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1. Introduction and Summary. The logistic curve y = k/(1 + a¢ ™) has
been used in studies pertaining to population growth by Verhulst [17] and by
Pearl and Reed [14] and by several later authors. The logistic function
P = 1/(1 + ¢ “**) has been very widely used by Berkson [1], Berkson and
Hodges [2] as a model for analyzing bioassay and other experiments involving
quantal response. Gumbel [8] has shown that the asymptotic distribution of the
midrange of exponential type initial distributions is logistic. In connection with
problems involving censored data, Plackett [15], [16] has considered the use of
the logistic distribution.

In this paper a random variable ¥ is said to follow a logistic distribution (de-
noted by L(u, ¢°)) if its cumulative distribution function (c.d.f.) is

(1.1) Fly; u, o) = 1/[1 4 ¢ tamial-(r/aby
The probability density function (p.d.f.) corresponding to (1.1) is
(1.2) f(y’ “, 0-) — (1/0_3;)6—1(1/—14)/396/[1 + 6_”(’/‘”)/3;0]2’

where —0 <y < o, —o < u < «ando > 0.

It should be noted that the distribution (1.2) is symmetrical with mean u and
variance ¢”. The moment generating function of X = (¥ — x)/o is easy to derive
(see for example, Gumbel [8]) and is

(1.3) Mx(t) = T(1 4+ t/g)T(1 — t/g), ¢ = n/3%

In this paper order statistics from the standard logistic distribution L(0, 1) are
studied. If X, X,, ---, X, are n independent and identically distributed
logistic random variables with density function,

(1.4) f@) = (/3™ /(1 + e, —w <z < o,
then. we are concerned with the moments, the distribution and some estimation
problems using the ordered random variables Xy, X, - -+, X where
(1.5) Xo=Xps 2 XpwsE 2 Xw.

In the sequel, we shall call X, , the kth order statistic in a sample of size n
from the logistic distribution (0, 1).

Received 15 May 1963; revised 9 December 1964.

! Research supported in part by Aerospace Research Laboratories under Contract AF
33(657)11737. Reproduction in whole or in part permitted for any purposes of the United
States Government.

907

%j
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @‘%3;7&

The Annals of Mathematical Statistics. RINORN

WWwWw.jstor.org



GUPTA AND BHUPENDRA K. SHAH

SHANTI S.

908

(ST/v2L + 6/:26% — €/80)P (¥/228 — 8/6%)2 (&/s2 + 81/6%—)q ¥/o— ¥
(S1/v2L, + S/:213—)p (02/a2L% — 0%/€69)° (&/z2 + 01/15—)9 09/02%— ¢
(ST/v2L + 6/22L — €/98—)P (02/:£28 — 0%/688)2 (&/e2 + 81/L-)9 02/963— &
(S1/+v2L + S%/:269% + €/82)P (0¥1/:26801 + 0%/296)°— (8/z% 4 06/69%)q 0%T1/7298— I
(Q1/+2L + 6/:26% — €/83)P 0 (8/z¢ + 81/6%—)q 0 ¥
(S1/v2L + 8/:2%1 — G/L)P (¥/z2L — 8/901)° (8/z2 + ¢/2-)q /oL~ ¢
(ST/v2L + 08/:26% — F1—)P (02/a2LL — 18)2 (&/z2 + 09/6%—)q 09/0LL— T
(ST/52L + S%/2290% + 9/98)p (02/:£L¥1 + ¥5/1¥%)° (8/:% + S¥7/20%)9 09/PL51— T
(Q1/v2L + 22¢ — 9)p (2 — g/q1) (8/z+ + 2/5—)q g/v— g
(Q1/v2L + 2/:28 — 6—)P (F/z2e1 — $/52)° (¢/z2 + ¥$/9-)q oI/0e1— ¢
(S1/52L + T/e2GT + )P (08/z2L8T1 + #/18)90— (8/z2 4+ %/51)9q 09/7L8T— 1
(S1/32L + 226 — 9)p 0 (8/zt + 3/9—)q 0 ¢
(S1/+2L + €/2201 —% —)p (3/z£8—51)2 (8/z2 + ¢/9—)q 9/vg— g
(ST/v2L + 9/226¢ + T)p (¥/229% + T/q1)0— (8/z+ + 21/98)9 oI/v5e— 1
(S1/2L + 2%—)p (3/z2e — 6)2 (/e +3-)9 Z/o— ¢

