SEVERAL k-SAMPLE KOLMOGOROV-SMIRNOV TESTS'

By W. J. CoNoVER

Kansas State University

1. Introduction. Let the nk random variables {X;;}, ¢ = 1, ..., n, j =
1, - - -, k, represent k£ random samples of equal size n with the common absolutely
continuous distribution function F(z). Order the samples within themselves,
and denote the rth ordered sample by Zy, < Z < --- < Z,,. Then Z,, is the
7th order statistic from the rth sample, and Z,. will be referred to as the extreme
of the rth sample. Define the empirical distribution function of the rth sample
F.(z) as

F.(z) =0 ifz < Zy,
(1.1) F.(z) = m/n i Zpr 2 < Zpyrr,

F.(z) =1 if Z,, < 2.
Now order the samples among themselves on the basis of their extremes. That is,
let S = {Zy,,r =1, -+, k} be the set of extremes from the k samples, and let

Yu < Y < .-+ < Yy represent the set S after S is ordered. Further, let Y ,;
represent the ¢th order statistic from the sample whose extreme is Yi; . In other
words, for each point in the sample space where Z; corresponds to Y;;, the
sample (Zy ,Zoy, -+, Zn) will be denoted by (Y, Y, -++, Ya;). Since
er < er < e < an , 1t follows that Y]j < Yzj < e < Y,,j . The number 7
is called the rank of Y ,; within the sample, and the number j is called the rank of
the sample. Define the empirical distribution function of the sample with rank
jas

S](:l/) =0 lfy < Yli)
(1.2) Si(y) = m/n if Y Sy < YVouiaj,
Si(y) =1 if Yoy < 9.

When k = 2, the Kolmogorov-Smirnov (two-sample) test usually involves the
use of the test statistics

(1.3) D¥(n, n) = sup, [Fi(z) — Fa(z)]
and
(1.4) D(n,n) = sup; [Fi(x) — Fa(2)]

Massey (1951) tabulated the distribution of (1.4), and Birnbaum and Hall
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1020 W. J. CONOVER

(1960) give the distribution of both (1.3) and (1.4) for n ranging from 1 to 40.
Darling (1957) presents an exposition of the extensive research involving various
aspects of the Kolmogorov-Smirnov test.

In this paper, (5.1) and (5.2) give the distribution functions of the test sta-
tistics

(1.5) Di(2,n) = sup, [Si(y) — Sa(y)]
and

(1.6) Dix(2, n) = sup, [S2(y) — Su(y)],
respectively.

For k samples, £ > 2, the obvious extension of the Kolmogorov-Smirnov test
involves the use of the test statistics

(17) D+(n7 Ny --, n) = SUPgz,n, [F,(IIJ) - ‘Fj(x)]’
where I; = (4,7:1 < j;7=2,3, .-+, k) and
(18) D(’IL, N, =+, n) = SUPz,1, le(x) - F](CE)',

where I, = (2,75:4,5 = 1,2, -+, k). The mathematical expression for the dis-
tributions of (1.7) and (1.8) has proved elusive. Birnbaum and Hall (1960) have
devised an iterative scheme using simple difference equations, suitable for
machine computation, which makes it possible to find the exact distribution of
(1.7) and (1.8) in the general case where the sample sizes are not necessarily
equal.

A clever geometric approach by David (1958) resulted in the exact distribu-
tion of a 3-sample test statistic

(1.9) D' = sups., [(—1)7(Fi(z) — Fi(z))],

where Iy = (4,5:1 < j,7 = 2, 3).

That the distribution of (1.9) is not simple, indicates that the distributions of
(1.7) and (1.8) may be unwieldy to use in their exact mathematical form;
therefore, the iterative scheme mentioned above may be the most practical
method to obtain the desired probabilities.

Kiefer (1959) discusses the above k-sample random variables and other
k-sample analogues of the Kolmogorov-Smirnov test. Other k-sample tests of
the same nature are introduced by Dwass (1960).

