A. One is the minimum chi-square test which is based on the sta-
tistic Q*(2"”, A), where

(9.1) Q(z,A) = inf {Q*(z,p) | p eA}.

Here Q*(x, p) is defined by (8.1), with the convention that (z:; — p:)*/p: = 0 if
z; = p; = 0. The calculation of Q*(x, A) is cumbersome for some of the common
hypotheses. When a maximum likelihood estimator p(z) of p under the assump-
tion p e A (as defined in Lemma 4.3) is available one often resorts to the test
based on

(9.2) @(2) = @'(z, p(x)).

If the size of the test is held fixed as N increases and the set A is sufficiently
regular, the tests based on Q*(x, A) or Q*(z) differ little from a likelihood ratio
test based on I(z, A), just as in the case of a simple hypothesis. However, if we
require that the size of the test tend to 0 more rapidly than a certain power of N,
it turns out that this requirement can not in general be satisfied with a Q* test.

Let & denote the maximum of @*(z™) for 2™ & @¥. The @* test of smallest
positive size for testing the hypothesis H: p e Arejects H if and only if Q*(z™) =
év. Suppose that this critical region contains a point z(m which is close to A in
the sense that I(z™, A) = I(z(m, p(2™)) is of order N™* log N. Then, by (3.3),
the smallest positive size of a Q* test is not smaller than some power of N. The
following example serves to illustrate this phenomenon.

ExampLE 9.1: Hypothesis of independence in a contingency table. Let the k = rs

components of z ¢ Q be denoted by z;;,¢ = 1,---,7;5 = 1,---, s, where
r 2 2,s = 2. Define e = ij.-,-, xj(” = Z.- z:j. Let
(93) A= {p I Pi; = pi(l)pi(‘z); 1= 17 ) T';j = 17 Tt S}.

Then p:;(z) = 2:"z;® and
Q(z) = 2 2 2/ @ P2)] — 1

where, by definition, the terms with z;Vz;® = 0 are zero. For simplicity let

r = s. Then, due to z7; < 2,2, Q*(z) < r — 1, with equality holding if and
only if each row and each column of the matrlx x, ; contains exactly one non-zero
element. Let 2 denote the point defined by 2’ = 1 — (r — 1)/N;2{¥’ = 1/N,

=2 - ,r;28 = 0,7 # 5. Then ¢*(z™) = r — 1 and
™| p(z)) = INY(N — r + 1)1 — [(r — 1)/N}Z¥HN20D
~ 6~2T+ZN-T+1.

Thus the smallest positive size of a Q" test is proportional to N,
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In contrast, the size of the likelihood ratio test which rejects H if I(2*”,A) = ¢
does not exceed exp { —Nc¢ + O (log N)}.

In the following example the situation is similar to the case of a simple hy-
pothesis.

ExampLe 9.2. Let £ = (a1, -+, o), b = 3,

v

A={p|p = pi.
We have pi(x) = (21 + 22)/2,7 = 1, 2; p(x) = x:,7 > 2. Hence
Q(x) = 4(zm + 2){[r/ (211 + )] — ¥,

max Q*(z) = 1. Let A = {z| Q°(z) = €},0 < e < 1. It can be shown that the
sets A and B = {z | I(x, A) = I(A4, A)} have exactly two common boundary
points, y' = ((1 — €)/2, (14 €)/2,0,---,0), 5" = (1 + €/2, (1 — ¢)/2,
0, ---, 0). Since these points are not in €, Part (IIT) of Theorem 6.3 is not
directly applicable. It is not difficult to show that if I(p, A) > I(A4, A) then
d(p) > O unless p; = 0 or p, = 0. Thus if £ = 4, the set of points p such that
I(B',p) > 0and d(p) = 0 is of more than one dimension. Since, however, the
present hypothesis set A is such that we have effectively k¥ = 3 components, the
result may be said to be analogous to that in the case of a simple hypothesis.