(QU/v2L, + 29)P (@/e211 + )0 (8/z+ + 2)q 9/211— 1

(ST/52L + 2%—)p 0 (&/ex + 2—)q 0 4

(Q1/32 L + 22)P %/06— (8/:+ + 19 g/ve— 1

8/12 Bg— 1 p— 1

8/13 0 1 0 I

\vi \nﬁ\ \Ni \—1 u\

LUOYTQLISIP 0451607 popupys D wouf u 9218 fo apdwns D Uz 0YSYDVIS LAPLO YIY Y] fO SIUDUOUL JODT T
I I'TdVL



909

LOGISTIC RANGE AND ORDER STATISTICS

7886°6260°0 = +2/6 = P ‘0819'89G0°0 = ¢2/4€ = 2 ‘GCLY‘6E0E0 = 2/¢ = q ‘688G°€199°0 = /4 = D SIS ,

(2QT/L + 98/:280% — 8/16)P
G2GT/L + 81/:%68 — ¥/12)P
(Q1/52L + TH/:2G8 + F/18—)P
(S1/v2L + TL/2219 + 91/28%—)p
(ST/+2L + 800T/2%G189 + 91/683)P

(ST1/v2L + 98/:260% — ¥T/8LT)P
(S1/v2L + SF/:2988 — 08/18T)P
(ST/52L + 06/2%188 — 03/LL—)P
(S1/52L + S18/:291 + 01/628—)p
(ST/v2L + 089%/2218565 + 08/690T)P

(9/z2€ — 8/1%)2

(08/:2L8 — ¥2/658)°
(0B¥/22LLET — 9G/1L8T)°
(082/:28%%1 — 96/1281)2
(0%8/:262TL — 931/€2S%)?

0

(02/z2LT — OF/T¥%)2
(02/z2L8 — 0F/618)°
(071/:2699 — 0%/606)2
(083/:2€8%% — 08/£0¥%)2

(/a2 + 2L/902—)q
(8/z+ 4 98/68—)q
(e/z% + ¥8/98)q
(&/z2 + ¥91/19)9
(8/z2 + 8001/9159)q

(&/z2 + 2L/906—)q
(8/z+ + S¥/8T1—)q
(8/z2 + 081/188—)9
(&/z2 + 91818)9
(&/++ + 0%09/1£962)9

g/0—
09/028~
0931/7LL81—
08%/218% —
029%/P621L—

0

02/16—
02/61—
DELE —
08g/019L—

NN <H O

™ N M W0

01




910 SHANTI S. GUPTA AND BHUPENDRA K. SHAH

In this paper the exact expressions for the moments of X, have been derived.
The values of the first four exact moments for all sample sizes n from 1 to 10 have
been tabulated (Table I). More generally, the moments of X, have been ex-
pressed in terms of expressions involving Bernoulli and Stirling numbers of 1st
kind. These derivations are obtained from the moment generating function which
has been derived. The cumulants of X, are expressed in terms of polygamma
functions, as was pointed out by Plackett [15]. Birnbaum and Dudman [3] have
tabulated expected values and standard deviations from the logistic distribution
using tabulated values of the digamma and trigamma functions. Table III of the
present paper gives the percentage points of Xy (i) for all k(k < n) and all n
from 1 to 10 (ii) for £ = 1, n and 3n and (n + 2) (neven) or 3(n + 1) (n odd)
for n = 11(1)25. In Section 3, we obtain series expansions for the joint moment
generating function and covariance of the two order statistics. In Section 5, the
use of one and two order statistics for estimating u and ¢ in L(u, ¢°) is shown. In
Section 6, expressions (closed form) are derived for the cumulative distribution
function and the density function of the sample range. Using the results of Sec-
tion 6, a short table (Table II) of the sample range of the logistic is given for
n = 2 and 3. Section 7 gives a description of the tables in this paper.

