A CLASS OF TESTS WITH MONOTONE POWER FUNCTIONS FOR TWO
PROBLEMS IN MULTIVARIATE STATISTICAL ANALYSIS!
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1. Summary. The problem of testing the general multivariate linear hypothe-
sis, also known as MANOVA, and the problem of testing independence between
two sets of multivariate normal random variables are the two problems con-
sidered in this paper. In [3] two sufficient conditions for the power function of an
invariant test of the general linear hypothesis to be a monotone increasing funec-
tion of each of the noncentrality parameters have been obtained. In (2] one of
these two conditions has been extended to invariant tests of the hypothesis of
independence between two sets of variates. These conditions are in terms of,
respectively, the convexity and the symmetry of certain sections of the accept-
ance regions of the tests; and their verification is, in general, nontrivial. In this
paper it is shown that the power functions of the members of a class of invariant
tests based on statistics ‘‘generated’’ by symmetric gauge functions of convex
increasing functions of the maximal invariants are monotone increasing functions
of the relevant noncentrality parameters. In this process we have explained an
interesting tie-up between the monotonicity properties of the invariant tests for
the two problems (Theorem 2) and have obtained extension of some results on
the symmetric gauge functions and convexity in the matrix theory (Theorem 3
and Theorem 4). The terms ‘‘invariance,” ‘“‘invariant tests,” and ‘“maximal
invariants’ have been used throughout this paper in connection with the relevant
groups of transformations mentioned in the Section 2 without their explicit
mention each time.

2. Introduction. In this section we shall state the canonical forms and the
relevant results on the monotonicity properties of the power functions of the
invariant tests; and obtain a tie-up, in the context of the monotonicity prop-
erties, between the MANOVA problem and the problem of testing independence
between two sets of variates.

In canonical form [3], [5] the MANOVA problem involves a (p X n) random
matrix

[X(PXS):Y(I’X (n_r))’ Z(px (T—S))], s=r n—p

whose column vectors are independently distributed according to p-variate nor-
mal distributions with the same covariance matrix X(p X p) and expectations
given by

EX = A(p X s), EY = 0(p X (n — 1)), EZ = 1T(p X (r — 3)).
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In this canonical form the MANOVA hypothesis is 3¢ : A = 0(p X s). It is
well known [5] that the problem is invariant under transformations: (X, Y, Z) —
(BXF,, BYF,, BZF; + G), (F., F., F; orthogonal, B nonsingular) and the
invariant tests of 3¢, depend only on the characteristic roots of S;S.”, where
Sk and S, are the sums of products matrices, respectively, due to the hypothesis
and due to error, S, = XX', S. = YY'. Moreover, the power functions of the
invariant tests depend only on 61, 6, - -, 6;, the { = min (p, s) noncentrality
parameters, which are the characteristic roots of AA's™.

The canonical form [2], [10] for the problem of testing independence between
two sets of variates, referred to in the sequel as the independence problem, in-
volves two random matrices X(p X n) = (x;) and Y(q¢ X n) = (y:5), ¢ = p,
with the joint probability density

(202 (1 = p8)™ exp [HT 2 (1 — 57
* Z:=1 (xfa + yga - 2Pixiayia) + Zi=pﬁ-l Za=’-l yga)])

where p; = p2 = --- = p, are the squares of the population canonical correla-
tion coefficients. The hypothesis of independence is equivalent to 3¢y : p1 = pp =
- = pp = 0. It is well known [2], [5] that the problem is invariant under the

transformation
X B, 0\/X
(Y) - (o Bz> (Y) o

where B;, B, are nonsingular matrices of order p and ¢, respectively, and F is
orthogonal. An invariant test of 3C, depends only on the sample canonical
correlation coefficients, that is, the characteristic roots of (XX')™(XY')-
(YY')™(YX'), and the power function of such a test depends only on the non-
centrality parameters p; = p2 = - = pp.

The following theorem on the monotonicity of the power function of an in-
variant test for the MANOVA problem has been proved in [3].

THEOREM 1. If the acceptance region of an invariant test for the MANOVA prob-
lem 1is convex in the space of each column vector of X, for each set of fixed values of
Y and of the other columns of X, then the power function of the test is a monotone
increasing function of each of the noncentrality parameters 6;, 7 = 1, 2,--- | L.

The following corollary to the above theorem is used in this paper as a basic
result.

CoroLLARY 1.1. If the acceptance region' of an invariant test for the MANOVA
problem is convex in X, for each fixed Y, then the power of the test increases mono-
tonically in each 0; .

