MARKOVIAN DECISION MODELS FOR THE EVALUATION OF A LARGE
CLASS OF CONTINUOUS SAMPLING INSPECTION PLANS!

By Leon S. WHITE

The Sloan School of Management, M.I1.T.

1. Introduction and summary. The purpose of this article is to present a uni-
formi method for the evaluation of a large class S, of Dodge-type continuous
sampling inspection plans. The class of Dodge-type plans includes, among
others, CSP-1, 2, 3, 4, and 5, MLP-1, », and T, and H-106 plans. The evalua-
tion of any plan S & S, is in terms of its average outgoing quality limit (AOQL).
The AOQL for S may be defined as an upper bound to the long run proportion
of defective items that remains in the output after inspection, given certain
assumptions about Nature’s (the processes’) ability to control process quality.
In particular, a specific method of evaluation involving linear programming as
its computational tool is developed for the case where Nature is assumed to be
unrestricted in her ability to produce and submit defectives. The problem of

termining unrestricted AOQL’s for the plans in Sp is viewed in terms of two
Markovian decision models where Nature is taken to be the decision maker.
These decision models are abstractly described in Section 2. Their relation to the
problem of evaluating continuous sampling plans is specified in Section 3. The
linear programs corresponding to the two decision models are derived in Sec-
tions 4 and 5. In Section 6 the linear programming approach is illustrated with
an example, and in the last section a row reduction theorem is given for one of
the linear programs.

2. The Markovian decision models. Consider the following dynamic system as
in Derman [4], [5], [6]. At times ¢ = 0, 1, --- the system is observed to be in
some state ¢ (¢ = 1, --- , L). After each observation the decision maker “‘con-
trols” the system by making a decision dy, (k = 0, ---, K;), where K; < o
denotes the number of available decisions when the observed state is 7. Let
{Y.:t =0,1, ---} denote the sequence of observed states and {A;:¢ =0, 1,
-+ -} the sequence of observed decisions. We shall assume that

P{Yz+1 =7 I hea Y, = 1, Ay = dlc} = qij(k),

i,j=1,+--,L;k=0,:--,K;;t=0,1, --- , where for each ¢, h, denotes
the history of states and decisions (i.e., by = {Yy, Ao, -+, Y;, Ad) and where
the ¢,;(k)’s are non-negative numbers which satisfy the equations, »_; g.;(k)
=1,¢s=1, -, L;k =0, --- K;.

The most general decision procedure (strategy for the decision maker) is
defined by the collection of functions {Dy(he, Y, =¢):é =1, --- , L; k = 0,
-o-, K;;t=0,1, ---} of observations and decisions such that D;(-) = 0,
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for all k£ and Q_; Di(+) = 1. The class of all such procedures will be denoted
by C. Any rule R ¢ C is used to control the system by setting

P{A; = di |y, Y} = Di(hen, V),

for all ¥ and every possible set of observations (h.;, Y¢),t = 0,1, --- . Once
the initial state probabilities P{Y, = ¢}, 7 = 1, ---, L, are given and a rule R
is designated, it follows that the sequence {Y,:¢ = 0, 1, ---} can be described
as a stochastic process with state space {1, ---, L}.

Let C’ denote the class of decision procedures R such that

Dy(htws, Y = 1) = Dy, t=1---,L;k=0,---,K;,

independent of h.; and ¢. Then if R & ', the sequence {V,:t = 0,1, ---} isa
Markov chain with stationary transition probabilities

Pi; = Zk Qij(k)Dik, ’L’] = 1’ ] L.

In addition, let C” be the subset of C’ such that Dy = 0 or 1. (Note that this
class contains only a finite number of procedures.)

Continuing as in Derman [4], let wy(t) 20,7 =1,---,L; k=0, --- ,K;;
t = 0,1, --- be finite numbers denoting some function of the observed state
and decision taken. It will be assumed that w;(¢) = wj independent of ¢. Fur-
thermore, let the finite numbers wj(t) > 0,7 =1, --- , L; k =0, --- , K, ;
t =0,1, --- be defined in the same way as the w;(t)’s.

