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Let {X,}, » > 0 be a sequence of independent, identically distributed, integer-
valued random variables with partial sums S, = X; + Xa+ -+ + X, (S = 0).
Throughout this discussion we will always assume that the distribution of X, is
aperiodic (i.e., that the minimal additive subgroup generated by the points of in-
crease of the distribution of X is the group of all integers). Consider the Markov
chain on the integers with transition probability P(x, y) = P(X: = y — x).
Following the terminology of [7], we call such a Markov chain a random walk.
Assume EX; > 0 and also the possibility that EX; = + «. (More precisely we
are assuming that E[max (0, X;)] > E[—min (0, X;)] and E[—min (0, X;)] < .
However, we allow the possibility that £ max (0, X1) = «.) Then the strong
law of large numbers assures us that S, — -+ « with probability one, and thus
for any x we have

(1) P(8S, = z,i0) £ P(8,: £ z,i0) = 0,

where, as is customary, ‘“io” denotes the phrase “infinitely often.” From (1) we
see at once that the random walk is transient, and thus for any z, ¥,

(2) G(z, y) = &(x, y) + Z:=l Pn(x7 y) < o,

where here and in the following, P" denotes the nth power of the matrix P. (We
shall also use the convention that P° is the identity matrix.) A basic result in the
theory of partial sums is the so-called generalized discrete renewal theorem,
which was first proved by Chung and Wolfowitz [1] as an extension of the one-
sided renewal theorem of Erdos, Feller, and Pollard [3].

TueorEM. If EX; > 0, and if X, has an aperiodic distribution on the integers,
then

(3) limy.i Gz, y) = (BX1)7,
(4) limy, . G(z,y) = 0,

where we interpret (EX1) " to be 0 if EX; = o.

By taking full advantage of the discreteness, we shall present a simple proof of
this theorem using elementary probabilistic arguments. We mention in passing
that a short analytic proof can be given by an appeal to a Tauberian theorem of
Wiener (see [6]). One final remark seems in order before getting down to the proof.
It is of course possible to have a transient random walk in which both
E[max (0, X;)], E[—min (0, X,)] are infinite. In this case it has just recently
been shown by Feller and Orey (see [5]) that lim . G(z, y) = 0. A simplified
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proof can be found in [4], and, for the discrete case, in [7]. The method of proof
we are about to give will not yield this result, and it seems that the more intricate
methods given in [5] must be used to establish the theorem in its fullest generality.
The following well-known result will be crucial to our proof.
LemMA 1. The only bounded solution of the equation

(5) 2.0 P(z, 9)e(y) = o(z)

is p(z) = ¢(0).

We shall not prove this result here. A simple proof (based on the diagonal
procedure of Cantor) can be found in [7] (p. 276, T1).

For any quantlty, a, let a* = max (a, 0) and let a~ = min (a, 0). Let M, =
min (S, -+ -, S»). Then, since M, is nonincreasing, M = lima. M, exists, and
since EX; > 0, we have from (1) that P(M = —») < P(8, £ 0,i0) = 0.

We shall also need the following known result (see [2]):

LemMA 2. If EXy > 0, then
(6) , EM' = EX,

in the sense that both sides are finite or infinite together and always equal.

Proor. M; = X;, and for n > 1, M, = X; + min (0, X5, -+, Xz
+ .-+ +X,). Since the {X,} are independent and identically distributed, for 6
real we have

E(e™) = E(e™)E(e™" ).
Consequently,
E(e™") — 1 = E(e")E(e™7 1) — E(e™).
Since M and M~ are finite with probability one, upon passing to the limit we
have
E(e™%) — 1 = [E(e") — 1]E(e™™").
Assume first that EX; < . We may then conclude from the above relation that
lime.o {[B(e™") — 1)/i8} = EXa,

and since M+ = 0, (6) must hold. (See [7], p. 59).
An alternate derivation of (6), (again with EX; < o) may be made without
the use of characteristic functions by employing the relation

E(M,” — M.) = E(S./n)7,

which may be derived by a simple combinatorial argument (see 2D.
Since

w7 Y X < (Su/n)” 20,

and with probability one, n™* D_i— X~ — EX, (8./n)” — 0, we have (doml-
nated convergence) that E(S,/n)” — 0asn — «.But we also have 0 = M =<
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M," = X;%, and so (again by dominated convergence) we have lim,.., EM W=
EM™. Now

EM? = limpow EM," = EX; + limpou E(M7y — M) = EX,.

