THE ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION'

By J. A. HAaRTIGAN

Princeton University

1. Summary. In estimation of a real valued parameter 6, using observations
from the probability density f(z | 6), and using loss function L(6, ¢), the prior
density which minimizes asymptotic bias of the associated estimator is shown
to be

J(0) = &((3/36) log f)*/1(8°/3¢")L(6, $)I}=s -
Results are also given for estimation in higher dimensions.

2. Introduction. In order to find out about a parameter 6, an observation
z is made, which is conneected to 8 by having a probability density f(z | ) which
varies as 0 varies. An attractive way of reporting the information about 6 in
specifies the conditional probability distribution of 8 given z. If our prior knowl-
edge of 6 gives rise to a prior density h(6), then the posterior density of 0 given z is

g8 x) = f(z |0)h(8)/[ f(x | 6)(8) db,

by Bayes’ theorem.

We will be concerned with determining reasonable prior densities when there
is no prior information; these are called prior densities on ignorance. Prior dis-
tributions on ignorance are technically important because they offer a reasonably
objective route to prior distributions in general—we suppose that our actual prior
information is equivalent to an observation y with probability density g(y | 6);
starting from a prior density on ignorance we calculate the posterior density of 6
given y. This posterior density is now the prior density representing prior in-
formation. Some previous suggestions for determining prior distributions on
ignorance follow.

(i) Bayes’ prior. Early followers of Bayes assumed (following Bayes’ pro-
cedure for the binomial) that ignorance could be represented by a uniform dis-
tribution over the parameter space. However, the parameter space is essentially
defined only up to 1-1 transformations [its only funection is to index the prob-
ability distributions on ], and a uniform distribution on different versions of the
parameter space yields contradictory posteriors; thus the rule of a uniform prior
distribution on ignorance is inadequate.

(ii) Jeffreys’ prior. Sir Harold Jeffreys [8] in the 1930’s began a breakaway
from the uniform tradition; in 1946 [9] he suggested a “bootstrap”’ technique
whereby the prior & is based on properties of the family of “genuine” probability
densities f(z | 8). It should be noted at this point that it is mathematically con-
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1138 J. A. HARTIGAN

venient to admit as possible priors, densities with infinite total measure. For ¢
1-dimensional, let f, = (8/860)? log f(x | 6) ; then Jeffreys’ prior isJ3(6) = I*(8) =
{6(f)}! where I(68) is Fisher’s information (and & denotes expectation over
the sample space). A family of priors similar to Jeffreys’ consists of the densities
J«(8) where

(8/8) log Ju(8) = [8(fif2) + a8(F"))/E(f).

This family, suggested by the author in [7], satisfies the minimum requirements
of a prior density on ignorance—invariance, under 1-1 transformations of the
sample space and parameter space, under replication of the sample space, and
under restriction of the parameter space. Thus for the binomial, J, = (pg)*™;
for normal location, J, = 1; for normal scale, J, = o °™%; for scale and location,
Jo = o " [using usual terminology]. Huzurbazar (so Jeffreys reports in the 3rd
edition of his book) has suggested & = 0 and also « = 1 for the exponential family;
in general most prior densities seem to be aboutJ. ,0 < a < 1.

(iii) Dectsion theoretic priors. More generally let us consider the whole decision
theoretic apparatus—densities f(x | 6), loss function L(d, 8) (associated with a
space D of decisions d), further criteria C. Corresponding to each prior density
h(6), there is a Bayes’ decision procedure which, given the observation x, makes
the decision which minimizes the average loss with respect to the posterior dis-
tribution [i.e. [ L(d, 8)g(0 | =) d6]; we now select that prior density (possibly non-
unique) whose decision procedure is best by the criteria C. Such a “coat-tail”
technique of selection of priors is suggested by Wald’s complete class theorem—
under regularity conditions, any admissible decision procedure is a Bayes’ pro-
cedure or a limit of Bayes’ procedures. Thus any criteria C which are used to
select an admissible decision procedure, also specify associated prior distribu-
tions.

Welch and Peers [18] have recently shown that Jeffreys’ prior distribution,
J3, generates “good” asymptotic confidence regions—suppose that 6 is 1-di-
mensional, and z is a continuous random variable. Let 6(a, X) be such that
6 < 6(e, x) with Bayesian probability a according to the posterior distribution of
0 given x1, 2, - - - Z, ; under regularity conditions, the region [0 | § < 6(a, x)] is
of confidence size @ + O(n™?), for any smooth prior density; for Jeffreys’ prior
J;, the region is of confidence size o + O(n™'). Thus, asymptotically, regions
generated from Jeffreys’ prior are closer to being confidence regions of size «,
than those of any other prior. The result does not hold for discrete distributions
as pointed out by Welch in the discussion of Thatcher’s paper [16].

