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0. Summary. Asymptotic efficiency curves for the one sample Wilcoxon and
normal scores tests are obtained by comparing the exponential rate of convergence
to zero of the type I error (a) while keeping the type II error (8) fixed
(0 < B < 1). A wider than usual view of test performance consistent with
small sample results is obtained. The Pitman efficiency value is derived as a
special case when the alternative approaches the null hypothesis. Comparisons
of the signed rank tests relative to Z or ¢ for normal location alternatives yield
small efficiency values for extreme alternatives. The relative performance of
the Wilcoxon is seen to be slightly better than the- normal scores for normal
alternatives with larger location parameter values despite the local (Pitman)
optimality of the normal scores. Similar results hold for two other non-normal
alternatives considered.

1. Notation and tail probabilities. Let X,, X,, ---, X, have continuous
cdf F. For testing the hypothesis of symmetry about zero for F we consider the
Wilcoxon [11] and normal scores [4] signed rank tests. The Wilcoxon statistic
is equivalent to

(L.1) W = 2 214U; = 2 (number of positive (X; + X));12i1<j7=n)
—n(n +1)/2

where Uj; is the sign of the 7th smallest observation when ordered by magnitude.
Similarly, the normal scores statistic is equivalent to

(1'2) Z:;l EniUi

where the constants E,; are expected values of the sth smallest order statistics
from a sample of n absolute normal (chi — one degree of freedom) variables.

Under the null hypothesis of symmetry, P[U; = =+1] = % and the U, are
independent. Since (1.1) and (1.2) are sums of non-identical but independent
random variables under H, we can obtain probabilities in the extreme tail of the
null distribution by using Theorem 1 of Feller [3]. Specifically, we use the follow-
ing particularization: ‘

TuEOREM. Let the numbers E,; be expected values of the ith smallest order
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statustics from a sample with cdf G on (0, ©) with [¢ z* d@(z) < o. If U;
are independent, PlU; = +1] = 3 fori = 1,2, --- ,nand S, = > E,.U;then
for pn — pwhere 0 < p < [FzdG(z) < o

(1.3) lim, (—1/n) In P[S, > pan] = e,(p).
The constant e,(p) > 0 is evaluated from

(1.4) e(p) = h, — [TIn (cosh (xh)) dG(x)
and h > 0 satisfies

(1.5) J¢ = tanh (zh) dG(z) = p.

Proor. Following the proof of Theorem 1 in Feller we particularize by con-
sidering sums of random variables taking only two values. Define, for h > 0
to be determined, independent random variables U;(k) = =1 with probability
exp (£hE,:)/2 cosh (hE,;) and let S,(h) = > E,.U;(h). Denote 5 = ES,.(h),
o = Var (8.(h)). Then, we express the probability for S, in terms of S, (),
as is done by Feller [3], p. 366,

(1.8) PIS. > n] = [7dFs,(t) = JIi: cosh (hE,:)[? e dF s, 0 (1).

(1.6) can be shown to hold using induction on n. Making the substitution
Z = (8.(h) — n)/o for a normal approximation, (1.6) becomes

(1.6.1) ITi=i cosh (RE.,.) [¢ e aF,(2)
with
(1.7) Fz(2) = ®(2) + R.(2).

The error term satisfies |R,(2)| < ¢)_ E3,;/c° by the Berry-Essen theorem (see
for example [5], p. 201). Applying a theorem of Hoeffding [8], we have

(1.8) Y B o [§dGR) (<o by assumption),
6" = n7'Y . B2, sech® (hE,;) — [5 2® sech’® (hz) dG(z) < .
Thus |R.(z)| = O(n™*). Substituting (1.7) in (1.6) with
|5 €7 dRw(2)| = |—Ra(0) + hofy Ru(2)e™ de| = O(n™),
integrating, and adjusting A so that p, = 5/n, we obtain
(1.9) (=1/n) In P[S, > p.n] = (—1/n)>_ ,;In(cosh (RE,;))
+ hpu(—=1/n) In fexp ((ho)’/2)(1 — ®(ha)) + O(n7H)].

Using the Mills ratio approximation (1 — ®(he))/e(he) = (1 —v/(hs)?)/ (ko)
where 0 < » < 1and ho = O(né) by (1.5) and (1.8) we see that the last term on
the r.h.s. of (1.9) goes to zero. Applying once more the theorem of Hoeffding
to (1.9) we conclude (1.3) and (1.4) with (1.5) the limiting form of the equa-
tion p, = n/n.
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2. Exponent calculations. Denote the distributions specified under the null
hypothesis by Fy; and under the alternative by F,. For a fixed alternative g,
we consider the problem of adjusting the critical values of the test statistics
so as to obtain asymptotic type II error 8 where 0 < 8 < 1. With the restriction
0 < B8 < 1, we can use the normal approximation to obtain critical values as
established by Govindarajulu [6]. Thus

Bn = PJ(S: — E,8,)/(06,(8n)) < 2,] =8 when 2z, —2z=&"(8), n— o
and critical values are asymptotically given by

(2.1) B8 + 20,(Ss).

