A NOTE ON THE SEQUENTIAL ¢-TEST

By J. Sacks

Northwestern University

The purpose of this note is to show how the results and methods of [2] can be
used to deduce the asymptotic behavior of the expected sample size for the
sequential {-test as the bounds get large. Implicit in this deduction is a proof
that the expected sample size is finite, a result also obtained by Ifram [1] who
uses somewhat different methods.

We shall only consider the one-sided sequential ¢-test of Ho: p = 0, ¢ > 0
against H, : u = o, > 0. It is easy to see that the same ideas will work when the
alternative hypothesis is u = 80 where § is some positive number and also if the
alternative hypothesis is [u| = ds. We define the sequential ¢-test with bounds 4,
A7 (we choose symmetric bounds for convenience) for the problem under con-
sideration as follows: Put f,(z1, - -+ , 2x) = (1/6") exp {—(1/d°) D7 (z: — o)},
go(@1, -+, Za) = (1/6") exp {—(1/26") 2_1 x}. Take an (n + 1)th observa-
tion if

(1) Jefoe(m, -+, @a)(do/o) < A [§ go(ar, -+, 2)(do/)
and if
(2) Jefe(m, -+, @) (do/a) > A7 [T go(ma, -, @) (do/o),

stop and accept H, if (2) is violated, and stop and accept H, if (1) is violated. The
similarities between this procedure and those discussed in [2] (see, in particular,
Section 2 of [2]) are obvious; the only difference is that the a prior: distribution
in this case has infinite variation and it is this difference which prevents us from
drawing the desired conclusions immediately.

Let N be the number of observations required by this sequential ¢-test to
terminate. We shall concern ourselves with EN when u = 1,0 = 1 and we will
show that EN ~ log A/(%log 2) as A — «; the dependence of the distribution
of N only on u/e then will yield the same asymptotic value for EN for any u, o
with 4 = o l.e. for any point in H; . We obtain the asymptotic value of EN by
relating the sequential ¢-test to one of the kind considered in [2]. To accomplish
this we first show that there exists e > 0 and 0 < a < 1 such that

(3) C, = fg gv(xl ) xn) (da’/d) + f;o/a ga(xl ) "t xn)(da/a') <1
" J‘;Ia ga(xl y " x‘n) (da'/o') -
whenever 2 — ¢ £ D1 z’/n £ 2 + ¢ and such that

D, = Jofe(@r, -+, xa) (do/o) + [Tiafelwr, -+, @) (do/a)
_‘-:/a fa(xl y T :E,,)(da’/ﬂ)

IIA
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(4)
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1868 J. SACKS
whenever 2 — ¢ < Z{‘xf/n <24 ¢eandl — e = Z{'x;/n =<1 + e To see
that (3) is so put V= D1 #’/n and note that
Jige(or, -+, 2a)(do/o) < maxocsga (1/6™") exp [~ (1/25") V5] [i do

= (1/a") exp [—(1/24")V.] = K, (say)
whenevera < V,/(n + 1);
JTage(zr, -+, 22)(do/o) < maxezya (1/0"7) exp [—(1/26°) V] [Ta (do/d”)

= a"exp (—3d'V,) = L, (say)

whenever 1/a = V,/(n — 1);
Jigo(@1, -+, 20)(do/o)
min {(1/b") exp [—(1/26) V.},(1/¢") exp [—(1/2¢") V,]} log (¢/b)

whenever b < V,/n < ¢. By choosing b = 2 — ¢, ¢ = 2 4 ¢, and a sufficiently

close to 0 it is easy to see that (3) is satisfied. Similar tactics work in establishing
(4) where the extra condition on Y z;/n is needed.

Let N, be the first time that (1) is violated. Then N < N, . Let v, be the first
n such that

[¥efo(do/s) > A [7 go(do/o) = A [} go(do/a){1 + Cu}.
Then N; < v,. Let M, be the first n such that
[ef(da/a) > 24 [V g,(de/o)

and let T be the last time Y 1 X7/n > 2 + eor 21 X’/n <2 — e. Ifaand ¢
are chosen so that (3) holds then from

Plva 2 k} < P{T 2 k} + P{T <k, v 2 kj}
P{T = k} + P{T < k, M, 2 k}
S P{T 2k} + P{M, = k]

v

IIA

we conclude that
(5) EN £ Ev, £ ET + EM,.

When p = 1,0 = 1 so that EX,® = 2, it is known that ET < o« (see for example
Theorem D in the Appendix of [2]) and does not depend on 4. To obtain an
upper bound on M, we can cite the result of Lemma 2 in [2] (the a priori dis-
tribution which is relevant is the one with density 1/¢2 |log a| fora < ¢ < 1/a
and 0 elsewhere, and we replace the ¢ of [2] by 1/24) which yields
(6) EM. = [1+ o(1)]log 24/inf,50 Eyey -1 log [/1(X1)/9.(X1)]

= [1 + o(1)] log 24/% log 2

where the o(1) term goes to 0 as A — «. (5) and (6) yield
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(7) lim sup4.«» (EN/log A) < 2/log 2.
To obtain a bound in the other direction let »," be the first # such that
A7 [ gy (do/o) {1 + Ca} < [2fu(do/a){1 + D.} < A [ g.(do/o)
is violated; let M,  be the first n such that
247" [J go(do/a) < [J*f.(do/o) < 34 [ go(do/o)

is violated ; and let T’ be the smallest integer m such that 2 — ¢ < Z{‘ X f/n <
24+ eand1l — e < 7 Xi/n < 1+ eforallm = m. Then, by use of (3) and (4),
M, < max (v, T') so that EN = Ev, = EM, — ET'. ET’ is finite and inde-
pendent of A (see Theorem D in the Appendix of [2]) so that using the Corollary
to Theorem 1 in [2] we obtain

(8) lim inf,.., (EN/log A) = 2/log 2.
(7) and (8) then yield
lim .. (EN/log A) = 2/log 2

all y, ¢ in H, . The same result also holds when u = 0.

REMARKS. 1. Some further computation can be made which will show that
Ee™ < o for ¢ in some neighborhood of 0. In particular, it isn’t too hard to show
that P{T = k} < p" for some 0 < p < 1 and inspection of the proof of LemmaZ2
of [2] and some additional computation will yield P{M, = k} < o* for some
0<a<l

2. An upper bound for EN when p/o 5 0 or 1 can be obtained from the above
except when u/c = % in which case we are unable to make the computation but
we are led to believe that the same phenomenon occurs as discussed in Sections
3 and 4 of [2], namely, that the sequential {-test has bad asymptotic properties
when u/c = 1 and that a modification of the test as discussed for related tests
in [2] would be in order.

3. When p/s = 0 or 1 it can be shown along the lines of the argument leading
to Theorem 2 of [2] that the probability of error is o(log A/A). We are unable to
verify whether o(log A/A) can be replaced by 0(4™).
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