2. Moments and cumulants of the kth order statistic.
Moments. The moment generating function M (t) of X is

@1) M) = BE*®)
= [g/B(k,n — k + 1)] ffw [P0 /(1 4 670" g

where B(p, ¢) and I'(z) are the usual beta and gamma functions.
After some algebraic simplification (2.2) can be written as

(2.83) M(t) = [(=1)""x cosec (xt/g)/(k — 1)I(n — E)J(k — 1 + t/g)a

where (z), = z(z — 1) -+ (x — n + 1).
By expanding cosec (wf/g) in powers of ¢ and by writing (z), in terms of
Stirling numbers of first kind, we obtain

M) = [(=1)""x/((k — 1)! (n — k)D)]
(24)  [(g/xt) + (xt/6g) + (7/360)(xC/g") + --- + (22" — 1)
(=1)77/(2p) ) Buop(mt/g)" ] [20=1 (B — 1 + t/9)'s(5, m)]

where B, and s(%, n) denote the Bernoulli numbers and Stirling numbers of first
kind, respectively. Now (2.4) can be expressed as

M) = [(-1)"*/(k— 1)!(n — k)]
(25) A2 2h 0 s(h, m) () (H/g) N (ke — 1)
2 2 0m Dot 2o (277 — 1)(=1)"7/(2p) Y
w?(5) (b — 1) Bus(i, n) (t/g) ™).
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From (2.5) collecting the coefficient of £~ and " we obtain
(2.6) waa(kyn) = (1/g HI(=1)"*@2r — DY((k — 1)!(n — k)1)]
(220 bians (G, m) + 2 207 a1 D imae Aibi2e-ns (s, m)]
(27) wae(ly, m) = (1/g")[(—1)"*(2r)/((k — 1)!(n — k)1)]
[ 2t bigrns (4, ) + 2 25es D sy Aibiz—sias(d, )]

where a, = [(—=1)"7(2"" — 1)/(2p)!|Bypr™ and by = (5)(k — 1)77,
0 <j<4iSince®s = m' = y¢(k — 1) — ¢(n — k), we obtain the identity

(28) ¢k — 1) — ¢(n — k) = [(—=1)"*/((k — 1)i(n — k)!)]
A2t () (k — 1)7s(4, n) + (a°/18) 2im (k — 1)'s(4, n)].

Similar identities can be obtained by equating, &, = (1/¢)¥" " (k — 1)
— ¢ P (n — k)] to the expression available for %, in terms of p3,_; and us, and
using (2.6) and (2.7).

It should be pointed out that for small n, the computation of exact moments
is simpler if we collect the coefficient of the appropriate power of ¢ in the right
hand side of (2.3). This procedure was followed to obtain the exact values of
moments that are given in Table 1.

Cumulants of X, . We rewrite (2.2) as

(2.9) M(t) = [I(k+t/9T(n — k + 1 — t/g))/[T&:T ain]-
From (2.9) we obtain the rth cumulant X,(k, n) as

(2.10) X:(k,n) = (d'/dt’) log, T'(k + t/g) |:=o
+ (d'/dt") loge T'(n — k + 1 — t/g) |i=o
(2.11)  Ke(k,n) = (/g — 1) + (=) (n — k)]
where ¥ (z) = (d'/da’) log, T(1 + 2) = (& "/da"™HI'U + 2)/T( + z)]

and ¥@(2) = ¥(z) = I'(1 + 2)/T(1 + z).
It is clear from (2.11) that

(2.12) Kora(k,n) = —Kopa(n — k + 1, n)
(2.13) Kop(k, n) = Kep(n — k 4+ 1, n).
Using the series expansions for v (z) and ¥(z)
(2.14) ¥70@) = (r = DI(=D"25L1/( + 2, rze

(215)  ¥(z) = 2. [(1/y) — 1/(» + 2)]
(2.16) K. (k,n) = [(r — )1 (=1)/g N2 5= (1/(G + & — 1))
+ (=125 (/G +n — B)D], r
(2.17) %u(k,n) = —(1/g)[1/k + 1/(k + 1)+ -+ + 1/(n — k)]
ifn—%k>k—1.