For the statistic W/(n + 1), (2.1) becomes

[n(n — 1)/(n + D]PJX: + X;: > 0] + [2n/(n + 1)IPJ[X; > 0]

— in + 20(n*) = np. ~np
where

(2.2) p=PJX;+ X:> 0] — 3

Similarly for the normal scores (n.s.) statistic (1.2) the work of Govindarajulu
([6], p. 27) gives the corresponding

(2.3) p = lim, v (E,S, + 20.(S.))
=2 [7 731 + Fu(z) — Fu(—2)]) dFu(z) — (2/m)"

Applying the theorem to the Wilcoxon statistic with S, = W/(n + 1) we see
that the conditions apply with G(z) = z, (0 < < 1). The type I error goes
to zero at an exponential rate if p > 0 with

(24) lim, ((—=1/n) In a,)
= lim, (—1/n) In P[3_ U:(i/(n + 1)) > npa] = ew(p)

where p and ex(p) are given by (2.2) and (1.4). Simplifying (1.5) for this G,
we determine h by solving

(2.5) 1 — (x%/24K°) + 07 In (1 4 ¢™) + (1/20°) D _pms (= 1)* (™™ /K) = .

Similarly, the theorem applies directly to the normal scores statistic (1.2)
with G(z) = 2®(z) — 1 although less simplification occurs.

3. Efficiency values. For two sequences of tests we define a limiting efficiency
at a fixed alternative by setting both asymptotic type II errorsequal 3,0 < 8 < 1
and adjusting the limiting ratio of sample sizes so that the type I errors will go
to zero at the same rate. From (2.4) we have —In a; = m.e:(p)(1 + o(1))for
each test (7 = 1, 2). Equating In &y = —mei(1 4 0(1)) = —neex(1 + 0(1))
= In a; we obtain lim ny/n; = e/e; for the relative efficiency (e;.) of test 1
to test 2.
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For normal alternatives, Bahadur [}] gives corresponding type I exponential
rates of convergence to zero for the X, sign, and ¢ tests. If F,(z) = & — n)
then

(3.1) ex = u/2
(3.2) es = pln2p + ¢qln 2q where p=1— q = ®&(n)
(3.3) e. = (In (14 u7))/2.

Formulas (3.1, 3.2) can be derived using theorems for sums of independent
identically distributed random variables as in [2] while (3.3) could be obtained
with the aid of the tail formula of Pinkham and Wilk [10]. For purposes of com-
parison, Table I gives exponents for the Wilcoxon (W), normal scores (n.s.),
sign (8), X, and ¢ at normal alternatives with variance 1 and means
g = 0(.125)3.000. Under the assumption of normality, Expression (2.2) sim-
plifies to give} — p = 1 — ®(4/2u) for the Wilcoxon. However, no simplifica-
tion was found for the normal scores and (2.3), (1.5), and (1.4) were solved
numerically.

TABLE 1
Ezxponents for normal allernatives

I ew €n.s. €s ex (7}

0 0 0 0 0 0
125 007416 007752 .004956 .007813 007752
.250 .02914 .03031 .01961 .03125 .03031
.375 .06368 .06577 .04336 .07031 .06579
.500 .1087 1114 07522 .1250 .1116
.625 .1615 .1642 .1139 1953 .1649
750 .2189 2211 .1580 2813 .2231
.875 .2779 .2793 .2058 .3828 .2843

1.000 .3360 .3365 .2557 .5000 .3466
1.125 .3910 .3908 .3062 .6328 .4089
1.250 .4416 .4409 .3558 .7813 .4705
1.375 .4867 .4859 .4034 .9453 .5307
1.500 .5262 5254 4478 1.1250 .5893
1.625 .5600 .5593 .4885 1.3203 .6461
1.750 .5884 .5880 .5250 1.5313 .7009
1.875 6120 L6117 5570 1.7578 .7538
2.000 .6311 .6309 . .5846 2.0000 .8047
2.125 .6464 6463 .6079 2.2578 .8538
2.250 .6585 .6483 .6272 2.5313 .9011
2.375 .6678 .6677 .6429 2.8203 .9466
2.500 .6749 .6747 6554 3.1250 .9905
2.625 .6802 .6800 .6652 3.4453 1.0328
2.750 .6841 .6839 6728 3.7813 1.0737
2.875 .6869 .6867 .6786 4.1328 1.1132
3.000 .6889 .6887 .6829 4.5000 1.1513