This paper proposes to reduce the k-sample problem to that of 2 samples. The
distributions of the random variables

(1.10) D3,,(k, ) = sup, [Si,(y) — S5, (y)]
and
(111) D;'-u'z(ky n) = Supy [Sn(y) - ‘Sil(y)]’

where j; < 72, are given by (3.7) and (4.5), and are found to be of a form simple
enough for practical use.
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To test the null hypothesis that the & samples were drawn from populations
having identical distributions against. the alternative hypothesis that at least
one of the populations differs by location parameter, Di:(k, n) could be used.
To divide the %k samples into groups having similar location parameters,
D} ;1(k, n) could be used for all values of j from 1 to k — 1.

If the alternative hypothesis is that the populations differ by a scale parameter
only, Dix(k, n) could be used as the basis for a nonparametric analogue to the
maximum F test given by Hartley (1950).

Following some preliminaries presented in the next section, Section 3 gives the
distribution function of Dj,;,(k, n). The distribution function of Dj,j,(k, n) is
derived in Section 4. A discussion of the special case where k£ = 2 is given in
Section 5. The final section gives the limiting distribution as n — «, which is
found to be the same for both D};,(k, n) and Dj,;,(%, n), and independent of
jl ) j2 ) and k.

9. Preliminaries. The distribution function of Zi, is well known to be 1 —
[1 — F(2)]". Let I, represent the infinitesimal interval (f;, t;; + df;;). From
(8.7.5) of Wilks (1962) the joint probability element of Yy, and Yij, is

P(Yy,ely, Vi eI = [k1/(Gr — DG — n — DIk — 7o) 1]
(21) [l — (1 — F(t))" "7 — F(t))" — (1 — F(t))"™
q = F()"™ 2 d[l — (1 — F(t,))"d[l — (1 — F(t))"]

in the region where #;, < t,, zero elsewhere.
Because the samples are mutually independent before they are ranked, the
joint probability element of Yy, and Y5, , where r and s are unspecified, is

(22) P(eré‘ll,-, Ylsé‘Ils) = P(erSIlr)P(Ylsé‘Ils)
=dll — (1 — F(tw))"ldll — (1 = F(tu))"].

The rank of a sample depends only on the extreme within that sample. That
is, for unspecified values of  and s,

(23) P(r = 1,8 = Jo| Yieeh,, Yooelo, -+, Yoeln, Yiuel,
Yoelog, ++, Ynseln) = P(r=j1,8=j2| Yieely, Y€1),

But since

(2.4) P(A|B) = P(AB)/P(B)

equation (2.3) can be written as

(25) P(7'=j1,s=j2,Y1r€Ilr,"’ ,Ym‘eInr; Ylealls "‘,YnseIns)
P(ere-[lr,"' yaneInr,YIsEIls;"‘ ,Ynselna)

= P(T =ji,8 =j2, Yi,elh, Ylsé‘Ils)/P(eré‘Ilr, YlaSIu),

which is equivalent to
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(26) P(Yljl & Il’r ) Y2j1 & I?r, ctty Ynjl elnr ) Yljz 8-[13 y Ty Ynjze Ins)
P(erellr,YheIm-, et ,anaInr,YlssIlsy"' ,Ynsalns)
= P(Yy, e Iy , Yij, € [s) /P(Yyr € Iy, Yo € Ins).

Because r and s represent unspecified values, the samples consisting of {¥;,} and
{Yi),7=1,2, -+, ncan be regarded as independent. Therefore, using (8.7.2)

of Wilks (1962),

P(Yyely, -, Yyely, Yioely, -+, Yaseln,)
P(Yvely, -, Yoelu)P(Yiely, -+, Yas & Ins)
n 1 dF (t,) dF (t,) -+ dF (b, )n! AF (bis) - AF (tas).
Substituting (2.1), (2.2), and (2.7) into (2.6) gives

P(Yy,ely, -+, Yy elne, Yiyel, -+, Yajy € Ins)
[kinlnl/Gy — 1)1 G — G — 1)1 (k= f2) L — (1= F(4))""™
(2.8) (1 = F(t)" — (1 — F(t))"P 71 — F(t)]"*

-dF (ty) - AF (tw) dF (ts) -2+ dF (te)
= G dF () -+ dF(t,), for brevity.

1t should be understood that (2.8) equals zero when the inequalities,

(2.7)

I

(2.9) by < byl <o < o0 <lppjlae < lgg < o002 < tns
do not hold, because of the corresponding restrictions inherent in (2.7) and (2.1).