10. Some competitors of the chi-square test. There are a number of test
statistics for testing a simple hypothesis which have the same asymptotic dis-
tribution as the chi-square statistic when the hypothesis is true. As an example
consider the test which rejects the hypothesis p = p° if D*(2", p°) exceeds a
constant, where

(10.1) Di(z, p) = D ia(zd — pd)’

(see Matusita [5]).
For p° £ Q we have

Di(z, p") = & (z, p') + O(lz — p"").

Thus if the size of the test is bounded away from zero, the test behaves asymp-
totically as the chi-square test and differs little from the likelihood ratio test.

Let A = {z | D’(z, p°) = €},0 < € < 2. It is easily seen that there are only
finitely many points y in A for which I(y, p°) = I(A, p°). Just as in the case of
the chi-square test they are such that the ratio y:/p.’ takes only two different
values. If the size of the test tends to 0 at an appropriate rate, the test compares
with the likelihood ratio test in a similar way as the chi-square test.

For testing a composite hypothesis we may use the test based on D*(z, p(z)).
It can be shown that in the case of Example 9.1 the size of this test may decrease
at an exponential rate, in contrast to the analogous chi-square test.

Another interesting class of tests is defined in terms of the distances

(10.2) D(z, p) = maxXyen 2en(T: — i),
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where 91 is a family of subsets of {1, - - - , k}. If 9 contains all these subsets then
D(z, p) = 2> |zs — pi|. If M consists of the sets {1, ---, 4 and {¢, -+, k}
fori =1, ---,k, then D(z", p°) may be identified with the Kolmogorov sta-
tistic (discrete case).

Let p"eQ, 0 < ¢ < max, D(z, p°). The set A = {z | D(z, p’) = ¢ is the
union of the half-spaces Ay = {x| D ien(z: — pd) = ¢, M & 9. Hence we
obtain

I(4, po) = min eyt (4, Po) = min yeqd (hu),
where hy = D _i.up: and
J(h) = (h+ €) log[(h+ e)/h] + (1 — h — ¢) log (1 — h — €)/(1 — h).

Again the minimizing points y are such that the ratio y:/p.’ takes only two
values. The function J(h) has a unique minimum at a. point hy which is close to
1 if ¢ is small. This implies that if D(z, p°’) = 32, |z — p’| and p. = 1/k,
¢ =1,---,k, then, for ¢ small, there are close to (;}.) minimizing points. For
the chi-square test this number is only k.

11. Bayes tests and likelihood ratio tests. In this section it will be shown that
certain Bayes tests differ little from the corresponding likelihood ratio test if N is
large, not only when the size ay of the test is bounded away from 0 (in which case
a chi-square test has a similar property) but also when ay tends to zero.

Let @ be a distribution function on the simplex Q and let

(11.1) Py(z™ | @) = [o Px(z™ | p) dG(p).

The Bayes test for testing the hypothesis H: p = p’ against the alternative that
p is distributed according to G rejects H if the ratio Py(z™ | @)/Px(z'™ | p")
exceeds a constant. This ratio is < exp {NI(z™", p")}.

Let U denote the uniform distribution on £, so that the vector (py, -+, Pr_1)
has a constant probability density. We have

(11.2) Py(2™ | U) = (MEH™
for all 2. Hence
NI(Z®, p") — log [Px(z™ | U)/Py(z'™ | p")]
= log (V&Y + log Py(2™ | 27).

Here the left side is the difference between the test statistics for the likelihood
ratio test and the Bayes test. An application of Stirling’s formula to the last term
in (11.3) (see (2.11)) shows that if the components of 2™ are bounded away
from 0, the right side of (11.3) is of the form ¢y + O(1), where ¢y does not
depend on 2. This implies that the critical regions of the two tests (when they
are of approximately the same size) and their error probabilities at the points in
Q, differ little from each other.

The uniform distribution U has been chosen for simplicity. We obtain a similar

(11.3)
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result if U is replaced by a distribution G such that, for example, the probability
density of (py, -+ -, pr_1) is positive and bounded.

