ASYMPTOTIC DISTRIBUTIONS FOR THE COUPON COLLECTOR’S
PROBLEM

By LeoNarp E. BAuM aND PATRICK BILLINGSLEY

The Institute for Defense Analyses and The Unwversity of Chicago

We sample with replacement from a population of size n, each population
element having probability 1/n of being drawn. Let W, be the drawing on which,
for the first time, the number of distinct elements that have been sampled is
an + 1, where 0 < a, < n. The random variable W, is the time a coupon col-
lector must wait to fill out a given portion of the set. Here we work out the
asymptotic distribution of W, under various assumptions on the behavior of a,, .
This seems to have been done only for special cases, which is surprising.

Let b, = n — aa, and let p, and o,” denote the mean and variance of W, .

TueoreM 1. If a,/n! converges to 0, then W, — a, — 1 converges itn probability
to 0.

THEOREM 2. If a,/n' converges to a positive constant N, then Wn — a, — 1
converges in law to the Poisson distribution with mean \*/2.

THEOREM 3. If an/nt and b, both go to infinity, then (W, — ua)/cn converges in
law to the normal distribution with mean 0 and variance 1.

THEOREM 4. If b, = b is constant, then exp { — (n "W, — log 2n)} converges in
low to the chi-square distribution with 2b degrees of freedom.

Rényi [4], in another connection, has previously obtained a part of Theorem
3, and Erdés and Rényi [3] have obtained a special case of Theorem 4.

These theorems have to do with sums of independent random variables, be-
cause W, has the same distribution as

Xan + Xaym + -+ + Xopm s

where the variables in the sum are all independent and X, (0 < p < 1) repre-
sents a variable with distribution

P{Xp__-k}:qk—lpy k=1727"'7 (q=1_p)'

The characteristic function of X, is

(1) Ble™™} = pe/(1 — g¢™);

it follows that its mean and variance are, 1/p and ¢/p%, so that
(2) fn = N2 ks, 1/k

and

(3) o = n) i, (n — k)/K

Below we find the asymptotic value of o, for the various cases considered.
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Proor oF THEOREMS 1 AND 2. By (1), the characteristic function of W, — a,
is

(4) Il {1 — k/n)/(1 — (k/n)e™)}.
We use the estimate
(5) 14 2z=¢%" if l2] = 3.

(Here and in what follows, 8 is a real or complex number, not the same at each
occurrence, satisfying |6] < 1.) If ¢ is fixed, then, for large n, this estimate can
be applied to the numerator and denominator of each factor of (4), which yields

exp Do {(k/n) (e — 1) + 20k%/nY.
Now
Simok/n = an(an + 1)/2n — )\2_/2,

where A = 0 under the hypothesis of Theorem 1, and A > 0 under the hypothesis
of Theorem 2. Moreover, 2 % k*/n* — 0. It follows that if A = 0, then (4)
converges to 1 for all £, and that if A > 0, then (4) converges to the character-
istic function exp {4N*(e** — 1)} of the correct Poisson distribution.

Proor or THEOREM 3. Since verification of Lindeberg’s condition involves
prohibitive calculations, we attack the problem directly.

Write o, = a,/n and 8, = b,/n. It is enough to prove asymptotic normality
in each of the following three cases:

(i) a, and B, bounded away from 0 and 1,

(ii) an — 0 (and na,’ = ©),

(iii) B, — 0 (and nB, — »).
For if asymptotic normality fails under the hypothesis of the theorem itself,
then, passing to a subsequence, we see that it fails for one or the other of these
three cases.

Let us estimate o, . Since

(6) >myl/k=1logm+C+1/2m —R,, 0 <R, < 1/8n,
where C is Euler’s constant (see [1], p. 125), we have
(7) 2is, 1/k = —log B + 6/nB, .

By the mean-value theorem, the integral of 1/2* over (k, k + 1) differs from
1/k% by at most 2/K, so that [7, 22 dz = (1 — B.)/npB, differs from 3 ;= 1/
by at most i, 2/K° < 4/b,%. Thus

(8) 2o, /K = (1 — Ba)/nBa + 56/0°8.,
which, together with (7) and (3), yields
(9) 0'1:2 = (n/lsn)(l — Bn + Ba lOg /30) + 60/6112-

In case (i) we have

(10) 0n2 ~ (n/Bn)(1 — Bn + Brnlog Bn);
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in case (ii), expanding log (1 — a,), we have
(11) on’ ~ $nay’;
and in case (iii) we have

(12) on' ~ 1/Bn.

Consider for the moment only cases (i) and (ii). If ¢,(s) denotes the charac-
teristic function of X, — p *, then

1/¢P(s) = (l/p)(ei’q/?’ _ qei:/p)
1+ %32Q/p2 + (0/3)83q/p4 =14 032Q/p3,

as follows from (1) and the estimates

(13) e =14 iz — i+ (6/6)2° = 1 + iz + (6/2)z".
If

(14) s'g/p’ = 4,

then the estimate (5) gives

(15) 1/$,(s) = exp {3s°¢/p" + (6/3)s’¢/p" + 6s'¢’/p"}.