1%
NS
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From (2.17), we obtain for the special cases
(2.18) Ki(m, 2m) = —1/gm,
(2.19) K(l,n) = -/l +35+ - +1/(n— 1]

Formula (2.19) is given in [8], p. 128. It should be mentioned that Plackett [15]
gave the ®,(k, n) (r = 1, 2, 3, 4) in the form (2.16) and (2.17) for the case
n—k<k—1

3. Covariance between the pth and mth order statistics (m > p). The joint
moment generating function of X, and Xy, (m > p), is

M(ty, t:) = Elexp (b + ty)]
(3.1) = C [Z.dy [Ywexp (hx + )P (@)F(y) — F(@)]"™"™"
L= F)I" " f(2)f(y) dz,

where ¢ = nl/[(p — 1)! (m — p — 1) (n — m)!] and where f(x) and F(z)
are defined in Section 1. After substituting p, = 1/(1 + exp (—gz)) and p, =
1/(1 + exp (—gy)) we obtain

(3.2) M(t,t) = C [sdp [E Ip/(1 — p)]po/ (1 — p2)]*"

p" (e — p)" (L = )"y
= OOy L (=D (R
(3.3) v — 14+ t/g)B(m + v+ (L + b)/g,n —m+ 1 —t/g)]

v+ m—a— 1+ t/9)]}.

From the above expression for the joint m.g.f. of the pth and mth order sta-
tistics, one can obtain the bivariate moments as follows.

(34) E(XipXim) = tr( Xy, Xew) = (877/00/96") M (b5 bs) oy =t5 0 -
The case 7 = 1 and s = 1 is important. In this case (details omitted) we obtain]
ua (X, Xaw) = (C/g") 207 200" (=)™ (") ("o
A1/ (m = i = 1){[2/(m + )]
(3.5) — Xml/rm e+ )+ [/ (m = i = 1)
A1/ (m + o)) — [1/On + )] 22725 1/}
— Zl/m 4 v — i = DI/ (m 4+ o)
— [1/(m + 7 + )] 255 1/a}].
For n = 2, the covariance of the two order statistics is 3/ .

4. Percentage points, modes and some remarks on the distribution of Xa).
The density function ks .(x) and the c.d.f. Hi.(2) of the kth order statistic
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in a sample of size n from L(0, 1) are,
(41) hea(z) = [g/Blk,n =k + D™ P/(1 4 7)™, —w <z < w.

By differentiating the above expression for & ,(x) with respect to x, we find that
the mode &(k, n) of the kth order statistic is &(k, n) = (1/g) log. [k/(n — k + 1).
Also the expression for the c¢.d.f. H; ,(x) is

(4.2) Hin(z) = Iyatexpzon(k, n — k + 1)

where I.(p, q) is the incomplete beta function,

(4.3) Hin(z) = [1/Bllyn — k + DI (=1)°("79L/(G + k) (1 + 7)™

(44) Hin(z) = [1/B(k,n — k + D255 (-1 1/ (n =k + 5 + 1))
{7/ (14 )T 1)

From (4.2) we see that the (100)a-percentage points x.(k, n) of X, is the
solution of

(4.5) wa(k,n) = (1/g) log, [Ba(k,n — k +1)/(1 — Ba(k,n — k + 1))].

Using values of Bo(k, n — k + 1), the 100 percentage point of the Beta dis-
tribution, from [7] [14], we solved for z.(k, n). These are given in Table III.
Note that for k = 1 and k£ = n, we see from (4.3), (4.4) or otherwise that

(4'6> '—xl—a(l, n) = xa(n’ n) = (l/g) logs (a”"/(l _ al/n))‘

Note that relations (4.1)-(4.5) are true in general for any continuous distribu-
tion if 1/(1 + €™*) is replaced by the c.d.f. of the given distribution. This is by
virtue of the well-known result that the c.d.f. of the kth order statistic is a beta
variable. Further, from the symmetric relation satisfied by the incomplete beta
functions, it follows that the 100« percentage of X ) is —100(1 — a) percentage
point of X, x4 . This relation can be verified, mathematically, for the X
of the logistic distribution by using (4.5).

Remark. The distribution of the sum of two symmetrical order statistics
V = X@ + X@-r+n is of interest in some problems. In this connection, the
following remark is relevant. From (4.2), we see that

(47) Hk.n(:v) + Hn—k+1,n(*x) = 1
(4.8) Men(x) = hopra(—2).