In [2] the above results were extended to cover the monotonicity of the power
of an invariant test for the independence problem. We shall state this result in a
more general form. Toward this end, let us denote the ordered characteristic
roots of both, §,S," and (XX ) '(XY' ) (YY) ™(YX'),bycr = ¢ = -+ = ¢p.
Also let us use @ = @(c1, c2, -, ¢p) to denote a region in the space of ¢, ¢z,

-, ¢p. Then the proof of the following theorem is analogous to the proof of
the Theorem 1 of [2].
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THEOREM 2. Suppose that the power of an invariant test, which accepts the
MANOVA hypothests over a region G(c1, ¢z, - - , Cp) in space of the characteristic
roots of SiS.”", increases monotonically in each noncentrality parameter 0; . Then
the power function of the tnvariant test for the independence problem which accepts
the hypothesis over the region G(er, ez, - - - , €,), where e; are related to the charac-
teristic roots c; of (XX') (XY ) (YY) (YX ) bye; =ci(1 —c:)i=1,2,---,p,
18 @ monotone increasing function of each population canonical correlation coefficient
P‘iyi= 1y2’ D

3. Symmetric gauge functions. A real valued function

d’(a) = 1/1(01,012, yap)

on the p-dimensional space of p-tuples of real numbers is said to be a gauge

function if
(i) ¥(ar, @z, - -+, ap) = 0, with equality if, and only if a;, = @z = -+ =
a, =0,

(ii) ¥(car, caz, -+, cap) = |c| ¥(a1, az, ---, ap) for any real number c,
(iii)'/’(al+bl7a2+b2’ "'yap+bp)
é'/’(aly%)"'7ap)+'//(b1yb2y'°'bp)'

¥(a) is said to be a symmetric gauge function if, in addition to (i), (ii) and (iii),
it also satisfies
(iv) ¥(aai, , a:,, -+, &a;,) = ¥(a1, az, -+ -, a,), where e; = =1, for all
t,and 4, %, «+ -, 1, is a permutation of 1, 2, - -- , p.
As a convenience, one may require a symmetric gauge function to satisfy the
normalizing condition: -
(V) 'l’(I) l) ] 1) =1

Now suppose that ag) = a@ = -+ = a¢ denote the ordered values of p real
numbers a;, @z, ---, ap. Then it is easy to verify that
¥(a) = 2t o), 1=¢=p,
and
w(a) = (Xkalad), 11<w,

are symmetric gauge functions. In the latter case the condition (iii) is the well
known Minkowski inequality. For constructing another class of symmetric
gauge functions let us define

T(T,km)(al y A2, v, aP) = Z'i|+"'+ip‘=‘f 61'161'3 o ‘s't'pa’lilazi2 e apip7
where a,, a2, ---, a, are non-negative, 4, 2 0,7 = 1,2, --- , p, k <0, risa
positive integer and 8; = (—1)*(5), ¢ = 1,2, --- p. Then T{%.» is known [6]
to be a convex function of (a;, az, ---, ap). Thus

'/’(a) = T}'/‘SG.P)(IG'II’ |a2': ) lapl)
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is a symmetric gauge function. In particular, when &k = —1,
T(f,-1,p)(al y G2,y 000, ap) = hf(al y A2, 0, ap)’

where h, is the rth completely symmetric function of a;, az, -+, a, and is
formally given by

I (1 — a)™ = 1 4 bz + haa® + -+ .

The following theorem will be used in the sequel.

THEOREM 3. Let ay = a2 = - 2 ap, =2 0and by = b2 = --- 2 b, = 0 be
such that

Zg=1 a; = Zg=1 bs (for g = 1,2, ---, p),

then for any convex increasing function w on the positive half of the real line and

any symmelric gauge function ¢ of p variables we have Y(w(ay), -, w(ay)) =

¢(w(bl)’ ) w(bp)) -

Proor. The theorem is an immediate consequence of the following two results:

LemMma 3.1 (G. Polya [8]). Let a1 = a2 = -+ = apand by, by, ---, b, be real
numbers such that ) mya; £ ) rybiform = 1,2, -, q, then the inequality
Dl w(a) £ D % w(bs) holds for any convex increasing function w on the
real line.

LEmma 3.2 (Ky Fan[4]). Letay 2 as = - Z a, = 0and by = b, = --- =
by, = 0 then a necessary and sufficient condition that Y(ar, az, «--, ap) S
Wby, by, - - -, by) for all symmetric gauge functions ¥ of p variables is that %= a; <
2arbiforallg =1,2, -+, p.

4. Convex functions of matrices. Let oy = a2 = -+ = a, be the ordered
characteristic roots of AA’, where A is a (p X n), p < n, real matrix, and for
any convex increasing function w on the positive half-of the real line and any
symmetric gauge function ¥ of p variables let us have the

DEFINITION. IAllyo = ¥(w(at), -, wla,)).