Now consider a composite hypothesis, H: p ¢ A. Let G, be a distribution on Q
such that the set A has probability one. We may expect that for suitable choices
of Gy and G the Bayes test based on the ratio Py(z" | G)/P (2 | Gy) will differ
little from the likelihood ratio test based on I(z*”, A). This is here illustrated by
two examples.

ExampLE 11.1. Binomzal hypothesis. Let k = m -+ 1 and denote the points of
by x = (2o, 21, -+, Tm). Let

A={p(6)|0=6=1}
(11.4) ; _;
pl(o) = (7)01(1 -0 Zr i = 07 17 e, M.

Then I(z, A) = I(z, p(z)), where p(z) = p(b(z)), b(z) = 2 izi/m.
Let U, denote the distribution on A induced by the uniform distribution of
on (0, 1). Then

Pu(z™ | Uy) = (NI n: O[(mN + )" L (MH™,

where s = 2 ini = mN6( ™). Let, as before, U be the uniform distribution on
Q. After simplification we obtain

NI(Z™, A) — log [Px(z™ | U)/Pu(z™ | U)]

11.5

(11.5) = log ("™ — log (mN + 1) + log Py(z"™ | 2™) — log Py™
where

(11.6) Py* = ("7)(s/mN)[1 — (s/mN)"™".

Relation (11.5) is analogous to (11.3) and implies a similar conclusion.
ExaMmpLE 11.2. Hypothesis of independence in a contingency table. Let A be de-
fined as in Example 9.1. Let U, be the distribution on A such that the random
vectors (p, « -+, p.2) and (p®, -+, p,?) are independent and each is uni-
formly distributed on the respective probability simplex. Let 2 = niy/N, n:®
= > ing,n> = D ini;. We obtain
) NI(z*, A) — log [Px(z™ | U)/Py(z™ | Uy)]
11.7
( = log [("7=) /() (NED] + log [Pu(2™ [ 27) /Py Py,

where
Py® = (NYNY) ITic ()" /n1

and Py® is defined in an analogous way in terms of the n;®.

The result is quite similar to that of Example 11.1.

The hypothesis sets A of Examples 11.1 and 11.2 are special cases of a class of
subsets of Q for which relations analogous to (11.5) and (11.7) hold true.
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Appendix. Regular sequences of sets. In this appendix sufficient conditions are
derived for a sequence of subsets of Q to be regular relative to a point in Q. We
recall that, by Definition 6.1, the sequence {4} is regular relative to p if

(A1) I(Ax™,p) = I(Ax,p) + O(N"' log N).

(Sanov [7] considered the weaker regularity condition where the remainder term
in (A.1) is replaced by o(1).)

Since Ay™ < Ay, we have I(Ax"™, p) = I(Aw, p). Hence for those N for
which I(Ax, p) = o Condition A.1 is satisfied. Thus {4 ~} 1is regular relative
to p if Condition (A.1), with = replaced by =<, is fulfilled for those sets 4 y for
which I(Ax, p) < .

Lemma A.1. The sequence { A x} is regqular relative to p if there exist constants N,
and c such that for each N > Nowith I(Ay,p) < o there is a point y & Q for which

(A2) I(y, p) = I(A~, p)
and a point ze Ax™ for which
(A.3) |2 — yi|l <N if pi >0, zs=0 ¢ p;=0.

Proor. We may restrict ourselves to values N for which I(Ay, p) < . It is
sufficient to show that

(A4) I(z,p) — I(y,p) < O(N "log N).
The assumptions imply that y and z are in Q(p) for N > N, . Hence for N > N,

I(z,p) = I(y, p) = 2piwods,  di = z:log (2:/p:) — yilog (y:/ps).

If 2: = O theny; < ¢N 'and d: = —y.log (y:/p:) = O(N 'log N).

If z; # Othenz = N 'and

di = (2: — y:) log (2:/p:) + yilog (2:/y:)
= (2 — yi) log (2:/ps) + yi((2i/y:) — 1)
= [zi - y,-| llog N—ll + 0('21 - ytl) = O(N_l log N)
Hence d; < O(N ' log N) for all ¢ with p; 0, and (A.4) follows.