Perks [14] first suggested that the prior distribution should be based on the
asymptotic volume of confidence regions; if 6, is the true value, the efficient
confidence region about 6, is of volume proportional to J; *(6,). Thus, with
prior density J3(6y), the prior probability of efficient confidence regions is asymp-
totically constant, as the true value 6, varies. Lindley [13] has used a similar
argument to justify J; for 6 1-dimensional, based on a definition of information he
discussed in [12].
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The function of a prior distribution on ignorance, to treat all parameter values
equally, is performed in decision theory by invariance and unbiasedness criteria.
Invariance theory shows that Bayes’ decision procedures are invariant if the
prior density h(8) is relatively invariant under transformations T leaving the de-
cision problem invariant; more precisely, suppose that there is a transformation T
mapping = onto Tz and a corresponding transformation (also called T') mapping
6 onto T, such that the distribution of Tz given 7' is the same as the distribution
of z given 0; then we need that the posterior distribution of T given Tz be the
same as the posterior distribution of 6 given z, which means h(T6)(dT6/d8) =
Ch(8) for all § £ O, the parameter space. We say that h is relatively invariant
under T. (See Hartigan [7].) Barnard first suggested left invariant priors in [2]
and Fraser showed that right invariant priors generated fiducial distributions in
[5]. Specific results are h(u) = 1 for normal location and h(u, ¢) = o for
location and scale; the method is not generally applicable because there aren’t
many variant problems.

We will consider priors chosen to give unbiasedness; if we make the decision
d(x) on the basis of the n observations z;, - - - , &., and if the true value of the
parameter is 6, the loss is L(d(x), 6). Unbiasedness requires that in some average
sense (the average being over the possible observations x), L(d(x), 8) >
L(d(x), 6) if @ is the true value of the parameter, and 6 is some other value.
Thus if

8(L(d(x), 8) | 6) = &(L(d(x), 6) [60) all 6, 6,

we say d(x) is unbiased in the mean; we will consider only this type of unbiased-
ness. Let us consider in particular estimation; here the decision space D coincides
with the parameter space ©; the loss function L(¢, 6) is the loss if ¢ is estimated
as the true value when 8 is the true value; the Bayes estimator associated with the
prior distribution % is 6, minimizing [ L(6s, 0)g(0|x) df; we show that for
6 1-dimensional, 6, is asymptotically unbiased in the mean, if and only if

h(6) = Ji/16°L(6, ¢)/0¢' s .

Thus, for the squared distance loss function, h = J3’, and for Jeffreys’ loss func-
tion, [9], A = J;, are the “mean unbiased” prior distributions. The proof of the
result requires a host of regularity conditions, of the type used in validating
maximum likelihood; principally, we require ‘“boundedness” with respect to the
z variable, and smoothness with respect to the 8 variable. A good general ex-
position of asymptotic approximations is contained in Wallace [17]; Cramér [4]
contains many of the mathematical details. Investigations of the asymptotic
consistency and normality of posterior distributions have been carried out by
LeCam [10], [11], Lindley [13], and Freedman [6]; these are properties which hold
for all smooth prior distributions. In order to select prior distributions on the
basis of asymptotic behavior of the posterior distribution, more accurate knowl-
edge is required; it is summarized below and in the figure.



1140 J. A. HARTIGAN
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ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS

Asymptotic properties of the posterior distribution. First order results, true for
any prior density, show that g(8| =, --- z,) is O(n') within O(n™*) of the
true value 6, and O(e™™) outside O(1) of 6, . If 8 is the maximum likelihood esti-
mator, the posterior density of 8 given z;, - - - «, is such that 6 is asymptotically
normal with mean § + O(n™) and variance I '(6,) = [EB(fD)]™ = O(n™).
Higher order results show that a single observation causes a change of O(1) in
g near 6, ; a change in the prior density h also causes a change of O(1) in g; if
hi = [(8/38) log h(8)]s—s, , 6 + h1/I has a density which deviates from a normal
density by terms of O(1), but which changes as the prior changes by terms of
O(n!) (negligible compared to the effect of one observation). The essential
effect of a change in prior distributions is thus a change in location of O(n™").
Now suppose 6 is the Bayesian estimator of 6, based on the prior density h; for
any other prior b*, §is = 6, + (hy — h*)/I 4 O(n™*); correct choice of h should
ensure that 6, is unbiased (in any reasonable sense we care to specify) to O(n'*).

3. Terminology and regularity conditions. We start with a sample space <,
a Borel field B of subsets of &, a family of probability distributions Py, 8 ¢ ©. We
suppose that the family is dominated so that for all 6 ¢ © Py has a probability
density f(z | 9) with respect to some measure v, say. The expectation, E(m(z) | 9),
of a function m(z) given 6 is defined by &(m(z) |8) = [ m(z) dPs(z). Let u be
some measure on the parameter space 0;if a measure on the parameter space has
density h with respect to u, we define
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g(6]2) = f(z | 0)h(8)/[ f(z | 0)h(6) du(6)

to be the density (w.r.t. u) of the posterior distribution of 6 given x, when the
prior density is h. If § was a random variable with probability density h(6), and
f(x | 6) the conditional probability density of = given 6, then g(6 | z) would be
the conditional probability density of 8 given . We wish to consider prior meas-
ures which are not probability measures, firstly, in the practical sense that no
frequency interpretation will be given to them, and secondly, in the mathematical
sense that the measures need not assign measure 1 to the whole parameter space,
but may even be unbounded. (Posterior measures in contrast, do give measure 1
to the parameter space.) Now suppose that it is required to choose a decision
d & D, some space of decisions, which is connected to the observation z, through
the parameter space ©, by a real valued loss function L(d,0) on D x ©. L(d,6)
is the loss if the decision d is made when the true value of the parameter is 6. A
Bayes decision dy(), given the observation z, with respect to a prior density k,
minimizes the average loss over the posterior distribution f L(d,0)g(6|z) du(8).
We may consider more general decision functions 3, functions from & to D, which
state for each possible observation z which decision will be taken; before the ob-
servations are made, a decision function might be evaluated by its average loss,
Lx(s, 0) = &(L(3(x), 6) | 6); one criterion for choosing among decision functions
is that of unbiasedness—a decision function § is unbiased if

8(L(8(z), ¢) | 6) = &(L(8(x), 0) | 6)

for all 9, ¢ € ©. If L(d, 9) is interpreted as a measure of incompatibility of d and
6, an unbiased & is such that, when 6 is true, §(z) is, on the average, more com-
patible with @ than with any other value of the parameter. Let us define the
bias of 8 at 0 by B(8, ) = supg.e &{(L(8(x), ) — L(8(x), ¢)) | 6}.