The above expressions are true for the order statistics from any continuous
symmetric distributions.

5. Estimation of u and o based on one and two order statistics. In some prob-
lems it may be desirable to obtain estimators of x4 and ¢ using only a single order
statistic. Mosteller [11] first described and studied such “inefficient’’ estimators.

The unbiased minimum variance point estimator & of u based on a single order
statistic ya) in a sample of size n from L(u, ¢°), with ¢ assumed known, is
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(5.1) i=ow'{B(n + D], n} + Ypeson
where [z] denotes the largest integer < z.
(5.2) Var () = ¢'%{[3(n + 1)), n}.

Comparing the above variance with the Cramér-Rao lower bound, which is
30"/(g’n), the effici fhi
o’/(g'n), the efficiency of & is

(53) e(f) = 3n7Ea" — ZHECTIT (/R — 2SR (1/2%))7
The following line of table gives the values of e(i) for selected values of
n(odd):
n= 3 5 7 9
e(k) = .78 .76 75 75

Shortest confidence limits for u (¢ known) based on a single order statistic
can be obtained by using the percentage points given in Table III of this paper.
Now, an unbiased estimator of ¢ based on the range is
(5.4) ¢ = (Y — Y)/2%:(n, n).

Now using the distribution of range given in the next section, one can compute
the variance of ¢ without evaluating the covariance of yqy and yu), which
are hard to evaluate except in special cases, and compare it with the correspond-
ing Cramér-Rao lower bound.

6. Distribution of the range. Let us define the sample range W, by
(6.1) Wo=Yw—Yw)o=Xmn— Xo

where Y ) and X ) denote the kth order statistics from the logistic distributions
L(u, *) and L(0, 1), respectively.
The cumulative distribution of W, can be written as

(62) P(Wa = w) = n255 ("7)(=1) [Za[F(z + w)""7F(2)]() da.

Now we shall derive the c.d.f. of the range W, from L(u, ¢°). We start with
(6.2) and obtain

(63) P(Wa < n)
= nz;‘:ol( 1)’ (n-—l) f‘eog oA+ _"z)"—l"i(l + e—oz)2+i]dx

where a = exp (—gw). From (6.3) by substituting ¢ = 1/[1 + aexp (—gz)],
we obtain

(6.4) P(W, = w) =n) ;= ("7)(=1)a™A(,n)
where
(6.5) A@G,n) = [3071 4+ )™ dt, c=a—1

= [1/(=¢)" 122820 (T (=D)*[5 (1 + et)* " dt
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or
(66) AG,n) = [-1/(1 — a)"[(}7)(~1)" log a
F it (TN (=10 = 1)/(a — § — 1)].
Hence, from (6.4) and (6.6), we obtain the c.d.f. of W, as
(6.7) P(Wn=w) = [0/(1 — a)" 1255 ("7) (=)™ (E) (—1) log (1/a)
+ 2 i (") (=1 = 1)/(a — j — 1)},

where in the first term inside the braces (371) is to be put equal to zero for
i>n-— 2

By differentiating (6.4) with respect to w one can obtain the density function
p(w) as follows

(68) p(w) = n2 7% ("7 (—1)%a"
TG +2)ed(G+1L,n+1) — G+ 1Ay, n)].
For n = 2 and 3 we obtain from (6.7)
(6.9) P(W,=w)=[1~-d — 2(gwa)l/(1 — a)?

(6.10) P(Ws=w) =[1 4 92 — 9" — a* — 6(gwa)(1 + a)}/(1 — a)’.

Using (6.9) and (6.10), the probability integral of the range has been computed
for n = 2 and 3. These values are given in Table IT along with the values of the
probability integral of the sample range of the normal distribution N (g, 1)
which have been taken from [14]. Some detailed computations on the probability
integral and percentage points of the range are in progress and these will be
published later.

It is interesting to note that for — < w <  or 0 < a < 1, we obtain from
(6.9) and (6.10)

(6.11) (1 —a)’ + 2(gwa) > 1 — a® > 2(gwa),
(1—a)+ 6(gwa)(1 4+ a) > 14 9a(l —a) — &* > 6(gwa)(1 + a).