For any real numbers a; , -« - , @ , ¢ the subset of @ defined by D ax: > ¢ or
> aw: = ¢ will be called a half-space. (It is convenient here not to exclude the
case where all a; are equal. Thus the proof of the next lemma for the case ped
is strictly analogous to the proof for p £ Q.)

LeMma A.2. If p is any point in @ and A s any half-space such that I(A,p) < o«
then there vs a point y € Q for which I(y, p) = I(A, p), and for each N = k(k — 1)
there is a point z e A" such that |2; — y:| < (k — 1)N ' if p: > O and 2z = 0
ifpi =0

Proor. First assume that p € Qy and

A= {z| 2 ax:> .
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Since I(A4, p) < o, A is not empty, so that max a; > ¢. By Lemma 4.2 there is
a point y such that I(y, p) = I(4, p) and > ay: = c. It is easy to show that

yed.

We have y; = k™" for some ¢. For definiteness assume that y;, = k. Define
2= (21, -, z) as follows. For7 = 1, --- , k — 1 let Nz; be an integer such
that

(A5) z2i = O, 2 & Yi, IZ; - y,'l = N—l, (a; - ak)(zi - y,-) = 0.

These conditions can be satisfied since y e Q. Let 2z, = 1 — 23 — «++ — 241 .
Then
2zl— 2 Wi+ ND=yp—(k—-DN 2k — (k— 1N

Henceif N = k(k — 1) thenz, = 0and z e . Moreover, |z: — 5| < (k — 1)N*
for all z. Now

(A-ﬁ) ZI;=1 aizi — € = ZI;=1 ARy — le?=1 a:Y: = f:i (ai - alc)(zi - yi)-

If the a: are not all equal, the last sum is strictly positive by (A.5). Otherwise
the inequality in (A.6) is strict. Hence z ¢ A" for N = k(k — 1). The lemma
is proved for the present case.

IfpeQand A = {x| D aa: = ¢}, the conclusion of the lemma follows from
the first part of the proof provided that the set {2 | D aw; > ¢} is not empty. If
it is empty then, since A must be non-empty, we have max a; = ¢ and 4 is the
set of all points x such that z; = 0if a; < ¢. We have I(4, p) = I(y, p) where
Yi = pi/ Doa j=eP; if @i = ¢, y; = 0 otherwise. It is trivial to show that the con-
clusion of the lemma is true in this case.

If p £Q, the assumption (A4, p) < o implies I(4, p) = I(A n Q(p), p)
and the proof is similar-to that for the case p ¢ Q.

Lemmas A.1 and A.2 imply that any sequence of half-spaces is regular relative
to any point in Q. More generally we have

TaEOREM A.1l. Any sequence of subsets of Q whose complements are convex is
regular relative to any point in Q.

Proor. Let A be a set whose complement is convex and p a point such that
I(A, p) < . We restrict ourselves to the case p ¢ Q since the case p £ Q is
treated in an analogous way, as in the proof of Lemma A.2.

Let y be a point in 4 such that I(y, p) = I(4, p). If p £ A then y is in the
boundary of the convex set A’; hence there exists an open half-space H defined
by a supporting hyperplane of A’ through y such that 4’ < H ‘'soH cC A.If
p e A then y = p, and again there is a half-space H C A such that y is in the
boundary of H.

If y £ Q) then H is not empty, so that y ¢ H and therefore I (A4, p) = I(H, p).
By Lemma A.2 and its proof, for each N = k(k — 1) there is a point z in H w
hence in 4™, with the property stated in that lemma.

Now suppose that y £ Q. We first show that the set 4 n @(y) is not empty.