3. The distribution function of D},;, (k, n). Since the samples are of equal size
n, possible values of Dj,;,(k, n) are the values of ¢/n for ¢ = 1, 2, , n. Non-
positive values of ¢ are impossible because of the definition (1. 10) of DJl i (kym).

Therefore
(3.1) P(Dlj(k, n) = 0) = 0 and P(Djj,(k, n) = 1) = L
For the nontrivial case
(32) P(Dj,i(k,n) = ¢/n)
= P(Yy, < Yoy, Yo, < Yerains 00 Yaeis < Yain).

To obtain the solution to (3.2), (2.8) is integrated over the portion of the sample
space where the following inequalities hold:
(3.3) tls < tc+1,r 5 t2s < tc+2.r y ;tn—c,s < tnr .

The problem now becomes one of choosing the correct limits of integration for
the integrand given by (2.8), such that inequalities (2.9) and (3.3) hold simul-
taneously. This is accomplished by the integral
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P(D;!-ljz(k} n) = c/n) = ffw .ﬁclr e ;oc—lvr :ocr ﬁ:;“r :oc+1,r fi:-:dr
g tn_1,r © tnor ] 0
tn—2,r tn—c—2s tna1,r tn—c—l,s tn—c,a e tn_2.8
[3.4] S  GAF (tas) AF (ta—ss) -+ AF (tacs,s) AF (tnc,s) dF (tn,r)

“AF (tn—e—1,6) AF (tas,) -+ AF(tas) AF (tes2,r) dF (t1) AF (teta,r)
-dF(t,,) -+ dF (&) dF (41,).
The integration is tedious but straightforward, resulting in
P (Dhthm) <)
q1=1 jazii—1 Pl 1 1 )i2—B—
I e e e e
Alln = 1) U(n — 1) (nk — njr — na)(nk — nB8)]"
—[(n = 1)!n —c — 1) (nk — nj» — na)(nk — nB)(nk — njy
(35) —na+n—1)J"
—[(n+e)ln —c—2)Unk —nj1 — ¢ — 1 —na) (nk —nB)1™
+!n —c — 2) U nk — njs —c — 1 — na)(nk — nB)

(nk — nj1 —na +n — 1)J7,

where (A), represents the falling factorial A(A — 1) --- (4 — ¢ + 1). The
identity, from Conover (1964),

(3.6) 2D ()T al =1 — @)l (A — @) = [(4)]7
leads to simplification of (3.5) into

P(D;rliz(k’n) = %)

. _q _(k—=a\(2n—2 Ek—jh—(+1)/n\[(2n —2
(37) =1 (.72—]1)(7L+C>/< Ja— 1 >(n—1>
AT (= 1)o(e + 1) (b — )i (=D 7k — i — @ — 1)

= alo—hn—1—a)lnk — njh +n—1— na)
(k=g —a)(nk —nj1 —ec — 1 — na)

+

4. The distribution. function of Dj,;, (k, n). Because the samples are of equal
size m, possible values of Dj,;,(k, n), as defined by (1.11), are the values of
¢/n,c=0,1,---,n—1 and

(4.1) P(Djjp(kym) = (n — 1)/n) = 1.
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For the nontrivial case
(4.2) P(Djj,(k,n) < c/n)
= P(Yﬁl < Y0+1,f2 l} Y2:i1 < Yc+2,iz y "ty Yn—b'il < Yniz)-

The right side of (4.2) is obtained, as in the previous section, with the aid of
(2.8) and (2.9). Instead of (3.3) the desired portion of the sample space is now
represented by the restrictions

(43) tor < tc+2,s ; tar < tc+3,8 y Tt ;tﬁ—cﬂ‘ < lus

because ¢, < f41,5 is already implied by (2.9). The desired probability is then
represented by the integral

2 2 0 L 0 0

P(Djis(k,m) S c/n) = [Zo Joy, Jag oo Jtere Jtes tetlis
‘c+2u e tn-lva Ll tns L
tir e tn-2,8 tﬂ—c—Z.r tnlys tn—c-l,r tn.—e.r ot
(44) toe J o1 GAF (8 ) AF (ta1 ) ++ + AF (taoyrr) AF (tasc.r)

