QUANTILES AND MEDIANS

By M. RosenBLATT-ROTH

University of Bucharest

1. Introduction. The role played by the quantiles and in particular by the
median of a random variable in probability theory and in mathematical sta-
tistics is well known. It is difficult to work with them, because they are not
linear functionals of the random variables, even when these are independent.
While the elementary properties of the expectation may be found in every text-
book, the analogous properties are known neither for the quantiles nor for the
median. This paper contains a contribution to this problem.

2. Definitions and notations. For every number p(0 < p < 1;¢ = 1 — p) we
define the p-quantile of the real valued random variable ¢ as the real number
r(&; p) = rtfor which the two inequalities

(1) Ple=rgf2zp  Plizrgzg

are simultaneously satisfied. The 0.5-quantile of ¢ is his median, m¢.

We denote by M, Dt the expectation and the variance; by £, ¥ the infimum
and the supremum of £.

Let us consider n random ‘variables £,(1 < 7 < n); we denote

on = Dimb,  owm = D ik, o= Dtk
Se = r(on ; P) = 1o, S = 2iar(ki;p) = Dbtk
ma = lim&, Pu=rma, P/ =]liurti, D,= DDk,
Uo=8:— (Sia+r&), ~v=9+6'8 @ =2t 420"
2 Q@=2p"+2" Q@=22"+q¢" Q=pt+2"
Gn(l) - (n _ l)%Ql, Gn(Z) — 7%[a(n—1)]—%Ql, Gn(3) — 'Y%P—%Ql

Gn(4) _ st Hn(l) _ _(n _ 1)%Q2, Hn(2) _ —7%[01("_1)]_%(22,
H" = =47, H" =@, RY = (n-10G%,
7" =m—-1DHPA1<k=<4); 1=(,23 ).

In the case where the sequence of random variables £;(1 < ¢ < n) is a Markov
chain, we denote by ai(1 < ¢ < n) the ergodic coefficient ([1], [2], [3], [4]) of its
#th stochastic transition function. Let us denote
(3) a™ = minycicn a .

The reader is referred to [3] for a survey of the definition and properties of a; .
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922 M. ROSENBLATT-ROTH

3. Results.
TrEOREM 1. The inequalities
(4) Tn(k)Dné < Sn _ Sn, < Rn(k)Dné

are true: for arbitrarily dependent random variables £(1 < ¢ < n) if bk = 1; for
random variables connected in a Markov chain with na™ — o (n — o) f
k = 2; for random variables connected in a Markov chain with a; > p >
0(1 £ 7 < n) if k = 3; for independent random variables if k = 4.

Turorem 2. For arbitrarily dependent random variables (1 < 7 < n),

(5) A=2Now =8 — 078 = (1 — n Vo, .
If & = 0(1 = 7 = n), the inequalities

(6) )T S (PP S ()T
are true.

THEOREM 3. If the sequence of arbitrarily dependent random variables &.(n e I)
converge uniformly everywhere to the random variable £, then r&, — ré(n — « ).

Lemuma 1. Let £, v be two arbitrarily dependent random variables and ¢ a constant.
The following relations are true. If £ < n, then

(7) rE < .

Let f(x) be a real valued function of a real variable; if f(x) is non-decreasing, then

(8) rlf(&); p] = fIr(& P)I;

if 1t s non-increasing, then

(9) rlf(8); al = flr(& p)].

For every £, v, we have also

(10) rE+q Sr(E+n) S+

If £ 2 0,7 = 0, then

(11) (rg)n < r(fn) S (rf)n'.
CONSEQUENCES OF LEMMA 1.

(12) r(E+c)=rt+c

(13) r(ck) = ¢, (¢ > 0)

(14) r(&p) +r(—=§9) =0

(15) r(&p)r(£5q) = L

LemMA 2. If & 5 are arbitrariy dependent random variables, there are true the
inequalities
(16) @Dt + Dn)* < (¢ + 1) — (15 + rn) < Qu(Dt + Dn).
If £, 9 are independent, we may take Qs , Q4 instead of Q1 , Q- respectively.
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Lemma 3. The inequalities
(17) H,®D} < U; < G.®D,} (2=iZn)

are true: for arbitrarily dependent random variables £,(1 < 7 < n) if k = 1; for
random variables connected in a Markov chain with na™ — o (n — ») if k = 2;
for random variables connected in a Markov chain with a; > p > 0(1 £ 4 < n) if
k = 3; for independent random variables if k = 4.

LEmMma 4.
(18) (D)} S (g p) — ME < (DD
LemmMa 5. For any real valued random variable £ and any real number a,
(19) Plt=zadl2zp
implies r(¢; p) < a and
(20) P{tza} 2 ¢
implies r(§; p) = a.
4. Proofs.

Proor or LEmMMA 5. Considering the random events A = {¢ > a}, B = {£ = rE}
from (1) and (19) we obtain P(4) < ¢, P(B) = q from which follows A < B,
which is equivalent with »(%; p) < a. Considering the random events
A = {t <a},B = {f < r¢}, from (1) and (20) we obtain P(4) < p, P(B) = p
from which follows the relation A < B which is equivalent with r(¢; p) = a.

Proor or LEMMA 1 AND ITs CoNSEQUENCES. Let us consider the random events
A={t=rt},B={n=rt;if £ <n then A C Bie. P(B) = ¢. With the help
of Lemma 5, (7) follows.