For a fixed procedure R ¢ C, define

We= 2 2awaza(t), Wi = 22; 2pwiza(t),

where

I

ij(t) 1 lf Yt = j, Ag = dk

0 otherwise.
Also, for Yo = ¢ and any rule R ¢ C, let &:"(7) be the vectors with components
2u(T) = (T + 1) Thozalt), j=1,--+,Lik=0,--- K.

In the analysis to follow, wj is defined as the expected number of defective
items that pass by the inspector when the sampling plan is in state j and nature
takes decision dy and wj, is defined as the expected number of items both de-
fective and non-defective that pass by the inspector. We shall be primarily
concerned with the “average” quality functions

Qr(i) = Hm Suproe (T 4+ 1) D ieg Wi = Hm supraw O ; Dk wisku(T)
and
Fe(?) = m Sup e (X ieo Wo/ tea W)
= lim supzow (27 2k wida(T)/ i Dok widu(T)).
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Corresponding to these functions, we define A;(R, ) to be the smallest number
A, such that

P{Q=(7) £ 43 =1,
and As(R, 7) to be the smallest number A4, such that
P{jr(i) £ 43} = 1.

We can now state the two problems that will be of interest in the sequel.
ProBLEM 1. Suppose P{Y, = 4} = 1. Find a procedure R; such that

P{Qr,(3) = suprecc A1(R, 9)} = 1.
ProBLEM 2. Suppose P{Y, = 4} = 1. Find a procedure R, such that
P{Jr, (1) = suprec A2(R, 1)} = L.

3. Problems 1 and 2 and the evaluation of continuous sampling plans. Our
interest in these problems arose in connection with a study of a class Sp of
Dodge-type continuous sampling inspection plans and their evaluation, White
[19]. Dodge-type continuous sampling plans [8], [9], [10], [11], [17], [21], [19],
(hereafter abbreviated as DCSP’s) are used to aid in the control of the percent
defective in the output from a continuous production process. A typical DCSP
allows for a mixture of 100 % inspection and partial inspection (e.g. if quality is
good—no defectives have been found for sometime—then partial inspection is
employed; if quality is bad, then 100 % inspection is used). Any plan in Sp is
described by specifying the type of sampling during partial inspection, the set
of sampling levels, an inspection rule, and a transition rule. The two most
common methods of partial inspection are probability sampling where successive
items are inspected with probability (say) B, and block sampling where one item
is chosen at random for inspection from consecutive blocks of length (say) B.

The levels of a typical DCSP consist of an snitial level (n = 1) at which in-
spection begins, basic levels (n = 3,6, 9, ---, A\) and possibly associated levels
(n=2457 --+-,N—1,x + 1) for some (or all) basic levels. In general,
thenthlevel (mn =1, -+ /A + 1; A < ) of a DCSP with probability sampling
is defined by the pair (B, , s,) where B, is the sampling probability and s. (s.
=1, ---, < ) is the release number for level n. The release number for n
# \ specifies the number of consecutive non-defectives that must be observed
at level n in order to reduce the sampling frequency, i.e., switch to a “higher”
sampling level. For level A with By < B,, n 3 A, it is mathematically con-
venient to let s» = 1 and to consider the switch in levels as fictitious, from A
to A. The nth level of a DSCP with block sampling is defined by the pair (B, ,
s,) where B, is the block length associated with level n and s, is the release
number as defined before. In this case it is assumed that the levels are ordered
so that By = B,,n s \, and again s, = 1. For both probability and block sam-
pling plans it is assumed that the 1st level is a 100% inspection level, i.e., B;
= Bl = 1.
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The tnspection rule of a DCSP with probability sampling designates the proba-
bility of inspection at each level. If block sampling is used, the inspection rule
specifies a block length and an inspection-disposition procedure for each level.
The inspection-disposition procedure for any level consists of a method of block
inspection including a screening procedure if a defective is found. The transition
rule of any DCSP controls the changes in the amount of inspection to be per-
formed by the inspector. In general, if the inspector finds a defective, the transi-
tion rule causes the frequency of inspection to increase immediately. On the
other hand, if a sufficient number of successive non-defectives are found, the
transition rule causes a reduction in the inspection rate. (For a more complete
description of the class of DCSP’s see White [19] or [20].)