We will be concerned in what follows to investigate the bias of the Bayes
decision functions dy(z); in particular, to ask if a prior distribution A can be found
which is of minimum bias for all 8. We shall show that when the decision problem
is estimation of a real valued parameter, and under regularity conditions on f, ,
and L, there exists a prior distribution of minimum asymptotic bias.

The regularity conditions of f are somewhat stronger than those required to
validate maximum likelihood. In the following, all probability statements and
expectations are with respect to f(z | 6).

f(z|6), 6 €O, is regular at 8 if

(F1). O is a closed subset of the real line of which 6 is an interior point

(F2). f(x | 0), for each § £ ©, 6 = 6, , differs from f(x | 6) on more than a set
of probability zero

(F3). log f(z | 8) is continuous in § uniformly in z

(F4). log f(x | 6) has finite fourth moments for all 6 ¢ ©

(F5). either © is bounded, or for some k > 0, supo>« log (f(x | 8)/f(z | 60))
has negative first moment and finite fourth moment

(F6). (87/36) log f(x | 8) exists and is continuous uniformly in =z, for
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1 = r = 4, in some neighborhood of 6, ; furthermore, (8"/96") log f(z | 8) has
finite 4/rth moment and (9/39) log f(x | 6) has positive second moment.

The regularity conditions for h require that it be smooth in a neighborhood
of 6y, and that it will be possible to obtain posterior densities from it. h(8) is a
density with respect to Lebesgue measure on ©. We say h is regular at 6, if

(H1). log h(8), [(8/00) log h(8)], [(8°/36%) log h(6)] exist and are continuous
in a neighborhood of 6,

(H2). [ f(x|0)h(8) df exists and is a bounded function of z.

Finally, we specify the regularity conditions for the loss function L(d, ); for
estimation of a real valued parameter, D = © is a closed subset of the real line. L
is regular at 6, if

(L1). L(d, ) is bounded

(L2). L(d, 9) is continuous in 6 at 6, , uniformly in d. L(d, ) is continuous in
d at 6, , uniformly in 6

(L3). in some neighborhood of (8, , 6,), the derivatives (9/0d)"(9/96)°L(d, ),
1 = r 4 s £ 4, exist and are continuous; L(d, 6), 0 fixed, has a unique minimum
atd = 6and L(d, 0), d fixed, has a unique minimum at§ = d

(L4). [(8°/96")L(d, 8)]a=s—s, > O.

The asymptotic behaviour of a sequence of random variables {y,} will be
described by the following conventions: y, = O(B,) with probability 1 — O(e,)
means that 3 K, k, N, such that P(|y. > KB.) < ke, for all n > N;
yn = O(B,) with probability 1 — o(e,) means that for each £ > 0, 3 K, N such
that P(|y.] > KB,) < ke, for all n > N. If y, = O(B,) with probability
1 — o(1), we will say y. = O(B,). Finally &,*(y.) denotes the average of the
truncated variable y,* = v, if [ya| < ¢, y.* = 0if |ys| = ¢; in particular, we note
that

8o(Tn 4 Yn) = 81 (2n) + & (ya) + O(P(lwa| > ) + O(P(lya| > ©)).

The asymptotic results require contemplation of an infinite sequence of ob-
servations Zi, - &, + -+, from the same distribution as x. A set of n inde-

pendent observations has density f(x,|8) = J]i-1f(x:|6); for each set of n
observations as n runs from 1 to «, we generate a posterior density g(6|x,)
corresponding to the prior density h. We will be concerned with the detailed
asymptotic behaviour of g(6 | x,) and the Bayes estimators dx(Xa).

We set f, = [(87/06) log f(xx | )]s, ,

g- =8(f"), 1=r=4  gu=_8ff).
Then for regular f, gs = 0,9 + g2 = 0, g + 3g12 + g5 = 0.
Further we set h. = [(97/067) log h(8)]s, ,
L., = [(9/0d")(9°/06°) L(d, 6)]a—s5,0-0, -

For regular L, Llo = Lo1 = 0, Loz = Lzo = —Ln, L30 + 2L21 + le = O,
Ly + 2Ly, + Les = 0.
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4. Asymptotic behaviour of the posterior density. The posterior density is
given by

9(0 | %2) = f(xa | 0)R(8)/ ] f(%n | 0)R(8) db.

Now f(x,|8) = exp [D 7= logf(xz:|8)]; our approach to the asymptotic be-
haviour of g(8 | x.) when the true value of the parameter is 6, will principally
depend on (well-known) properties of the sums of independent identical
random variables, D i logf(z:| 6), and on Taylor expansions of these sums
around 6, .