If f(z) is a non-decreasing function and 7 = f(£), let us consider the random
events A = {£ < r&}, A1 = {n = f(r£)}, B = {£ = 1}, B1 = {n 2 f(r£)}. From
(1) we obtain P(4:) = P(A) = p, P(B1) = P(B) = qand from Lemma 5, (8)
follows. (9) may be derived similarly. Equations (10) through (15) follow im-
mediately.

Proor oF LEMMA 4. If ¢ = ¢} (D)}, & = p- (D£)}, by means of Cheby-
chev’s inequality we obtain the relations P{¢ < M+ &} = P{|t — Mt < &} =
1—a*Dt=pand P{t = Mt — &} Z P{lt — Mt| S &} 21 — & -Dt = q.
Using Lemma 5, the result follows.

Proor orF LEmMMA 2. From Lemma 4, we obtain

U=rt+9)— (t+m) =[r(t+9) — M(E+ 1)) — [rE — Mg
— [ — Mn] < ¢H(D(t + )} + pH((DE)* + (D))
< ¢ }(2(Dt + Dn))* + 2p7 (Dt + Dn)t = Qu(Dt + Dn)?
and also
Uz —p (D@ + ) — ¢ (Do)} + (Dn)}) = —p*(2(Dg + Dn))?
— 27 (Dt + Dn)t = —Qu(Dt + Dn)*.
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If £, 7 are independent, we obtain U < ¢ *(D(& +2))! + pH((Dg)! + (Dn)?)
@Dt + D) and U 2z —p (D¢ + 7)' — (D' + (Dn)h)
—Q4(Dt + Dny)*.

Proor or LEmMA 3. For arbitrarily dependent random variables, using Lemma
2, we obtain’

Us £ Qu(Doiy + D&)< Qu(( — 1)Diy + D) < (4 — 1)1QDS
< (n — 1)}Q.D,}
Us 2 —Qu(Doiy + D) 2 —(n — 1)¥Q,D,.

For random variables connected in a Markov chain, using Lemma 2 and ([3], 9;
[4], 1) it follows that

Ui £ Qi(Dois + D) = Qu(v[e""T'Diy + D&) = Qu(y[1'D))}
< 4 "I @D,

IV IA

Uz — Qu(Doiy + D) = —+'[""7'Q.D,%

If we observe that from «; > p > 0(1 < 7 < n) it follows that « >p>0,
then from these inequalities we obtain the warited results. For independent
random variables, obviously

—QuD,} £ —QD# = —Qu(Doiy + D) < Ui £ Qu(Doiy + DE:)?
= @D = QD%
Proor or TaeorEM 1. The proof follows from Lemma 3 upon observing that
Sn - Sn, = ?=2 Uz .

Proor or THEOREM 2. By repeated use of (10), for any fixed index 7, we obtain
the inequalities

(n—1)

—_ + .
om — & +réi Sron S ki oo — & (1£i=n)

from which by summation for all these values of 7, (5) follows. By repeated use
of (11), for any fixed index ¢ we obtain the inequalities m, (&) "7t < rmn
< (&) -m (&), (1 £ 4 £ n), from which by multiplication for all these
values of 7, (6) follows.

ProoFr or TueEoreM 3. From the uniform convergence of &, to £, it follows
that for any given e > 0, there exists a number N so that |£, — £ < ¢, forn > N.
If wedenote A = {& S r&}, Ai = {§ —e S vk}, B={& 21k}, B1 = {4 ¢
= r%,}, we obtain A C A;, B C Bi ; from (1) we obtain P(4;) = p, P(B1) = ¢
and using Lemma 5 it, follows |r£, — r£| < efor n > N, which proves our theorem.

5. Remarks.
REMARKS oN LEMMA 1.
1. From (10) and (11) one obtains

(21) reE2r(E+m), (n=0); r(E+n)
(22) e 2 r(k), (nz1); (&)

ré, (n
7§, (n

A
2

A IA
I
o
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2. From (13) and (14) it follows that
(23) r(ck; p) = er(§;q) (c <0).
Indeed if ¢ = —c¢, we have
r(ck; p) = r(—=c&p) = r(=&p) = = -1(& q) = (% 9).
3. If p = %, from (13) and (23) it follows that
(24) m(cE) = c-mé.

REMARKS OoN LEmMMA 4.
1. From (18) it is easy to obtain the inequality

(25) Ir(& p) — Mg < (67-Dg)’, 87" = min (p, q).

This result can be obtained also directly in the same manner as (18), taking
e = (BDg)’ in Chebychev’s inequality, because we have the relation

min [P{¢ £ Mt + ¢}, P{t = Mt — €}] = 1 — €°-Dt = max (p, q).

2. If p = 3, froml (18) we obtain as a particular case the known relation
mg — Mt < (2Dg)"

REMARKS oN THEOREM 1.

1. If na™ does not converge to infinity for n — «, we may find an infinite
sequence of natural numbers m and a number 4 so that ma™ = A + o(1).
From ([3], 9; [4], 1) with v" = y[4™" + 0(1)] we deduce the relation Do, <

v'mD,, , which is asymptotically equivalent with the well known inequality
(26) Do, £ mD,, .

2. We may observe that if na™ — o, it follows that R,® = o(R,"), T,®
= o(T.?).

3. To use (25) instead (18) in the proof of our theorem (and also in Lemmas
2 and 3) is equivalent to taking @* = (2 + 2")87* instead of Q,, Q: and Q,* =
387 instead of Qs , Q« . Obviously max (Q:, @) = Q.", max (Qs,Q4) = Q"
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