At any time ¢, or now more precisely, at inspection point ¢ (t = 0,1, ---) the
inspector can specify the state of his plan in terms of the sampling level and the
number of consecutive non-defectives that he has observed while at that level.
Therefore, the states of a DCSP can be defined by the set

Ny=f{n:u=0,:---,8 —1;n=1--- X+ 1}.

However, to be consistent with the state space notation previously introduced,
we shall usually let N, = {i:4 = 1, ---, L}, where the relationship between 7
and n, is given by ¢ = D.rots, + u + 1.

A DCSP is often evaluated by its average outgoing quality limit (AOQL)
relative to an assumed production process quality. A precise definition of the
AOQL for any DCSP is most easily accomplished in three steps. First, outgoing
quality (OQz) is defined as the proportion of defectives that remains in the
total output after the (T + 1)st inspection. In general, the OQr is a random
variable. Second, the average oufgoing quality (AOQ) is defined as the smallest
number A such that P{lim supr.. OQr < A} = 1.

The AOQ can be thought of as a function of the inspector’s (fixed) plan and
the sequence of defectives and non-defectives “submitted” to the inspector.
Suppose now that a possibly malevolent Nature determines this sequence. As-
suming that Nature knows the inspector’s plan prior to the start of production
and that Nature can follow the progress of the plan once inspection begins, we
can characterize the class of submission decision procedures available to Nature
by the class C introduced in Section 1. Then for a procedure R ¢ C, the types of
decisions {dx : k = 0, -- -, K,} available to Nature when the plan “is in state ¢”’
can be seen to depend on the state and on the method of sampling. Specifically,
for a DCSP with probability sampling, K; = 1,7z = 1, ---, L, and d, is inter-
preted as the decision to submit a non-defective, d; the decision to submit a
defective. For a DCSP with block sampling, K; = B; and dj, corresponds to the
decision to submit k defectives. Moreover, the sequence of decisions {A, , 4, , - - -}
which results from Nature’s choice of a particular rule R & C has the effect of
controlling the inspector’s sampling frequency. This can be seen by noting that
if the plan is in state 7 at inspection point ¢ and A; = di, then the next state
(at inspection point ¢ 4+ 1) is determined according to the probability vector
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(qa(k), qia(k), « - qi(k)). Therefore, if the AOQ is written as a function of R
and fixed DCSP plan Se Sp, then the average outgoing quality limit for S is
defined as

AOQL (8S) = supr.c AOQ (R, 8).

Under this definition, Nature is virtually unrestricted in her choice of a de-
cision procedure. Consequently, to differentiate this AOQL from others made
under different assumptions about Nature, we shall refer to this AOQL as unre-
stricted and use the abbreviation UAOQL.

The connection between Problems 1 and 2 and the evaluation of DCSP’s can
now be made. For Problem 1 define

OQT = (T + 1)“123;0 Wt
and let the initial state Yo = 1, with probability 1. (Actually, it is assumed that

all DCSP’s begin with 100% inspection.) Then for any DCSP with probability
sampling S, € Sp , the submission decision procedure R; is such that

(3.1) UAOQL (8;) = Ai(R:, 10).
Similarly, for Problem 2 define
OQT = (ZtT=o Wt/ZzLo Wt,)

and assume that P{Y, = 13} = 1. Then for any DCSP with block sampling
Sp € Sp , the submission decision procedure R, is such that

(3.2) UAOQL (8) = As(R:, o).

Various methods for determining the UAOQL’s of some DCSP’s have been
derived by Lieberman [16], Derman, et al. [8], and Elfving [11]. Our results, pre-
sented in the next two sections, make it possible to use linear programming to
evaluate UAOQL’s for the class Sp of Dodge-type plans.