LemMa 1. If f and h are regular at 8y, for any ¢ > 0, 3 § > 0 such that
[F(Xa | 0)/f(Xx | 00)] is O(e™™), uniformly in 0 such that [0 — 60| > ¢, with prob-
ability 1 — O(n™0).

Proor. Let us first consider, for a single value of 8, f(x. | 6)/f(X. | 60). Define
v = logf(z |0) — log (x| 6o), so that log [f(X, | 8)/f(Xx | 60)] = D_i=1v:. Now
because exp is convex exp (&(»)) < &(expv) = 1, with equality only if v is con-
stant with probability one; since, from (¥2), f(z | 6) differs from f(z | 6,) with
probability greater than zero, v is not constant and exp &(v) < 1 or &(») < 0.

For any random variable, from the Chebyshev inequality, P(ly — u| > ¢)
< /¢, where p is the first moment and us the fourth moment. Suppose that »
has rth (central) moment u, ; then > v; has first moment n&(v) and fourth
moment nus + 3n(n — 1)u".

Thus P(>_ v > ing(v)) < k/n we therefore have f(x,|0)/f(X.|60) is
0(¢™) with probability 1 — O(n ?). From [F3], which states that f(z | 0) is
continuous in § uniformly in x, the result holds uniformly for 6 in any region
K > |0 — 6 > . From [F5] we have the result holding outside [6] > K for
some K large enough; thus f(X.|60)/f(X.|6) is O(¢™) with probability
1 — O(n™?), uniformly in 8 such that [§ — 6o > ¢, which proves the lemma.

THEOREM 1. Let f, h be regular at 8, ; the asymptotic behaviour of g(6 | X,) may be
treated separately in the three regions

(1) |0 — 6o = e (i) n < 10— 6 = ¢ (iii) |0 — 6] > c.

For c sufficiently small, and for any e > 0, the following hold:
Uniformly in (1),

g(0] %) = (—go/2m)} exp (38g2)+ {1 + Elhs + filge — f2) /g2 + 3/1"05/9%']
+ 38 + ¢ e — g2 — figs/gel + £Egs + O(n7 7))

with probability 1 — o(1), where ¢ = 6’ — 0 + fi/g2 .

Uniformly in (i), g(6 | X,) = 0(e™) with probability 1 — o(1).

In (iii), [jo—go1>c9(0 | Xx) d0 = 0(e™™) with probability 1 — O(n™?).

Proor. Define L,(0) = f(X.|0)h(0)/f(Xn | 60)k(6,); then g(olx,.) = L.(6)/
fL (6) db. To prove (iii), recall that from Lemma 1, L,(6) is 0(¢™™) uniformly
in |§ — 60| > ¢ with probability 1 — O(n™ %); let Znya be an (n + 1)st observation;
since 10g f(ny1 | 60) has finite fourth moment, the proof of Lemma 1 may be
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modified to show that L,(6)/f(2as1 | 60) is O(¢™) uniformly in [§ — 8] > ¢ with
probability 1 — O(n™*). Also, [ f(n1 | 6)h(6) df is bounded as Tnt1 varies from
(H2), 50 [16_sy15c Lns1(6) d6 is O(e™) with probablhty 1 — O(n™*). It remains
to check that [ L.(9) db is reasonably large; 1f ¢’ is sufficiently small, |log f(z | 6)

— log f(x | 60)| < %8 for all z, for |9 — 6| < ¢’. Thus [je_g<c Ln(8) d8 > €,
and

Jio-s01>¢ 901 %a) d6 = [iosq1>e Ln(6) d8/[ Ln(6) d8 is O(e™),

with probability 1 ~ O(n™?).

Let us next consider the behaviour of L for n™** < |6 — 6] < .
log L = log h(6) — log h(6,)

+ (6 = 00)fs + 3(0 — 60)Fe + 4(8 — 60)'fs + #2(6 — 60)*fu($)
where fi(¢) ‘= D7~ (3*/8¢") log f(z:| ¢), some |¢ — 6| < c. From F6, we can
choose ¢ so that for some A < «, fi(¢) < M for all [§ — 6 < ¢ with probability
1 — o(1). Also f; = nks + O(n?), fo = nkz + O(n!) where k; < 0, and f; = O(n®);
here k; = &{(98/30)"log f(z | 6)}. For ¢ small enough, there exists a u > 0 such
that

36 — 00)’fa + 3(6 — 00)'s + (6 — 60)Fs(#) < —mu(6 — 6)’
for [§ — 6] < ¢, with probability 1 — o(1). Also in v < |9 — 6y < ¢,
logL < (6 — 60)fy — nu(8 — 60)* + log h(6) — log k(o)
o) — np(n) + 0(1) < —n
with probability 1 — o(1). Thus L = O(e¢™™") uniformly in 2 < [§ — 6| < c.
Let us now consider the behaviour of Lin 0 < [0 — 6, < n
log L = (6 — 80)(fs + m) + 3(6 — 60)’f: + 3(6 — 60)%f + O(n™"™)
(1) L=exp[(6 — 60)f + 3(6 — 60)’gal{L + (6 — 60)hu + 3(6 — 60)”
(o= g2) + 3(6 — 60)°gs + O(n™ )}

uniformly over |8 — 6| < n . Now f|o_o°|>,.—;+- exp [(8 — 60)f1 + (0 — 6))%gs) -
{1+ (6 — 60k + 3(0 = 0)°(fa — g2) + #(8 — 6)°gs} d6 is O(¢™); also
flo_o°|>,.-§+. L(8) df is O(¢™™). This permits us to obtain fe L df by integrat-
ing the R.H.S. of 1). Thus

(2) JfeLdd = exp (—3fi'/g:)(—27/g2)'[1 — fiku/g2
+1(' — g) (2 — 92)/92" + (3fige — £')gs/6g2’ + O(n %)) = O(n7).