TABLE II
Probability Inlegrals of the Sample Range from L(u, 1) (top) and from N (u, 1) (bottom)

w

.20 40 .60 .80 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00

2 |.12039 | .28768 | .34902 | .45212 | .54213 | .73047 | .85109 | .92224 | .96113 | .98121 99115
1125 | .2227 | .3286 | .4284 |.5205 |.7112 |.8427 |.0220 |.0661 |.0867 9953

3 | .01306 | .05138 | .11084 | .18655 | .28725 | .50027 | .69272 | .82676 | .93300 | .95340 97765
0110 |.0431 |.0944 |.1616 |.2407 |.4614 |.6665 |.8195 |.9145 .9870 | .9988
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TABLE III

Percentage points of the kth order statistic in a sample of size n from a standard
logistic distribution*

o

k
0.500 0.750 0.900 0.950 0.975 0.990
1 0.0000 0.6057 1.2114 1.6234 2.0198 2.5334
1 —0.4859 0.0000 0.4251 0.6863 0.9220 1.2114
2 0.4859 1.0289 1.6083 2.0126 2.4054 2.9170
1 -0.7428 —0.2933 0.0792 0.2972 0.4872 0.7126
2 0.0000 0.3996 0.7789 1.0224 1.2472 1.5278
3 0.7428 1.2659 1.8367 2.2385 2.6305 3.1410
1 —0.9179 —0.4859 —0.1382 0.0598 0.2290 0.4251
2 —0.2565 0.0966 0.4144 0.6098 0.7848 0.9968
3 0.2565 0.6277 0.9892 1.2262 1.4469 1.7241
4 0.9179 1.4312 1.9977 2.3983 2.7893 3.2999
1 —1.0507 —0.6290 —0.2957 —0.1090 0.0482 0.2279
2 —0.4313 —0.1013 0.1868 0.3593 0.5109 0.6912
3 0.0000 0.3186 0.6156 0.8021 0.9710 1.1777
4 0.4313 0.7861 1.1402 1.3738 1.5922 1.8677
5 1.0507 1.5583 2.1222 2.5221 2.9128 3.4230
1 —1.1578 —0.7428 —0.4188 —0.2396 —0.0900 0.0792
2 —0.5640 —0.2478 0.0227 0.1820 0.3202 0.4822
3 —0.1748 0.1178 0.3825 0.5446 0.6889 0.8623
4 0.1748 0.4753 0.7612 0.9428 1.1084 1.3120
5 0.5640 0.9094 1.2583 1.4897 1.7070 1.9813
6 1.1578 1.6615 2.2237 2.6230 3.0136 3.5236
1 —1.2474 —-0.8373 —0.5199 —0.3457 —0.2015 —0.0396
2 —0.6709 —0.3639 —0.1049 0.0456 0.1751 0.3253
3 —0.3074 —0.0307 0.2148 0.3626 0.4925 0.6497
4 0.0000 0.2726 0.5245 0.6808 0.8210 0.9905
5 0.3074 0.5967 0.8756 1.0541 1.2176 1.4193
6 0.6709 1.0102 1.3554 1.5854 1.8017 2.0752
7 1.2474 1.7485 2.3095 2.7084 3.0987 3.6087

—1.3245 —0.9179 —0.6054 —0.4351 —0.2948 —0.1382
—0.7604 —0.4601 —0.2092 —0.0647 0.0585 0.2005
—0.4143 —0.1482 0.0844 0.2228 0.3434 0.4850
—0.1326 0.1229 0.3544 0.4957 0.6209 0.7705
0.1326 0.3927 0.6365 0.7891 0.9266 1.0935
0.4143 0.6959 0.9701 1.1465 1.3085 1.5088
0.7604 1.0953 1.4378 1.6668 1.8824 2.1555
1.3245 1.8236 2.3835 2.7824 3.1723 3.6825
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TABLE III—Continued