Previous to this study, Derman [4], [5], has considered problems similar to
Problems 1 and 2. In [4] and [5] the functions W, and W, are defined as expecta-
tions rather than as random variables. As might be expected this difference is
not material. In fact, in both studies it is shown that (i) attention may be re-
stricted to the class C” in looking for optimal rules, and (ii) the problems can be
solved using linear programming techniques.

4. Reduction to C”. _‘
AssumprioN A: For any initial state ¢ (¢ = 1, ---, L) and any other state
j # 1, there exists a rule R(7, ) € C” such that '

P{Y,=j forsome t>0|Y, =1} =1

when R(%, j) is used.
TaEOREM 1. When assumption A holds, there exist procedures Ry and Ry in C”

such that for Problem 1,
(4.1) Qr, (1) = maxz.c 4:(R, 1), i=1,-,1L,



MARKOVIAN MODELS FOR SAMPLING INSPECTION PLANS 1413

with probability 1, and for Problem 2,
(4.2) Fry(1) = maxg.c As(R, 1), i=1,---,1L,

with probability 1.

Proor. The proof of both parts of the theorem depends on several results of
Derman [6]. A statement of these results and the development of the proof re-
quire the following additional definitions. For every K ¢ C and Yo = ¢, let ®,°(7)
be the vectors with components

2i(T) = (T + 1) 2w P{Y, = j, A = di | Yo = 4.
Let ®°(i) = limr.o®, (i) whenever the limit exists. This will occur when

R ¢ C’ (see Chung [2], p. 32). In any case, let Hz(7) denote the set of limit points
of {®,7(4)} as T — oo, and let

H”(’i) = URgC" HR(’L)
For any R ¢ C, let » denote a sample sequence of the joint process (Y., A):

t =01, -} and define U"(4, ) to be the set of limit points of (®.5(2)} as
T — . Finally, let '

g@:5(0) = (T + D)W, G@(1) = (Xie Wo/ 2o w/)
and, ‘
9@ (1)) = 225 2w warn(T),
G(®,"(2)) = (X5 ewnaa(T)/ 25 20 wiein(T)).

Lemma 1. (Derman [6]). There exists a procedure R* e C" and an initial state
7* such that for any R ¢ C,

(4.3) Qr(?) = lim supr.e g(2"(4))
< g(@"(3%)
with probability 1, where
g(®"(7*)) = maxg.c; i1, M SUP 7 g(®;"(7)).

LemMa 2. (Theorem 2 of [6]). For any procedure R & C and inatial state Yo = 1,
P{U"(i, w) e A"} = 1 where H" is the convex hull of U.H"(5).

Lemma 1 guarantees that @r(7) is bounded from above, while Lemma 2
insures that all the limit points of any sequence {&;"(¢)} lie in the closed and
bounded convex set H”. But now note that & (:*) ¢ H” and is in fact an extreme
point of this set. Consequently, if we can construct a procedure R, & C” which
leads to equality in (4.3) we then have a proof for the first half of Theorem 1.

To construct B; we assume without loss of generality that ¢* is a member
of an ergodic class (there may be more than one) of the Markov chain
(Y,:¢t=0,1, ---} generated by R*. Then for Y, = ¢ we assert that B, =
[R(3, i), R*], where R, is interpreted as ‘“use procedure E(7, +*) until state ¢
is first reached, then use procedure R*” By Assumption A, R; ¢ C”. To show
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formally that R, leads to equality in (4.3) we prove the following lemma using
some well known results from renewal theory.
Lemma 3. Suppose Yo = 4 and that assumption A holds. Then if

R, = [E(3, z*); R*]

it follows that Qr,(7) = g(®" (4*)) with probability 1.