In this section we shall prove that ||A|ly.. is a convex function on the space of
(p X n) real matrices. This result, when A is a square matrix and w(z) = z,
is due to von Neumann [7]. Ky Fan [4] has given a simpler proof of von Neu-
mann’s result in a more general set-up, where A is a completely continuous
operator in a Hilbert space. Our proof, although in the spirit of Ky Fan’s proof,
will be a direct matrix proof. We shall develop the proof, through a number of
lemmas.

LEmMMA 4.1. Let oy = -+ = ayp be the ordered characteristic roots of a positive
semidefinite matrix A; and Xy, X2, -+, X, be any set of q orthonormal p-vectors.
Then for any p X p orthogonal matrix F

>4, x/AFx;| £ D 0.

Proor. Let yl‘, Y2, -*+, ¥» be a set of orthonormal vectors such that A'y; =
ayi,i=1,2 -, p Letx; = D Pyciy;j, i =1,2 --- p. Then Dhli=1
and Z“f‘=1 ¢t £ 1. Now
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x/AFx; = 2 7 (y/Fx)cqe
= > 2, c¢;dijej, where d;; = y;Fx,
Therefore,
2|x,-'Ainl = Z,‘Ll aj(ch + di)
< 2a0 + D% (07 — ag)(ch; + diy).
Thus

b

2| J-1xi AFx;| < 2D i
+ 2Z§'=1 (a,- - aq)[(l - -1 Cn) + (1 - Zz=l d%j)] = 22?=1 a;y

which completes the proof of the Lemma 4.1.

Lemma 4.2 (Polar factorization). If A is a (p X p) real matrix then there exist
orthogonal matrices U and V such that A = UH = KV, where symmetric, positive
semidefinite H = (A'A)* and K = (AA")? are the nonnegative square roots of,
respectively, A’A and AA'.

Proor. See, e.g., Marcus and Minc [6].

Lemma 4.3. Let a; = g = -+ = oy, be the ordered characteristic roots of AA’,
where A is a (p X p) real matrix; X1, X2, « - - , X, be set of q orthonormal p-vectors
and F any (p X p) orthogonal matrix. Then

'Zt"l X; AFX'L é Zgﬂl aié-

Proor. Let A = KV be the polar factorization of A, where K = (AA’)}
and V is orthogonal Then the characteristic roots of the matrix K are oqi =
a = -+ 2= a,) Therefore

[> 9 x/AFx,| = | % x,/KVFx
Zg=l atj,

which follows from the Lemma 4.1 since VF is an orthogonal matrix.

LEMMA 44. Letoy = «-- 2 ap, 81 = -+ = Bpandy1 = « -+ = v, bethe ordered
characteristic roots of, respectively, AA’, BB and CC’, where A, B are real (p X p)
matrices and C = A + B. Then we have

Sy = Xlhadt +2BE, =12 -+, p

Proor. Let C = KV be the polar factorization of C, where V is orthogonal
and K = (CC'). Lety1, y2, - - - , ¥p be a set of orthonormal p-vectors such that
Kyl = ’Y,‘*y,‘, 1.= 1, 2, e, P Thus

D v = ]Zgﬂ Yi/KYi|
= yi’AV/in + | 2231 X' BV
< Xhal + 2Bl

IIA
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THEOREM 4. Let a; 2 ay = --+ = a, be the characteristic roots of AA’, where
A(p X p), p = n, is a real matrix. For a symmetric gauge function ¥ of p variables
and a convex increasing function w, defined on the positive half of the real line define

”A“V/f.w = ‘/’(w(ali), te ’w(api))- *
Then ||Ally.. 7 @ convex function of A.

Proor. Assume that p = n, andlet a;, 8;and v;,7 = 1,2, -- -, p denote the
ordered characteristic roots of AA’, BB’ and (tA + (1 — ¢)B)(tA + (1 — t)B)’,
where A and B are p = n dimensional real matrices and 0 < ¢ < 1. Since the
ordered characteristic roots of (tA)(tA)" and ((1 — ¢)B)((1 — t)B’) are, re-
spectively, t’a; and (1 — ¢)’8:,7 = 1,2, ---, p, we have by Lemma 3.4

Z?=1 'Y'zi é Zg=1 (td} + (1 - t)Bz*)y q= 1) 2; L, D.
Thus by Theorem 4
LA + (1 = O)Bllyw = ¥(w(n), -+, w(v5))
< Yot + (1 = 08Y), -+-, wla) + (1 = )8,)
< Y(to(ad) + (1 — DB, -, to(ey’)
+ (1 = t)e@,))
= tAllve + Q1 = DBy -

Now to see the result for p < = it is sufficient to notice that the characteristic
roots of AA" are the same as the nonzero characteristic roots of

[ A(p X n)
0((n — p) X n)

where 0 denotes a null matrix.