Dividing (2) into (1), we obtain that (i) holds uniformly in I0 — 6] < n7tte,
Fora ™ < |0 — 6 < ¢, g(6]x,) = L(6)/f L(6)ds = O(e™ ’) some & > 0,
and so (ii) holds also.

This proves the theorem.
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The posterior distribution of 6 is thus concentrated in the neighborhood of 6, ;
in fact 0 is asymptotically normal with mean 6, — fi/g. and variance —1/g.
[recalling the maximum likelihood result that 6 — 8, + fi/g. = O(1/n), where 6
is the maximum likelihood estimate, we can therefore expect that Bayes esti-
mators, whatever the prior density, will differ from maximum likelithood by
0(1/n)]. The effect of the prior density, represented by ki = [(9/06) log h(8)]s, ,
appears in lower order terms in the distribution; the moments of the truncated
variable §* = 9if | — 6| < ¢, 8% = 0if |§ — 65| = ¢, are given by

(8) wm™* =6 — (fi/ge) — (1/g)[ha + filge — fo) /92 + 3f"gs/ 02" — 305/95)
+ o(n7H),

(4) #2: —1/gs + 1/g2lfs — g2 — gs/gs] + O(™*™),
3 —ga/gs" + O(n~H*),

and generally, the rth cumulant is given by K,* = O{n"“’“)} forr = 3.6 + hi/g.
has a posterlor densn;y which is independent of the prior distribution A up to
terms in O(n ) [compared with a single observation, which changes the
posterior density by a term of O(1)]. Asymptotically, the prior distribution &
therefore affects the location rather than the shape of the posterior distribution.
Therefore, we can expect, when we use the prior distribution to generate statisti-
cal decision procedures, that bias rather than efficiency will suggest suitable
pricrs.

b. Asymptotically unbiased prior distributions. We will be interested in this
section in asymptotic properties of the Bayes estimator di(x.); di(X,) is that
decision which minimizes [ L(d, 8)g(8 | x.) df.

THEOREM 2. (1) dh(x,,) — 6 = o(l) with probability 1 — O(n™*)

(i1) dh(xn) = m* — $(Lw/La)pe” + 0(n™h)
where u:* is the ith moment, of the truncated variable: 6* = 6 4f |0 — 65| < ¢, 6" = 0
if |0 — 60| = c, over the posterior distribution.

Proor. If Idh(x,,) — 60| > ¢, since L[d, 6] has a unique minimum at d = 6,
and since L[d, 6] is continuous at 6,, 3 ¢, § depending only on e such that
(L(dn(%n), 8) — L(6o,6)) > 6 whenever |§ — 6| < ¢. Comparing the decision
dn(x,) with the decisions 6, , f (L(dn(%,), 8) — L(60, 0))g(0|x,) < 0. Hence

8 [16—ty1<c (8 | Xa) d6 < 2supa,s L(d, 0) [1s—so>c (8 | Xa) db.

Now, the posterior probability that |8 — 6 > c¢ is O(¢™™) with probability
1 — O(n™®). Hence the event |dy(X.) — 6 > € occurs with probability O(n™?),
which proves (i). To prove (ii), we have that for d near 6,,

(5) [ L(d, 0)g(0]%.) d0 = [jo_se1<c L(d, 0)g(8 | X,) db
+ [1o—to1z¢ L(d, 6)g(8 | x4) db.

Let us first find d which minimizes the |6 — 6o < ¢ term; we will later show that
the second term can be ignored. We want d as a solution of [jo_s<c
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(8/0d)L(d, 0)g(0|x,) df = O ie. [jo_ppi<c[Lao(d — 0) + 1Lsp(d — 6,)*
+ La(d — 60) (6 — 60) + 3L12(60 — 60)* + O (third order terms)] g(6 | x,.) df = 0,
where this Taylor expansion about (6, 6) is validated by the regularity con-
ditions on L. Hence

Lu(d — p*) + 3Lso(d — 6)* + Lau(d — 60) (u* — 60)
+ 3Lulus* + (u* — )] + 0(n7h) = 0.

Henced = ,u* - %(le/Lzo)[.Lz* + O(n'*) (recalling that~L30 + 2L21 + L12 = 0).
It remains to check that the second term in (5), which is O(e™™), does not affect
this minimum d. Suppose the decision minimizing [ L(d, 6)g(0 | x,) df was d’;
then [jo_sy1<c L(d, 0)g(60 | Xa) d8 — [1o—s91<c L(d', 8)g(8 | %) d6 = O(¢™™). Thus
d —d = 0(e™) and the second term in (5) has only a trivial effect.

THEOREM 3. Let f, h, and L be regular at 6, . For any prior distribution h, the
bias of di(X,) at 6o 1s O(n™") ; the bias is o(n ™) if and only 1f [(3/36) log h(0)]o—s, =
[(8/36) log &(((3/90) log £)* | 8)1/1(8°/8 &) L(d, 6)}3=s)lsms, . Such an h will be
called asymptotically unbiased at 6, . h is asymptotically unbiased in an interval if
and only if k(8) = &(((8/98) logf)*|6)/[(8*/d d*)L(d, 0)1}—s in the interval.