Proor. Let Vo = min {t: ¥, = 7"} given that ¥, = ¢ and rule R, is being
used. Define a cycle for the joint process {(¥;, A;): ¢t = 0, ---} to be any se-
quence of the form (Y, = %, A,,), -+ (Yr, = 6%, A)) With ¥, £ 5, mi < t < 7p.
Let V, = (72 — 71) for the rth cycle, r = 1,2, --- ; then EV, <  for any .
Let 2,(j, k) denote the number of occurrences of the pair (j, k) during the rth
cycle, and let z(j, k) denote the number of occurrences of this pair before ¢* is
first reached.

Now consider the sequence of points {T,:a = 0, 1, ---} (dependent on w)
such that Qr, (i) = limg.. g($7.(3)). For any Value of a it is easily seen that
there exists a number M, either zero or a positive integer, such that Y o' V,
< T.=< XX, V,— 1, and such that

(44) ( =0 z,(], k)/zr=0 V) < xak(Ta) < (ZT—O 2(J, k)/Z:‘—T)l Vv, —1)

where Z;(T.) is an element of $71(7). The sequences {z,(j, k): r = 1, 2, ---}
and {V,:r = 1,2, ---} are both sequences of independent and 1dentlcally d1s-
trlbuted random Varlables Therefore, if the numerators and denominators of
(4.4) are divided by M, then, by the strong law of large numbers,

lima—no jjk(Ta) = x;;v

with probability 1, where z}; is an element of & (5*). And since the same result
holds for all pairs (y, Ic), it follows from Lemmas 1 and 2 and the continuity of ¢
that Qr, (1) = g(®"'(¢*)) with probability 1.

Combining Lemmas 1, 2 and 3 we have that Qg,(¢) = maxgz.c 4;(R, ) with
probability 1 which proves the first half of the theorem.

To prove the second half of Theorem 1 we shall need the following well known
proposition.

Levma 4. Let H be a closed and bounded convex set. Let g(x) and g’ (z) be linear
functwns defined on H with ¢'(z) > O for all z ¢ H. Then the ratio G(z) =
g(x) /g (x) takes its maximum at an extreme point of H.

Lemma 4 is used in proving the next lemma which is the counterpart to
Lemma 1.

Lemma 5. There exists a procedure R** & C" and an initial state ©** (again with-
out loss of generality, a member of an ergodic class) such that for any R ¢ C,

(4.5) : Pr(2) = im supr.. G(®:7(z))
< Q@™ (™))

with probability 1, where
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(4 6) G(@R"( **)) = MAaXRgec; i=1,+-,L G(Xn(z)):

X"(4) e Hx(3), X*(3) denoting any limit point of any sequence (®7°(4)}.

Proor. Consider the closed and bounded set H”. By a second theorem of
Derman [6], X*(3) e H for all Re C and 1 = 1, , L. But then by Lemma 4
and the constructlon of A” it follows that there ex1sts aprocedure R** ¢ C” and an
initial state ¢** such that the ratio function @ is maximized at the extreme point
d"*(4**). Equation (4.6) denotes this fact. Now consider the sequence of
points {T.:a = 0, 1, ---} (dependent on the sample function w) such that

lim SUp 750 G(®75(2)) = lima.. G(35,(4)).

Next, recall from Lemma 2 that for some subsequence {T.(a): a = 0,1, - -},
liMgoew BF ey (2) € H with probability 1. It follows that ¥z(z) can be cons,1dered
as a function on Z”. And since @ is a continuous function on A”, (4.5) follows
and the proof of the lemma is complete.

Now we define the procedure R, = [R(7, ¢**), R**] and again by Assumption
A R, e C”. Then similar to Lemma 3 we have

LEMMA 6. Suppose Yo = 1 and Assumption A holds. Then if Ry = [R(1, 1 &%), R*™
it follows that ¥r,(7) = G(&""(5**)) with probability 1.

Lemmas 4, 5, and 6 combine to prove that Yz,(7) = maxg.c A:(R, ¢) with
probability 1. This completes the proof of Theorem 1.

