SAMPLING ENTROPY FOR RANDOM HOMOGENEOUS SYSTEMS
WITH COMPLETE CONNECTIONS
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In this note we derive the asymptotic behaviour of the sampling entropy for
random homogeneous systems with complete connections with a finite set of
states.

1. Let X = (4)1<i<- be a finite set and W an arbitrary set. For every 7 ¢ X
let u; be a mapping of W into itself and P; a real-valued function defined on
W such that P; = 0, 2 iy P, = 1. We put wi,...q, = Ui, © =+ ou;, forg, e X,
1=k n.

After [6] the mappings u; and the functions P; determine a random homo-
geneous system with complete connections; this concept contains as particular
cases the simple or multiple chains with complete connections ([2], [10]), the
chains of infinite order ([2], [3]), the stochastic models for learning ({1]) and the
random automata ({9]). For every c e W there exist [6] a probability space
(2, %, @) and a sequence of random variables (£, )newe, N* = {1, 2, ---},
defined on 2 and with values in X, such that

®e(é1(w) = 1) = Pi(c)
Cclbrpi(w) = 1| t(w) = 4n, -, &(w) = 1) = Pi(uy..q,(c))

foranyne N* ie X, (41 - in) € X, where X is the nth cartesian product of

the set X.
For every 2 < 1eN*, (4, --- 4;) e XV let P, ., be the function defined on

W by the relation
Piy..5(c) = Pi(c)Piy(uiy(c)) -+ Piy(uiy...i,_4(c)).

For every Land n e N¥, (4, --- 3,) ¢ X let Px‘.),.,-, be the function defined on
W by the relations

P& = Piyooy ifn =1,
P () = 2 Pi(e)PUT (uile)), ifn > 1.
We have [6]
P ie) = Culta(w) = @1, o+, Enpra(w) = @),
We set

an = Sup lPi(un~-~in(C,)) - Pi(ui1-~-in(0”))|
the upper bound being taken over all ¢/, ¢” e W, ie X, (44 - -+ in) € X™.
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If D nn+@n < o and there exist & > 0 such that for any le N* and any
partition 4,” u 4, of X?
1) Z(il...,-,)mlu) Pi..iy(e) > 8 for any ¢ ¢ W or
D Gaeeineagd Pipoogy(¢) > 8 forany ce W
then for any I e N* there is [6] a probability P7,...;, defined on X such that
| 2o snea [PE(e) — Pheoi]l S infiguga (3 Lize as/8) + (1 — 8)®07

forevery ,ne N*, ce W, A® c X?.
A simpler condition which implies the Condition (1) is the following ([5],
[6]) : there exists 7 £ X, @ > 0 and k ¢ N* such that

(2) P;o(u,-l...ik(c)) > a

forany ce W, 4, ¢ X, 1 < p < k. The Condition (2) implies the Condition (1)
with 8 = 1a" where u is chosen such that Z,.;u a, = %
In the following we suppose that

2onewe iDficozn (Xizet; + (1 — 8)™) < oo,
2. We put for every (41, -+ 4) e XP and , ne N*
Vajigeerip = ZI?EI Xivoir(Be o0 Eorin)

where xi,...i, is the indicator of the element (4, - - - ;) of X%.
The random variable

Hop = =17 e inex® (Umyigeeeis/ D) (vnigein/10)
represents a sampling entropy for a sample of size n + I — 1 in the sequence
(Eu)mN‘ . )
We set

o/ l—z[Z(il"'iz)tx(” Py I Piosy — (Z(n'“ﬂ)ex(” PGy lg P.i)?
+ 2ZheN‘ {E(il"'ih+t)ex("+” P‘;'Q:“'ih.;.z lg PZ"'*’: lg P:'j.-g.l"'ihu
— (D (ireerinexw Phyeeiy lg PRi)]

Hi= =TI eipexs Py lg Py,

We shall prove the
TueorEM 1. For any ce W,le N * we have

i ®efnt(Hpy — Hi) /oo < N} = @) 2y e du
uniformly with respect to \ if o; # 0 and
limase (Pc{n*(H;‘,z — H;) <\