a

" k 0.500 0.750 0.900 0.950 0.975 0.990
9 1 —1.3921 —0.9883 —0.6795 —0.5122 —0.3748 —0.2223
2 —0.8374 —0.5420 —0.2973 —0.1573 —0.0386  0.0973
3 —0.5037 —0.2453 —0.0219  0.1098  0.2238  0.3566
4 —0.2395  0.0044  0.2222  0.3536  0.4690  0.6056
5 0.0000  0.2421  0.4646  0.6017  0.7238  0.8704
6 0.2395  0.4910  0.7201  0.8791  1.0147  1.1799
7 0.5037  0.7799  1.0506  1.2254  1.3863  1.5857
8 0.8374  1.1689  1.5094  1.7377  2.0961  2.2255
9 1.3021  1.8899  2.4493  2.8478  3.2373  3.7478
10 1 —1.4523 —1.0507 —0.7450 —0.7069 —0.4450 —0.2957
2 —0.9050 —0.6135 —0.3734 —0.2370 —0.1217  0.0096
3 —0.5%8 —0.3282 —0.1117  0.0152  0.1243  0.2506
4 —0.3290 —0.0935  0.1145  0.2388  0.3472  0.4747
5 —0.1060  0.1228  0.3311  0.4579  0.5699  0.7031
6 0.1060  0.3266  0.5559  0.6900  0.8099  0.9544
7 0.3200  0.5742  0.8082  0.9562  1.0904  1.2543
8 0.5%8  0.8528  1.1206  1.2043  1.4543  1.6531°
9 0.9050  1.2340  1.5720  1.8007  2.0151  2.2876
10 1.4523  1.9484  2.5073  2.9056  3.2053  3.8051
11 1 ~1.5066 —1.1068 —0.8035 —0.6403 —0.5073 —0.3606
6 0.0000  0.2199  0.4214  0.5449  0.6544  0.7853
11 1.5066  2.0017  2.5601  2.9583  3.3482  3.8580
12 1 —1.5561 —1.1578 —0.8564 —0.6948 —0.5634 —0.4189
6 —0.0895  0.1210  0.3118  0.4277  0.5208  0.6511
7 0.0895  0.3022  0.4985  0.6196  0.7273  0.8564
12 1.551  2.0503  2.6082  3.0064  3.3962  3.9060
13 1 —1.6014 —1.204¢ —0.9047 —0.7445 —0.6144 —0.4716
7 0.0000  0.2020  0.3883  0.5016  0.6017  0.7210
13 1.6014  2.1216  2.6526  3.0506  3.4404  3.9501
14 1 —1.6434 —1.2474 —0.9492 —0.7900 —0.6611 —0.5198
7 —0.0770  0.1185  0.2955  0.4020  0.4974  0.6092
8 0.0770  0.2740  0.4552  0.5664  0.6651  0.7827
14 1.6434  2.1362  2.6936  3.0915  3.4813  3.9910
15 1 ~1.6823 —1.2873 —0.9904 —0,8322 —0.7042 —0.5642
8 0.0000  0.1893  0.3620  0.4672  0.5606  0.6701
15 1.6823  2.1746  2.7318  3.1206  3.5194¢  4.0290
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TABLE III—Continued