COROLLARY. Let the elements of ® (*) and & () be denoted by {zi} and
(@)} respectively. Then

(4-7) A1(R1 , ’I,) = Zj Zk w,kx,"z , 1=1,---, L’
and ‘ ‘
(4.8) Ay(Ry, 1) = (i vwatin/Di 2k Wik ), i=1,---, L.

Proor. Equations (4.7) and (4.8) follow directly from Lemmas 3 and 6.

The implication of the theorem and corollary for the evaluation of DCSP’s
is clear. The interpretation of Theorem 1 is that a malevolent Nature facing
any DCSP can choose her optimal submission decision procedure from the class
C”. Moreover, from the Corollary and Equations (3.1) and (3.2) it follows that
the UAOQL for any DCSP is computed either as a linear function or as the
ratio of two linear functions.

5. Linear programming formulations. The linear programming formulation of
Problems 1 and 2 follows from the Corollary to Theorem 1 and Markov chain
considerations. The details of such a formulation are discussed in Derman [4],
[7]. The method has also been used by Manne [18], Klein [14], [15] and Dantzig
and Wolfe [3] among others. (Howard [13] has provided an alternative approach
for similar problems.) In this section we state the problems as they apply spe-
cifically to the evaluation of DCSP’s.

ProsreM 1. The UAOQL for any DCSP with probability sampling is given
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by the solution to the following problem:
Maximize: Y_; X ¢ Wit ;
subject to:
xﬂch; j=1>"'7L;k=071)

(5.1) Zk Tiw — Di D Tagii(k) =
Zi Zk za = 1.

Nature’s optimal procedure is found by setting
Dy = (xa/2omTim) J=1,--+,L;k=0,1.

If for some state j the denominator is zero then {Dj : k = 0, 1} should be set
so that j is a transient state. Nature can always accomplish this by setting
Dj; = 1 or 0 depending on j.

In formulating Problem 2 we also make use of the fact that the ratio of two
linear functions defined on a convex set can be maximized by linear programming
techniques. (See Derman [4] or Charnes.and Copper [1] for details.)

ProsrEM 2. The UAOQL for any DCSP with block sampling is given by the
solution to the following problem:

Maximize: X _; D & Wiy sk ;

subject to:

|
K=
<.
I
:—l
=

Yo= 0,y 2
(6:2)  2eym — 21 2ryagu(k) =
22w yn — Yo =0,

2o 2 wiyn = 1.

As before, the elements of Nature’s optimal rule can be computed from the
formula,

Djk=yfk/zmyjm) j=17"'7L;k#0>"'7BJ'-

6. An example: The evaluation of CSP-1 by linear programming. The first
continuous sampling inspection plan, CSP-1, was devised by Dodge and re-
ported in 1943 [10]. The object of this plan as stated by Dodge ([10], p. 264) is
“to establish a limiting value of average outgoing quality expressed in percent
defective which will not be exceeded no matter what quality is submitted to the
inspector.” The following is a description of CSP-1 with probability sampling:

(a) Begin by inspecting 100 % of the output until s units in succession are
found to be non-defective.

(b) When s successive non-defective units are produced switch from 100 %
inspection to partial inspection, inspecting each successive item with proba-
bility B.

(¢) If a sample unit is found te be defective, revert immediately to 100 %
inspection and continue as in paragraph (a).
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(d) Replace all defective items found with non-defectives.

Lieberman [16] using probability theoretic considerations derived a formula
to compute the UAOQL for any CSP-1 plan with probability sampling. The
linear programming approach leading to the same formula is as follows.

Let the state space for a CSP-1 plan be given by Ny = {14, 11, -+, 1,1, 30}.
Let wn,x be defined as the expected number of defectives that pass by the in-
spector when the plan is in state n, and Nature takes decision dj, . Then

(6.1) Woe = (1 — B),n =3;u =0,k =
= 0, otherwise.
The conditional transition probabilities (¢.;(k)) for CSP-1 are given by,
G, k) =1, k=0u=0,---,s =2;n=1v=u+1
(6.2) =1L,k=0Gu=s—-—1n=30=0
=Lk=1u=0---,s—=1;n=1;v

I
=

= 0, otherwise,
and

Qagn, (k) = 1,k =0;n =3;0v =0
—B,k=1;n=3;v=0
=B k=1n=1v=0

(6.3)

= 0, otherwise.