Now assume EX; = + . We must then show that EM" = o. This is
most easily accomplished by use of the following truncation argument. (This was
brought to our attention by T. E. Harris.) Since EX; = 4 «, we know that given
any R, however large, we may find an A such that the random variable X L =X
if X; £ A, and X;’ = 0 if X; > A has expectation at least R. Clearly,
Xy + - + X,/ £ 8, and thus (M")* < M*. But then by what has just been
shown above, we must have R < EXy = E(M')* < EM™", and since R is
arbitrary, we have EM* = . This completes the proof of Lemma 2.

Consider now a particle which executes the random walk. For each z < 0 let
e(z) be the probability that the particle, starting from z, on the first step leaves
the nonpositive axis and thereafter remains on the positive axis. Define
e(z) = 0if z > 0. Then

e(z) =0, z >0,
=P(Mt> —2z), =z=0,
and from (6) we have
(7)  X.e(z) = Xiee(—z) = Lo P(M* > 2) = EM" = EX;.

Let V(z) be the probability that our particle, starting from z, ever hits the
nonpositive axis. Clearly V(z) = 1 if x = 0, while for £ > 0 we have
V(z) = P(M £ —z). The probability that a particle starting at x leaves the
nonpositive axis at time n 4+ 1, never to return, is >, P"(z, y)e(y). Since a
particle which visits the nonpositive axis at all can (with probability one) only
do so a finite number of times, we must have

(8) V(z) = e [0 P'(z, e(t)] = 22:G(z, De(t).
We are now in a position to prove the theorem. First of all we have

(9) 0 = G(z,y). = G(y, y) = G(0,0),

and by definition of G we see that

(10) 2.t P(z, 1)G(t, y) = G(z,y) — &(z, y).

From (9) we see that we may extract (by the Cantor diagonal procedure) a
subsequence ¥, — -+ such that the limit

(11) limy.s G(z, %) = ¢(2) < G(0,0)
exists for all z. If we set ¥ = ¥, in (10) and then pass to the limit, we see (by

dominated convergence) that ¢ is a bounded solution to Equation (5). Hence by
Lemma 1, ¢(z) = « for some a. Now since G(—¥., t) = G(—t, ya), from (8)
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we have

(12) V(—yn) = 22:G(—t, ya)e(t) = 20 G(t, yn)e(—1).

Suppose EX; < . Then from (7) and (12) we have (by dominated con-
vergence)

1 = liMpow V(—4n) = liMpw 2 G(t, ya)e(—t) = aEX;.

Hence (EX:)™" = a«. On the other hand, if EX; = « then we must have a = 0,
for if @ > 0, we may choose #, such that a )% e(—t) > 2. From (12) we see

(13) 1= V(—ya) = 2% Gt ya)e(—1),

and thus, asn — «, we have 1 = « > tege(—t) > 2, a contradiction. Since the
only property of the sequence {y.} which we used in the above argument was that
(11) holds, we see that if we have any other sequence {y,'} with this property,
then we may conclude Q(z, ¥, ) — (EX;)™'(= 0if EX, = «). Hence (3) holds.
To establish (4), we proceed in a similar manner. From (9) we know there is a
sequence 4, — — o such that the limit in (11) exists for all z. From (10) we
then can conclude that this limit is a constant 8. For each ¢, we see from (12) that
(13) holds. Since V(—y,) = P(M = ya.) (for n sufficiently large) and tends to 0
as n — o, we obtain, upon passing to the limit in (13),0 = 8 > i%e(—t), and
since e( —t,) > 0 for some #, (since EM* > 0), we see that 8 must be 0. Finally,
if we had another sequence y, — — ©, then the same argument as used above,
applied to this sequence, would show G(z, yn ) — 0 for all z, and hence (4) holds.
This completes the proof.
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