Proor. The bias of di(x.) at 6, is defined by B(dy, ) = supee &[L(d, 8)
— L(d, 0)]. It will be convenient to split the integration symbolized by & into
two parts, one over |[d — 6 < ¢, which we represent by &* and one over
|d — 6] = ¢ which we represent by &**.

Firstly let us show that the value 6, maximizing &(L(d, 6,) — L(d, 8)) con-
verges to 6, as n — . For any ¢ > 0, consider those n for which |8, — 6o >e.
From (L3), we can find & such that L(8, , 6,) = L(6,, 6,) + & for [0, — 6| > ¢,
from (L2) we can find ¢ such that for [d — 6| < ¢, |L(d, 6)) — L(8o, 60)| < 6/4,
|L(d, 6,) — L(6o,6,)| < /4. Thus L(d, 6,) — L(d, 6,) < —&/2for |[d — )| < c,
|0» — 6o] > e. Hence for |6, — 6o > ¢, 8(L(d, 6) — L(d, 6,)) = &*(L(d, 60) —
L(d, 6,)) + &**(L(d, 8) — L(d, 6,)) = —58/2 4+ O(n%), since |[d — 6| > ¢
with probability O(n™*). Hence, for all n large enough [0, — 6| < ¢; i.e. 6, — 6,
as n — . Thus, for maximal 6, , since L(d, 6) is continuous in 6 at 6, , uniformly
in d,

(6) 8(L(d, 60) — L(d, 6,)) = €*(L(d, 6) — L(d, 6,)) + o(n™").

Let us now find the value of 8 which maximizes §*[L(d, 6,) — L(d, 8)]; we need
to find 6 satisfying

&¥[La(d — 6) — 1Ln(d — 60)® — Li(d — 60)(6 — 6,) — 1Li(0 — 65)"] = 0.

Now d = p* — 1Lyu*/Lay + O(n?) where p* and u* are given by (3) and
(4); it follows that 8*(d — 6) = O(n™"), 8*(d — 6,)* = O(n™*) and §*(d — 6,)°
= 0(nY); also P(ld — 6| > ¢) = O(n™?), which makes &* additive, so 6 =
8*(d) — 3(Lu/Lwn)&*(d — 6,)* + O(n™?). To find 6, maximizing &(L(d, 6,) —
L(d, 0)) we must take the term of o(n™*) into account in Equation (6). A change
A6 in § produces a change A98*(9L/80) = A0 X o(n™") in §*[L(d, 6)) — L(d, 9)].
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This change must be o(n™?), so A9 = o(n™"). Thus the maximizing 6, satisfies
0, = &*(d) — L(Lm/Ln)&*(d — 6)* + o(n™"). We are now in a position to
evaluate the bias of an estimator at 6, ;

B(d, ) = &"L(d, 6) — L(d, 6,)] + o(n™?)
= 8*{3La(0n — 66)(d — 3(0, + 66)) — 2La(d — 60)*(6, — 60)
— 3L1s(d — 60) (6 — 60)* — Los(8 — 60)* + o(n™?)
= 3Ln(0 — 00)8"(d — 60) — 1Lao(6n — 60)*
— 3Lug*(d — 60)’(6n — 0o) + o(n")
= 1Lan(8, — 80)* + o(n™?).

We thus see that the asymptotic bias depends only on the rate of convergence of
the maximal 6,. Now 8, = 6 + &*(d — 6p) — 3(Lay/Ls)8*(d — 6)® + o(n™)
and d = m* — 2(Lig/La)me™ + O(n’*) from Theorem 1, where

w* =0 — fi/g2 — g5 ' + filge — fo) g2 + 300/05° — 396/ga] + O(n7h)

pt = —git 4+ 0(n7H).

We know that &(fi/ge) = 0, but must check that &*(fi/gs) is small. In fact,
(/11 92) — &*(f1] g0)| = 18" (1| o)l

e (1| ga)

c&(fi'] g2) = O(n™).

A similar result holds for other terms in m™ (except the O(n}) term). Thus

A 1A

IIA

On = 00 — go k1 — g1/g: — 3gs/92 — 3g5/g:]
+ 1L/ Lzogz_1 + 31Ln/Laogs* + o(n™)

ie. 0, = 0 — go '[h1 — (g2 + g3)/g2 — 3(Lae + La)/La) + o(n™"). Let us now
observe that

(912 + gs)/9e
= [6((8/90) log f(3°/06") log f) + &((8°/86°) log £)1/&((9°/96") log f)
= [(8/86) log (—8((8%/86") log £))lsss ,

and since Ly + Ly = — (Lg + La),

(Lyz + Lau)/Lyo

= —{[(8°/0 d")L(d, 0)la—s + [(3°/0 d")(8/30)L(d, 8))ams}/[(8°/3 ") L(d, 0)]sms
—[(3/80){log [(8°/3 d*)L(d, 6)ao} Jo—s, -
Thus 6, = 6, + O(n™") for any prior distribution, and 6, = 6, + o(n™") if and
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only if (9/86,)(log b — log &((9/86) log f)* + %log [(8°/8 d*)L(d, 0)]a=o) =
This proves the theorem.