© In 2 .6931 .6931 L) L)
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FiG. 1. Efficiencies for normal alternatives

Taking ratios of corresponding exponents gives efficiencies. For example, the
efficiency of the Wilcoxon relative to the ¢ for normal alternatives is

(34) ew.: = [hp — [oln (cosh zh) dz]/3(In (1 + 4°))
= [2hp — In (cosh (%))]/3(In (1 + 4*))

where h, p satisfy (2.5) and (2.2). The limit of the above expression as u goes
to zero is the Pitman value 3/r = .955. For sufficiently large u values, the rejec-
tion region consists of only the outcome with all signs positive which has null
probability 27", Thus, as can also be shown analytically, the numerator of (3.4)
approaches In 2 as p becomes large and the ratio goes to zero. This points out
the importance of the magnitudes of the observations for normal alternatives
with large means. Figure 1 gives the normal efficiency curves relative to the ¢
test for the Wilcoxon, normal scores, and sign tests. Although preferable locally,
it is interesting that the normal scores efficiency falls very slightly below that
of the Wilcoxon between u = 1.000 and p = 1.125.This behavior is consistent
with small sample results obtained in [9] (see especially p. 631).

For non-normal comparisons the logistic and double exponential distributions
with densities

(3.5) f(z) = €%/(1 + )* (logistic)
f(z) = L1 (double exponential)
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TABLE II
Non-normal exponents
Logistic alternatives Double exponential alternatives
. ew €n.s. es ew €n.s. €s
0 0 0 0 0 0 0
125 .002598 .002481 001949 .005772 .004916 .006919
.250 .01031 .009851 .007752 .02222 .01908 .02467
.375 .02290 .02190 .01727 04742 .04113 .04972
.500 .03999 .03827 .03030 .07910 .06939 .07954
.625 .06109 .05853 .04654 .1151 .1022 1123
.750 .08561 .08213 .06566 .1536 .1380 .1465
.875 1129 .1085 .08726 .1931 1754 .1813
1.000 1424 .1370 .1109 .2324 .2133 .2158
1.125 1733 .1670 .1363 .2707 .2508 .2496
1.250 .2050 .1979 .1628 .3074 .2872 .2823
1.375 .2371 .2293 .1902 .3420 .3222 .3136
1.500 .2689 .2606 .2181 .3744 .3551 .3434
1.625 .3001 .2914 .2461 .4044 .3862 .3715
1.750 .3304 .3215 .2738 .4321 .4149 .3979
1.875 .3593 .3504 .3012 .4575 .4417 . 4226
2.000 .3869 .3781 .3278 .4806 .4660 .4456
2.125 .4129 .4043 .3536 .5017 .4886 .4670
2.250 .4373 .4290 .3784 .5208 .5088 .4868
2.375 .4600 .4522 .4021 .5382 .5277 .5050
2.500 .4810 .4737 .4246 .5539 .5443 .5219
2.625 .5005 .4938 .4459 .5681 .5598 .5374
2.750 .5184 .5123 .4659 .5809 .5733 .5516
2.875 .5349 .5293 .4847 .5924 .5861 .5647
3.000 .5500 .5450 .5023 .6028 .5970 .5766
© In 2 .6931 .6931 .6931 .6931 .6931

were chosen for preliminary consideration because of convenience and optimal
Pitman efficiency for the Wilcoxon and sign tests respectively. Using the loca-
tion parameter family of alternatives F(z — p) for p = 0(.125)3, we similarly
compute Table II. Ratios of appropriate columns give relative efficiencies as in
Figure 2. As before, limits of the ratios as u goes to zero give Pitman values. On
an overall basis the Wilcoxon does comparatively well for these twodistributions
with a similar reversal for the Wilcoxon efficiency relative to the sign test under
double exponential alternatives.

4. Related problems. It would be interesting to have this type of efficiency
comparison for other tests. In particular a similar comparison for the many two-
sample non-parametric tests would be valuable. However, the two-sample
problem appears more difficult because of dependence under the null hypothesis.
Other limiting efficiencies obtained with different limits for « and 8 (8 — 0)
such as studied by Chernoff [2], and Hodges and Lehmann [7] would be useful
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F1a. 2. Relative efficiencies for logistic and double exponential alternatives

for comparison. Their results for the sign test would seem to indicate a less
rapid deterioration in normal efficiency values with large u when using their
limiting efficiency definitions.
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