* dF(tns) dF(tn—c—l,r) dF(tn~l,s) M dF(t2,r) dF(tc+2,s)
© dF (toy1,6) AF (tes) - - - AF (t25) dF (t,) dF (1y,).
The integration is again straightforward. The identity (3.6) leads to

(45) P (D?.,-,(k,n) < %)

-G/ ()

6. The two-sample problem. The distribution functions of the two-sample
random variables D{2(2, n) and Dis(2, n), defined by (1.5) and (1.6), re-
spectively, can be found from (3.7) and (4.5). Thus

(5.1) P(Diy(2,n) S ¢/n) =1 — o)/
and
(5.2) P(D1a(2,n) < ¢/n) = 1 — (apan)/ ).

A simpler method for obtaining (5.1) and (5.2) is based on the method used
by Gnedenko and Koroluk (1951) for obtaining the distribution of D*(n, n),
defined by (1.3). The method is described also by Fisz (1963). Consider the path
of a particle moving from the point (0, 0) to the point (n, n) in the (z, y) plane,
with the restriction that the particle movements are in unit increments in a
positive direction parallel to either one axis or the other. Then the probability of
the event D*(n, n) < c¢/n equals the proportion of the total number of paths
from (0, 0) to (n, n) that do not touch the line x = y + ¢ + 1. The probability
of the event Dfs(k, n) < c¢/n can be represented as the proportion of the total
number of paths from (1, 0) to (n, n) that do not touch the linez = y + ¢ + 1,



KOLMOGOROV-SMIRNOV TESTS 1025

which is given by (5.1). Also the probability of the event Dia(k, n) < ¢/n can
be represented as the proportion of the total number of paths from (0, 1) to
(n, n) that do not touch the line x = y + ¢ + 1, given by (5.2). The desired
counts on the numbers of paths are easily obtained with the method of reflected
paths described in detail in the references mentioned above:

6. The limit as » — c. As the sample size n increases without bound, for fixed
number of samples, k, the asymptotic distribution function of D}Ll,-,(k, n) and
Dy, ;,(k, n) both approach the well known limiting distribution function of the
random variable D*(n, n). The proof is as follows.

Obviously,

(61) limy.e <yk, :2)/(’0 — —jz(ir?l+ 1)/n) |

. . *
= Timy.w (k ‘J.‘)/(k — i+ (o’ + 1)/”) -1
Je — J2— N
Also, from Fisz (1963), if

(6.2) =nnl/(n — ¢)l(n + ¢)l,
where ¢ is approximately An!, then
(6.3) limg. I = exp —A%

Applying (6.1) and (6.3) to (4.5), and defining X as ¢/}, we have
lim, .. P (D}',,-,(Ic, n) < >

¢
n
(64) = limu.e (1 - (]'“2 :2) (n —1)i(n — 1)1/

E—j+(c+1)/n
( e (n+c)!(n—c—2)l)

=1—limpwl(n—c)(n—c—1)/A"]T =1 —exp — .
Therefore
(6.5) lime P(D7,5,(k, n) < Mn!) = 1 — exp —2\%
Similarly, since
(6.6) (n—1);/(nk—mnj1+n—1—mna). <1 forpositive integers « and ¢,
anda S ja—j1— 1,
ja—ji—1

(6.7) limpse

a=0

(= 1)u(e+ 1) (k= j1)ipmn(— 1Tk —ji—a—1) _
al(e—n—1—a)l(nk —nj1 +n — 1 — na).
k—j1—a)mk—nj1—ec—1—na)
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even when ¢ = O(n'), the use of (6.1) and (6.3) in conjunction with (3.7) leads
to

(6.8) limge P(DF;,(k,n) < Mnb) =1 — exp —\

The foregoing merely serves to emphasize the warning, indicated by Hodges
(1957), that exact tables should be used for D¥(n, n), when available, since
D*(n, n) has the same limiting distribution as the random variables D7, (k, n)
and Dj ;,(k, n), regardless of the number of samples and the value of 7; and j.
being considered, if the number of samples % is bounded.
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