6. Applications of one dimensional result. Let us use as a symbol for the
asymptotically unbiased prior density JUB. For loss functions of form L(d, 9)
= a(8)(d — 0)*, we have JUB(8) = I(6)/a(8); as we change a(8) we will run
over all smooth prior distributions. Thus there is a 1-1 correspondence between
asymptotically unbiased prior distributions and loss functions of this type.

For the “intrinsic” loss functions suggested by Jeffreys [9], L(d, 8) =
J i = d) — A= |o)f V(dx) and L(d, 0) = [ log (f(= | d)/f(z | 0)(f(x|d) —
f(x]0))v(dz), JUB = I' = J;, Jefireys’ density.

We might ask for cases where there exists a prior distribution giving an exactly
unbiased estimator. Such a case is that of the exponential family, where f(z | §) =
exp (a(0)b(z) + U(8) + m(z)), a(8) monotone, a(f) and 1(9) differentiable;
we will suppose further that f(z | 8) = 0 on the boundary of @. It is a well known
by-product of the Cramer-Rao 1nequa,hty that b(x) is a minimum variance
unbiased estimator of Sa(b(x)) = —1'(0)/d’(6). Let us then take L(d, 0)
HOVAO NS (d)/d’(d) and find that 1(6) = —I"(6) + a”(6)V'(6)/a’(6)
and that JUB = |a’()|. The JUB is such that a(8) is uniformly distributed over
0;i.e. JUB = J, in the notation of the introduction. For this prior distribution
the Bayes estimator is b(z) which is exactly unbiased; this then is a case where
an exactly unbiased prior distribution exists.

7. Extensions to more than one-dimension. Suppose that © is a closed subset
of r-dimensional euclidean space, and that 6, is an interior point of ©. Very similar
results to the one dimensional case may be obtained for the asymptotic form of
the posterior distribution and for specifying the prior distribution which gives
asymptotically unbiased estimators; we state them here without proof.

Let us change our notation so that

fi =1(8/96:) log f(xa | Ole,, ki = [(8/06:) log k()]s
= [(0/06:)(8/6;) log f(xx | 6)1s, ,
Fine = 1(0/06:)(9/36;)(8/6x) log f(xa | 6)s, ,
9: = 8(fs), g4 =8&fy), g = &fin),  Giiu = &(fifi);
let g’ denote the Zjth element of the inverse of the {g.;} matrix.
Let Li; = [(8/0 d:)(8/0 d;) L(d, 8)]amo=s,

Li% = [(3/9 d:)(8/86;)(8/96:) L(d, 6)ls,
Li = [(8/0d:)(8/8 d;)(8/06,)L(d, 8)ls, -

Finally we will use the tensor summation convention that a:;b; = D51 a:b;,
ete.
Then. under regularity conditions, the asymptotic behaviour of the posterior
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distribution near 6, is given by
9001 %) = 2m) ¥ |—gul exp Gttigi){1 + &k — (Fis — gi)g™Fs
+ 3071 fngin) + 3(8& + 0 fis — 95 — ¢ figin) + 2dibigin + o(n™)},
where £ = 6; — 0, + ¢*f; . The moments are given by
ui = 00— gf5 = g"Ths — (fir = 9i)g" + 36" 1i0" Fgie — 39" gsu] + O(n™*)
pis = —g” + O(n?)
pix = 0(n™)

The Bayes estimator with respect to h is asymptotically unbiased if the r
equations in the derivatives of log A,

(7) hi = gijag™ + ging™ + 3L (Li% + LA gim ,

are satisfied.

A solution to these equations may not exist for all §, and so there may be no
prior distribution which is asymptotically unbiased for all ; a solution does exist
when the loss function used is Jeffreys’

L(d, 8) = [ {log f(z | d) — log f(z | 0)}If(z|d) — f(z|6)](dz).

In that case JUB = J; = |I|}, where I is the information matrix with jth ele-
ment —g;; ; this is the generalization of Jeffreys’ density to r-dimensional param-
eters, as given by Jeffreys in [9]. Another simple loss function is the squared
distance L(d, 0) = > _i_; (d: — 6;)%; in this case Equation (7) reduces to h; =
giing™ + ging”™, but, again, this equation may have no solution for all 6.

8. Applications of many-dimensional result. For the exponential family f(z | §)
= exp [2 i1 ai(0)bi(z) + 1(6) + m(z))], where 8 is r dimensional, 8 — (a(9),
-+ a,(0)) is a 1-1 differentiable transformation of 8 and I(8) is differentiable, we
can find Bayes estimators which are exactly unbiased, similarly to the one-
dimensional case. We assume that © is such that f(z | 8) vanishes on the boundary
of ©. Recalling that b(z) = (bi(z), --- b,(x)) is a minimum variance unbiased
estimator of &(b(z) | 8), we use the loss function

L(d, 8) = 2 i [8(bi(z) |d) — &(bi(z) | 0)]

the exactly unbiased prior distribution is given by requiring [a;(8), - - - , a,(8)]
to be uniformly distributed. The associated Bayes estimator is b(z).
Let us now consider in detail unbiased estimation in the regression problem

y = Xu + ¢,

where y is an observation vector of dimension n, g is a vector of dimension m, X
isan n X m matrix of rank m, ¢ is a scalar, and ¥, the error variable. is distributed
as an n-dimensional spherical normal. The parameter here is @ = (m, ¢) which is
(m + 1) dimensional. We note that for prior densities of form h(w, ¢) = ¢**, the
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posterior distribution of w, o given y is given by
v|y, 0~ N(g, (X'X)76")

o~ ly — X@”_IX:-m-p
where [u]| = D 7 u’ and @, the least squares estimate, is the value of
minimizing ||y — Xy]|.