Now by substituting (6.1), (6.2), and (6.3) into the linear programming formu-
lation of Problem 1 we have for CSP-1 with probability sampling the linear

program:
Maximize: (1 — B)xz, ;
subject to:
Tog = 0 alln,e Ny ;k = 0,1,
(6.4) Z10 + T — Zf;lo T1,g — B_-’Esol =>0,
Ti,0 + X1 — 21,0 = 0 u=1--,8 =1,
Zn Zu Zk Ty = 1

(Note: We have omitted one equation in (6.4) since in the original set of con-
straints (5.1), the sum of the first L equations equals the (L + 1)st.)

This program can be solved by the usual methods. However, because of the
form of the objective function and the last constraint equation, any optimal
solution is given in part by 1,1 = 0,4 = 0, -+, s — 1, and x3,0 = 0. But then
letting xax = Zn,x , We can rewrite the above linear program as

Maximize: (1 — B)xy ;
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subject to:
2w — Bzxy =0, T + za = 1.
The solution to this program is easily seen to be,
z0 = B/(sB + 1), zn = 1/(sB + 1), Tn =2z =0,
and consequently,
UAOQL = (1 — B)/(sB + 1).

It follows, then, that Nature’s decision rule isgiven by Dy = 1,4 =0, - -+ ,s — 1
and Ds,; = 1.

Derman, et al. [8] have shown that when B = 1/B, the same decision rule
is optimal against a CSP-1 block sampling plan with parameters B and s. This
conclusion has also been arrived at by the linear programming approach to
Problem 2 in White [19]. In the linear programming formulation, w,, is again
defined as the expected number of defectives that pass by the inspector at
inspection point ¢ when ¥; = n, and A, = d . In addition, w, is defined as
the expected number of items (both defective and non-defective) that pass by

the inspector at inspection point ¢ when Y, = n, and A, = d; . Thus, for a
CSP-1 plan with block sampling,
Woe =0,n=1;u=0,---,s—1;k=0,1
= k1 — (/B)) + (k — V)(k/B),n = 3;u = 0,k =0, .-+, B
and
wep=1,m=1;u=0-,8—1;k=0,1
=Bn=3u=0k=0,---,B.

The linear programming method of Problem 1 has also been used by White
[19] to find UAOQL’s for the class of H-106 plans [21].

7. A row reduction theorem. In the example of Section 6 it was shown that the
original set of s 4 1 constraint equations could be replaced by a set of two equa-
tions. This result for a two level plan can be generalized for a X + 1 level DCSP
with probability sampling.

THEOREM 2. Let

ZTn,0 = Zno, u=0:-,8—-—1n=1 - ,N+1,
(7.1) Tngt = Zut , n=1 - ,\+1,
Ty = 0, u=1--,8, —1;n=1 .-+, x4+ 1.

Then the linear program for Problem 1 can be written in the following reduced form:
Mazimize: D mis (1 — BT ;
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subject to:
Zar = 0, n=1-:-,AN+1;k=0,1,
th=o Tnk — Z::;ll thxmqmn(k) =0, n=1---,x+1,
w (Sa%ao + Tw) = 1,
where,
@mn(0) = @m,_1ne(0), m 5 m,
= ngne(0), m = 7,

and

Qun(1) = Qmgno(1).

Proor. The proof of this theorem follows from the observation that if Nature
is going to submit defectives at any level n (n = 1, --- , N 4+ 1), then she can
always begin submitting them at state n, without reducing (and possibly increas-
ing) the value of the objective function. Thus, only the class of feasible solutions
with this property need be considered. This class is described by the Equa-
tions (7.1).

RemARk. It is also possible to make some reductions in the size of the linear

program for Problem 2. See White [19] for details.
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