1forx>0
=0forx=0

lf g, = 0.
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The proof is based essentially on the central limit theorem of [6], p. 631 (see
also [8]) which in our notations may be stated as follows:
Let f be a real-valued function defined on X ® and

A(f) = Dieinex® Phoeiif (i - i) = (Xigeeipex s Pl (i - i))?
22 hewe { 2cirevingpextirn Phyciny J(G1 o 0)f(ha <+ nta)
— (Xtrwipexeny Piyaf (i -+ 4))*).
We have always 0 < ¢°(f) < . For any ¢ ¢ W we have
Bimpaw @{[ Xt f(E -+ Eorim1) =7 Doiyeeripex® Phyeeciyf(ine - -80)/a(Hn'] < N}
= (2r)7? Y e du
uniformly with respect to X if ¢(f) = 0. If o(f) = O the random variable
SEfE - b)) — 0P fG e d)/nt

converges in quadratic mean to zero with respect to ®. as n — .

We deduce easily that for the theorem we want to prove we may assume that
Py % 0, (4 -+ 5) e X, Then, we set f(i -+ 91)=—1" lg Pt
('il s 'I:z) & X(l). We have

W et f(B o+ Brarr) — B2 eeipex Pl f(G o e @)
= 01" 2 ipex® Pmgiyeei/m] lg Plyeosy — Hil.
From the theorem which is stated above it follows by choosing f adequately that
Va,ip+--i;/T converges in probability with respect to ®. to PY,...;; as n— . Thus
’n*(Hn,l - Hl) - n*[ ’_l_lz(il"'iz)ex(l) (Vn.il“'ix/n) lg P?l“b'ix - Hl]
= T i ipex® (migeeia/n)(lg Plecsy = lg (vmiye-ia/1))
converges in probability with respect to ®. to zero as n — «. (We have even the
almost sure convergence ([7], [8]); consequently H,, converges to H; almost

surely as n — «.) The theorem is proved.
ReMARK 1. The problem of determining a point estimate for the asymptotic

entropy

0

. 1 ©
H = -—llm,_ml— Z(ir-'iz)ex(’) P’il"”il lg Pil"'il

remains open in the general case.
For an ergodic finite Markov chain with the transition probabilities p;,

1 £ 4,7 £ r wehave ([11])
H= =21 ™5 g P
where (;)1<:<- represents the stationary absolute distribution ( diawpy =T,
1 < j £ r) of the considered chain and the sampling entropy corresponding to
H is
H, = — 2 1ic1 (vai/n) lg (vnia/vn.i)-
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This case may be obtained taking W = {p = (pi)ici<r|p: 2 0,1 S ¢ =1,
Doiapi = 1}, w(p) = (pii)izizrs Pi(p) = piy 1 £ 7 £ r. The central limit
theorem stated above (see also [4]) permits by choosing f(4j) = —lg pi; and
setting

o = 2l mpylgp, — H
+ 2 ZhaN‘ {Z(il'--ih+2)gx(h+2) iy Digin *** Dingrings W Piria 1 Pinprings — H*
to obtain the
THEOREM 2. For every initial probability distribution p we have
1iMypw @pf [0 (Ha — H) /o] < N} = @m)7 [2 e du
uniformly with respect to N if ¢ % 0 and
limp,e @pf{n(H, — H) <N\ =1 for N> 0

=0 for N0
if o = 0.

ReEMARK 2. The case of independent identically distributed observations
(which has been considered also by G. P. Basharin (Theory Prob. Applications, 4,
1959, 361-364) can be obtained taking W = {p = (pi)1<i<r | P: 2 0,1 £ 7 = 1,
Diapi = 1}, uip) = p, Pi(p) = p:i, 1 < ¢ < r. In this case

Hi=H= -2 ".plgpi

of =o' = Dluplgp. — H, le N*
Particularly, for r = 2, ¢ = pip. lg® p1/p2 .
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