a

n k
0.500 0.750 0.900 0.950 0.975 0.990
16 1 —1.7187 —1.3245 —1.0286 —0.8713 —0.7442 —0.6054
8 —0.0675 0.1156 0.2815 0.3820 0.4703 0.5747
9 0.0675 0.2519 0.4211 0.5245 0.6160 0.7248
16 1.7187 2.2105 2.7675 3.1653 3.5550 4.0646
17 1 —1.7528 —1.3593 —1.0644 —0.9078 —0.7815 —0.6437
9 0.0000 0.1781 0.3403 0.4390 0.5259 0.6287
17 1.7528 2.2443 2.8010 3.1987 3.5884 4.0981
18 1 —1.7850 —1.3921 —1.0981 —0.9421 —0.8164 —0.6795
9 —0.0602 0.1128 0.2694 0.3642 0.4474 0.5455
10 0.0602 0.2341 0.3933 0.4905 0.5761 0.6778
18 1.7850 2.2760 2.8326 3.2303 3.6200 4.1296
19 1 —1.8153 —1.4230 —1.1298 —0.9744 —0.8493 —0.7132
10 0.0000 0.1687 0.3222 0.4153 0.4973 0.5941
19 1.8153 2.3061 2.8625 3.2602 3.6498 4.15%4
20 1 —1.8441 —1.4523 —1.1598 —1.0049 —0.8803 —0.7450
10 —0.0542 0.1101 0.2588 0.3487 0.4276 0.5203
11 0.0542 0.2194 0.3702 0.4620 0.5429 0.6387
20 1.8441 2.3346 2.8909 3.2885 3.6781 4.1877
21 1 —1.8715 —1.4802 —1.1882 —1.0338 —0.9097 —0.7750
11 0.0000 0.1606 0.3066 0.3951 0.4729 0.5647
21 1.8715 2.3617 2.9179 3.3154 3.7050 4.2146
22 1 —1.8975 —1.5066 —1.2152 —1.0613 —0.9377 —0.8035
11 —0.0494 0.1075 0.2494 0.3351 0.4103 0.4987
12 0.0494 0.2069 0.3506 0.4379 0.5147 0.6055
22 1.8975 2.3875 2.9436 3.3411 3.7307 4.2402
23 1 —1.9224 —1.5319 —1.2411 —1.0875 —0.9642 —0.8306
12 0.0000 0.1536 0.2931 0.3776 0.4518 0.5392
23 1.9224 2.4121 2.9680 3.3656 3.7552 4.2648
24 1 —1.9462 —1.5561 —1.2657 —1.1125 —0.9896 —0.8564
12 —0.0453 0.1050 . 0.2409 0.3231 0.3949 0.4794
13 0.0453 0.1962 = 0.3336 0.4171 0.4903 0.5768
24 1.9462 2.4357 2.9916 3.3891 3.7787 4.2882
25 1 —1.9691 —1.5792 —1.2802 —1.1364 —1.0138 —0.8811
13 0.0000 0.1475 0.2813 0.3623 0.4333 0.5169
25 1.9691 2.4584 3.0161 3.4116 3.8012 4.3107

* For given n, k and «, the above table gives the values of y for which

/B, n —k+ 1] [{® a1 — g)** dz =

a

where F(y) denotes the c.d.f. of a standard logistic random variable.
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In general, for 0 < @ < 1, we have
(6.12) (1 — a)"/n > 205 ""1)( @)™ (7)) (—=1) log (1/a)
+ 2 iSesin (") (D@ = 1)/(a —j— 1)} > 0
and
(6.13) 2355 ("FN(=1)%a™[( +2)ed (G + Ln+1) — G+ 1)A@G,n)] > 0
where A (4, n) is given by (6.6).

7. Description of tables and comparison with normal order statistics. Birnbaum
and Dudman [3] have tables and graphs comparing normal and logistic order
statistics. A comparison of this type is omitted in this paper. It may be recalled
that Plackett [16] observed that the standard logistic and standard normal are
similar in shape between the range of logistic probability levels .05 and .95.
A comparison with the tables of Owen ([12] p. 254) and Pearson and Hartley’s
tables ([14] p. 104) shows that the two c.d.f.’s agree to within 2 units in the
second decimal place. The density function curve of the logistic crosses the
density curve of the normal between 0.68 and 0.69. The inflection points of the
standard logistic are 4-0.53 (approx.) whereas the inflection points of standard
normal are =4-1.00.

Table I of this paper gives the exact expressions for the moments about the
origin of the kth order statistic in a sample of size n from the L(0. 1).

Since g, (k, n) (=1)"w/(n — k + 1,n), we give only the values of ur (k,m)
fork=1,2 ---,n/2 (n even), (n + 1)/2 (n odd). The range of values of n
isn = 1( 1)10.

Table IIT gives the percentage points of the kth order statistic in a sample of
size n from the L(0, 1) distribution. These computations are similar to the com-
putations described in [6], [9], [10]. The percentiles of the distributions were
obtained from [14], [7]. The values are given to four decimal places. Independent
checks have revealed no errors. However, the fourth decimal place may be off by
one unit. The table contains values for ¥ = 1(1)n, n = 1(1)10 and k& =
n/2 (n even), (n + 1)/2 (n odd) and =, for n = 11(1)25. The 100a percentage
points are listed for & = .50, .75, .90, .95, .975 and .99. The 100(1 — &) per-
centage point of kth order statistic is the negative of the 100« percentage point
of the (n — k + 1)th order statistic.
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