A dizzying array of possible loss functions now confronts us.

(i) Jeffreys loss function. L(d, 8) = [ (logf(z|d) — logf(x|0))(f(z|d) —
f(z [ 8))v(dz). For6 = (u,0),d = (m,s), L(d,8) = }||Xy— Xm|(¢*+s) +
in(o/s — s/0)’; the unbiased prior distribution is k(w, o) = o ™™ (Jeffreys’
prior) which leads to estimatesm = @,5" = |ly — X&/{n(n — 2)/(1 + m/n)}*.
This assignment of prior distribution has been a subject of some controversy
because it generates the posterior ¢ > ~ ||y — X &|| x»", and thus the precision of
our knowledge of o, represented by the number of degrees of freedom of the
x’, is unaffected by the number m of parameters fitted in the model. Jeffreys, in
his key 1946 paper [9], questioned the plausibility of his priorJ} in this situation.
Nevertheless, for unbiased estimates according to Jeffreys’ loss function, J; is
the uniquely appropriate prior density.

(ii) Unbiased estimation of o. If we wish to estimate o* and w unbiasedly,
L(d, 8) = (¢ — &) 4+ D (us — m;)’, the unbiased prior distribution is
h(u, ¢) = o', and the associated Bayes estimates, m = @, & = |ly — X@|/
(n — m), are exactly unbiased.

(iii) Unbiased estimation of ¢ *. Here L(d, 0) = (¢ > — s 2)* 4+ > (i — m;)%,
the unbiased prior distribution is h(w, ¢) = ¢, and the associated Bayes estimates,
m= ¢ 5 = |y — Xa||/(n — m — 2); are exactly unbiased.

(iv) Minimum variance unbiased estimators. The minimum variance unbiased
estimators are ||y|| and X"y which have expectations no” + w"X "Xy and X" Xy.
In order to estimate no® + w’X"Xu and X"Xu unbiasedly, we must use the
prior distribution A(w, o) = o %™ the associated estimates of u and o* are
m = gand s’ = ||y — Xl||/n. The posterior distribution of ¢ is given by ¢~ ~
ly — Xallxh+ms2, S0 that this prior distribution is even more extreme than
Jeffreys’ in increasing the number of degrees of freedom as parameters are added
to the model. We must conclude that unbiased prior distributions may give
reasonable estimates, but simultaneously give unsatisfactory general purpose
posteriors.

(v) The usual prior distribution. The usual prior is h(y, ¢) = ¢ ', which gen-
erates the posterior

v — &~ N0, (XX)7",
ly — Xal/0" ~ xam -

The first statement is true given o, §1 and is also true given o, u; the second state-
ment is true given ¢, and is also true given y. The fiducial and posterior distribu-
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tions for ¢ therefore coincide. This is one way of justifying priors; there is no
obvious unbiasedness justification for i(w, ¢) = o .

9. Outstanding problems.

1. Unbiasedness should determine priors in other types of decision problems;
in particular, in testing § = 6, against 8 £ 6, , one Bayesian decision procedure
rejects 6 = 6 if g(6y | ) < c; tests of various levels of significance are obtained
by varying c. The test will be unbiased if P(g(6|z) < ¢| ) = P(g(6o | z) <
¢ | 8) for all 6 ¢ ©®. Which prior distribution makes the test ‘“asymptotically
unbiased” for all ¢? Jeffreys’ prior would be the first candidate.

2. For a loss function L(d, 8) = |d — 8|, the Bayes estimator is the median of
the posterior distribution; under regularity conditions, it is unbiased for Jeffreys’
prior. The same result appears to hold in higher dimensions; does it?

3. In “interval” estimation, suppose we describe the loss in deciding upon the
region d when 6 is true, by

L(d, 8) = L(d) — ¢(d, 6)

where ¢(d,0) = 1if 0ed, c(d,0) = 0if 0 2d, and L is a positive measure on 0O,
with density [(6) say. The Bayes decision is {6 | g(8 | z) > 1(8)}; we may now
ask for two types of asymptotic impartiality properties, confidence and unbiased-
ness. The region function z — {6 | g(6|z) > 1(6)} will be a confidence region
(function) if P(g(6]z) > I(8) | 8) is independent of 8; it will be an unbiased
region function if Plg(0|z) > 1(0) | 6] < P(g(6o|z) > 1(80) | ) for all 6 ¢ .
Borges [3] considers some confidence regions of this type. First order confidence
properties are guaranteed if and only if 1(§) o« J;(8); higher order results de-
pending on the prior distribution » remain open.

4. Anscombe [1] suggests transforming the parameter space to make the
likelihood function look like a normal likelihood funection; possibly a uniform dis-
tribution in the transformed space would give a reasonable prior. In fact, it
gives the prior J; mentioned in the introduction, in the one-dimensional case.
One would hope for an extension to a higher number of dimensions.

5. Rao [15] defines a general measure of loss L(7, ) when an estimator T
is used in estimating 6 and it may be possible to specify prior distributions 4 by
requiring the estimators T, (minimizing [ L(T, 6)h(6) d8) to have “good”
properties.
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