Every neighborhood of y contains a point zeA. Let h = D 0 ;. As
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xz —y, h — 0. We may assume b > 0 since otherwise x ¢ A n Q(y). The point
Z defined by &; = z./(1 — k) ify; > 0, & = 0if y; = 0, is in Q(y). It is suffi-
cient to show that Z ¢ A for | — y| small enough. This, in turn, will follow if we
show that for [z — y| small enough there is a number ¢ < 0 such that the point
z = (1 — t)x + £ is in Q and satisfies I(z, p) < I(y, p). Indeed, the latter
implies z ¢ A’, and if & £ A’, it would follow from the convexity of A’ that z e 4’,
contrary to our assumption.

Fix g € (0, 1) and define ¢t by ¢ = h(1 — ¢). We have t < 0 for b < g, and
zi=x(l—g)/(L —h)ify; > 0,2, = xzig/hif y; = 0. Hence as x — v,

I(z,p) ~ (1 —g) 2pisoyslog lyd(1 — ¢)/pil + (g/h) 2yimowilog (z:g)/(hp:)

= (1 — g9)I(y, p) + log (9/Pmia)-

With ¢ = pmin this implies that I(z, p) < I(y, p) for |t — y| small enough,
as was to be proved. ’

Since A n Q(y) is not empty, I(4, p) = I(4 n Q(y), p). The set 4" n Q(y)
is a convex subset of Q(y). For z ¢ @(y) we have I(z, p) = I(z, §) —
log >, ;>0 D, where p; = p./ Zyj>0 p;if y; > 0,5, = 0 otherwise. The argument
used in the case y € Qo , with Q replaced by the subspace Q(y), leads to the con-
clusion reached for that case.

Thus the conclusion of Lemma A.2 is true for any subset A of Q whose comple-
ment is convex. With Lemma A.l this implies the theorem.

Define the subset Q. of Q@ by

(A7) Qe={x|x1>€,1=1,,k}
THEOREM A.2. Let
(A.8) Ay = {z|f(x) > cn},

where the cy are real numbers and f(x) s a function defined on Q whose derivatives
fi'(z) = of(x)/dz: and fis(x) = 8f(x)/dx:dx; exist and are continuous in Q.
Let pe Qo . Suppose that there exist positive numbers Ny and e such that for each
N > N, there is a point y™ with the properties

(A.9) yWe, fG™) zew, IW™, p) = I(Ay,p)
and that
(A.10) limysw N max:; |fi (™) = £/ (y™)] = + .

Then the sequence { A n} is reqular relative to p.
Proor. The assumptions imply that for N > N,

fle) — ex 2 f(z) — f(y™)
= 2iafi (™) (@ — ) + 0]z — yP)
= Y e (@ — v + 0|z — y(mlz)

uniformly for & & Q2 , where a.'™ = £/ (') — £’ (y™).



DISCUSSION OF HOEFFDING’S PAPER 401

For ¢ = 1,---,k — 11let m;"” denote the largest integer <Ny, and let

m™ = N — m"™” — -+ — mi¥) . Define the point 2 by
Na® = m® 12 it o™ 20, Ne® = ™ — 1 it @™ <o,
fori <k —landz®™ =1—2" — ... — 2*) . Then
(A.11) 2™ — 4| < 2k/N, i=1 -k
Since y™ e Q. , 2™ is in Qs for N > N; = N, . Moreover,
(@™ — 3™y = N |a,~<N)|, t=1.--- .k — 1.

Hence for N > N;
fE) —ev =2 N7 2200 0™ 4+ O(NTD)
= N maxi; £ (y™) — £/ ™) + 0N ).

Condition (A.10) implies that for N large enough we have f(z™) > cy, that
is, 2V e Ay .
Thus the conditions of Lemma A.1 are satisfied. The proof is complete.

v
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DISCUSSION OF HOEFFDING’S PAPER

Jerzy NEyMaAN': Professor Hoeffding is to be heartily congratulated on his
very interesting paper. His results as explicitly formulated are important enough.
It s important to know that out of the several tests of the same hypothesis, the
tests whose certain asymptotic properties are identical and which, therefore, were
considered equivalent, one particular test has an asymptotic property, not pre-
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