Let ¢, (t) denote the characteristic function of (W, — ua)/oa . Then ¢,(t) =
I1* ¢,(t/0s), where, in the product, p assumes successively the values n/n,
(n — 1)/n, -+ -, ba/n. In cases (i) and (ii), for each fixed ¢ and for sufficiently
large n, (14) with s = ¢/, holds for all p = B., so that, by (15),

1/¥a(t) = exp {(£/20.2) 2 * /8" + (68/30.0) 2% o/p* + (6¢/aa*) 2% /D%,

where the range of > *is the same as that of J][*. Now in case (i) we have,
by (10),

(1/aa’) 22X 1/p* < (n'/02") 200, 1/K' = O(n/04’8a’) = O(n/n?) >0
and

(/o) 2% 1/0° £ (n*/04") 200, 1/K° = O(n/02'84") = O(n/n*) — 0.
And in case (ii) we have, by (11),
(1/0.) X* ¢/p" < /o' (1 — 0a) 1 2820 b/

= 0((1/mha’)an’n?/n) = O(1/axnt) — 0
and

(1/0.9 % ¢/p° S W/on'(1 — an) Xt K/
' = 0((1/n’ax)ann’/n?) = O(1/amn) — 0.

In b(gth of the cases (i) and (ii), the equality > *q¢/p’ = 0, now implies y,,(t) —
¢ P* which proves asymptotic normality.
It remains to settle case (iii), which we do in effect by replacing X, with an
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exponentially distributed variable having the same mean—that is, by comparing
the characteristic function

(16) H* {peit/ane—it/anp/(l _ qeit/crn)}
of (W, — un)/o, with the function
(17) IT* (e /(1 = dt/oup)}.

The ratio of (17) to (16) is
(18) II*{(e™™ — ¢)/p(1 — dt/oup)}
= JI* {1 + 60(£/20.°p) /(1 — dt/oup)} = 1I*{1 + 6£/20.%p},

where we have used (13) and the inequality |1 — 4t/o,p| = 1. For n large (and
t fixed), the estimate 1 + z = ¢**, valid for |z| < %, can be applied to each factor
on the right, by (12). Therefore the ratio is

exp {(06/0,") 22 1/p} = exp {06 (n/n’) 2 ies, 1/k}.

By (12) and (6), the ratio goes to 1.
It suffices then, to prove that (17) approaches e

IT* (" (1 — it/oup)} = TI* {1 + 3(£%/0a")1/D" + 6(/0")1/D').
By (12), we can, for large n, apply (5) to each factor, which gives
(19)  exp (3(£/0") 225 1/p" + 0(8/0’) 22F 1/p" + 6(2'/aa") 227 1/p).

By (12), the second and third terms in the exponential are respectively
O(n/on’B’) = 0(1/(nB,)") and O(n/s,'8,") = O(1/n8,), and these both
converge to 0 by hypothesis in case (iii).

The first term in the exponential is 1£*(n*/s,’) Z;Lbn 1/K?, which converges
to %ti,i)b?f (8) and (12). Therefore (19) converges to ¢ ”, so that (16) converges
to e~ P!

Rényi [4] proved asymptotic normality in cases (i) and (ii).

Proor or TurEorEM 4. The characteristic function of (W, — u,)/n is just
(16) with o, replaced by n. We compare it with (17), with ¢, again replaced

by n. The ratio (see (18)) is
(20) IT* {1 + o*/2n’p} = I1ims {1 + 0°/2nk],

which converges to 1 for each ¢.

Let Y, be an exponentially distributed random variable with mean 1/k:
P{Y, = 2} = ¢ . Now (17) is the characteristic function of )i (¥ — 1/k),
where the summands are assumed independent. By Kolmogorov’'s convergence
theorem for random series (see [2], p. 108), this sum converges in law (even
with probability 1) to the random variable

(21) Zy = D=y (Vi — 1/k).

—(3) tz. Its reciprocal is, by (13),
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From this and the fact that (20) converges to 1 for each ¢, we conclude that
(Wa — ua)/n converges in law to (21).

From the formula for convolving densities, we see inductively that D e, Vi
has density

&om(z) = m(GT)e (1 — )", x>0,
=0, z = 0.

By (6) we have > ms 1/k = logm + Ay + 6/m, where 4, = C — izt 1/k.
Therefore the density dom(z + Db 1/k) of Dy (Yi — 1/k) converges for
each z to the limit

(22) [1/(b — 1) 67249 exp [— @+

as m tends to infinity. By Scheffé’s theorem [5], the integral laws converge as
well, so that (22) is the density for Z, . )

A change of variable shows that 2¢”“*™¥ has on the positive half-line the
density [1/2°T(b)]z"¢™*"*, which belongs to the chi-square distribution with
2b degrees of freedom. Since (W, — p.)/n converges in law to Z, ,

(23) 2exp {—=[(Wa — ua)/n + Aul}

converges in law to a chi-square distribution with 2b degrees of freedom. By
the definition of A4;, (23) reduces to

exp {—[(1/n)W, — log 2n]}e"™,

which completes the proof.
It is easy to show that, under the conditions of Theorem 4, ¢,> ~ n* D 1y 1/k%.
Erdss and Rényi [3] proved Theorem 4 for the special case b = 1.

REFERENCES

[1] CramEr, Hararp (1946). Mathematical Methods of Statistics. Princeton Univ. Press-

[2] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

[3] Erpos, P. and RENYI, A. (1961). On a classical problem of probability theory. Magyar
Tud. Akad. Mat. Kutaté Int. Kozl. 6 215-220.

[4] RENYI, A. (1962). Three new proofs and a generalization of a theorem of Irving Weiss.
Magyar Tud. Akad. Mat. Kutaté Int. Kozl. T 203-214.

[5] ScuEerrt, HENRY (1947). A useful convergence theorem for probability distributions.
Ann. Math. Statist. 18 434-438.