] [A'(n X p)0(n X (n — p)],

6. The tests with monotone power functions. Let ¢; = ¢; = -+ 2 ¢, denote
the ordered characteristic roots of the matrix S,S,”" of the MANOVA problem
then we have the following:

THEOREM 5. The power function of an invariant test, which accepts the general
multivariate linear hypothesis over Q(c1, ¢z, *++, Cp): Y(w(ed), w(Cz’), ceey
w(c})) =< u, where ¥, w and u are, respectively a symmetric gauge function of p
variables, a convex increasing function over the positive half of the real line and a
constant determined by the significance level of the test, is a monotone increasing
function in each 6;,7=1,2, --- , ¢

Proor. Let (YY')™ = TT’, where T(p X p) is a nonsingular matrix. Then
the characteristic roots of (XX')(YY')™ are the same as those of the matrix
(TX)(TX'); and ¢ (w(c), w(es?), - - - , w(cy?)) = |ITX|ly.. - Thus by the Corollary
1.1 it is sufficient to show that ||TX||y.. is convex in X for any fixed value of T.
This is an easy deduction from the Theorem 4.

Now let ¢; and w;, j = 1, 2, - -+, k be, respectively, any k symmetric gauge
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functions of p variables and any k convex increasing functions defined on the
positive half of the real line. Let

ll/i = '//j(wj(cl%)) Tty wi(cp%)r .7 = ly 2) T k.

Further let ¢ be any convex increasing function of k variables then we have the
following :

TuaEOREM 6. The power of an invariant test which accepts the MANOVA
hypothesis over G(c1, ca, *++, cp): g1, Yo, -+, ¥x) < u, where p is a constant
determined by the significance level of the test, increases monotonically in each
0,1 =1,2 -+, &

Proor. Let ¢;(X, Y) and g(¢1, ---, &) (X, Y) denote, respectively, the
values of ¢; and g(¢1, - -+, ¥x) when observations are (X, Y). Let (X;,Y) and
(X27 Y) be such that g(ll/ly 11/2, ) ‘pk)(xl) Y) = and

9, e, ) (X, Y) S o
Then for any t, 0 = ¢ = 1, we have
it + (1 — )X, Y) = #9,(X,, Y) + (1 — H)¢i(X, Y).
Since g is increasing in each component we have
g, o, -, ) (K 4+ (1 — )X, Y)
gt (X1, Y) + (1 — H(Xe, Y), -+, t(Xa, Y)E + (1 — H)(X,, Y))
S, ) (X, YY) + (L= 09, -, ) (X, Y)

fiA

Stp+ (1 — e = pu

Now let ¢ = ¢, = --- = ¢, denote the ordered characteristic roots of the
matrix (XX)7H(XY')(YY')'(YX') associated with the independence problem,
andlet e; = ¢i(1 — ¢;) ™", i =1,2, ---, p. Then we have, in view of the Theorem

2 the following:
THEOREM 7. The power of an invariant test which accepts the independence hy-

pothesis over Q(e1, €z, ***, €,), Where @ is as defined in the Theorem 5 or the
Theorem 6, increases monotonically in each population canonical correlation
pi;":: 172) e, P

REMARK 1. Among the three well known [1], [9] tests of the MANOVA prob-
lem, namely, the trace criterion due to Hotelling, the largest root test due to Roy
and the likelihood ratio test, the former two belong to the class of procedures con-
sidered in this paper. It is known that the likelihood ratio test satisfies the
hypothesis of the Theorem 1 [3], and, therefore, has monotone power function.
However, there are reasons to believe that it does not satisfy the condition of the
Corollary 1.1. One of these reasons is that the kth, £ > 1, root of the kth ele-
mentary symmetric function of the characteristic roots of a matrix is a concave
function of the matrix [6]. Statistical implications of this possibility should be
worth investigation. A similar remark holds for the problem of testing inde-
pendence between two sets of variates.
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RemMARK 2. The functions ||A]ly,. used in this paper have certain unitarily
invariant norm properties, that is, they satisfy (i) ||Ally,o = 0, with equality if,
and only if A = 0, (ii) [|A + Blly.w < [[Ally.o + [|Blly.c and (iii) [|AF|lyo = [[Ally.
for any orthogonal F. Furthermore when w(x) = z, in addition to (i), (ii) and
(iii) we have the homogeneity condition (iv) ||cA| = [c|||Ally,. . Statistical
implications of this aspect will be discussed in another paper.

ReEMARK 3. It may be observed that the results in [2] and [3] deal with in-
variant tests in general of the two hypotheses. The results of the present paper
have some limitations, in that they deal with invariant tests ‘“‘generated” by
symmetrie gauge functions of the maximal invariants. Essentially, in this paper,
we have constructed a class of procedures which satisfy one of the two conditions
of [3], sufficient for the monotonicity of the power functions.

Acknowledgments. I wish to record thanks to the late Professor S. N. Roy
for some useful discussions and to the referee for constructive comments and
criticism.
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