MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES'
By Howarp M. TavLor, III2

Stanford University

1. Introduction and summary. A sequential control process is a dynamic
system which is observed periodically and classified into one of a number of
possible states. After each observation one of a number of possible decisions is
made. These decisions are the ‘“‘control’”’; they determine the chance laws of the
system. A replacement process is a control process with an additional special
action, called replacement, which instantaneously returns the system to some
initial state.

Let X denote the state space of the system, assumed to be a Borel subset of a
finite dimensional Euclidean space. The case where X is finite has been treated
by Derman [8], and thus X is considered infinite here. Let ® be the o-algebra of
Borel sets in X.

Let {X,;t=0,1,2, ---} be the sequence of states and {A; ;¢ =0,1,2, ---}
be the sequence of decisions. In a replacement problem it is assumed that there
is a distinguished state x, e X with X, = x, with probability one. For any time ¢
let S; be the history of states and decisions up to and including time ¢.

Let A be the set of possible actions, excluding replacement, where:

Ale Tt is assumed that the action space A is a finite set with n(A) elements.
Since A is finite, assume A = {1,2, -- -, n(A)}. Let ko £ A denote the replacement
action. The action k, instantaneously returns the system to state x, , and it may
be followed by some action k ¢ A which “acts on’’ the state x, . The pair (ko , k)
itself constitutes a possible action. A decision at time ¢ is either a choice of an
element k £ A or a choice of a pair (ko , k) with k ¢ A. Let A, be the total action
space, where:

Ao = AU {(ko, k); ke A}

There are 2n(A) elements in Ay. Let & = {& & = (&, -+, bn)), & = 0,
sz = 1} be the simplex of all probability distributions on A,. A sequential
control rule is a function D(s;y, z) = (Di(sic1, x), -+, Donay(se—1, 2)) of
histories s;_; and present states z with values in E. The interpretation is: At a
history of S;—1 = s.1 and a present state X, = x, decision j ¢ A, is taken with
probability D;(s;—1, ). In order that the integrals later to be written have
meaning it is necessary to restrict attention to control rules D(s;—1, ) which are
Baire functions of their arguments. Let R be the space of all such control rules.

A sequential control process is not specified until a “law of motion” is given.
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A2° Tt is assumed that for every « ¢X and k ¢ A there exists a probability
measure Q(-; z, k) on ® such that for some version Pr{X,, ¢ B| Si, X: = =,
A: = k} = Q(B; z, k); for every B ¢ ® and history S;_;. For every B ¢ B and
keA, Q(B; -, k) is assumed to be a Baire function on X. It is assumed that
Q(-, x, k) is absolutely continuous with respect to some o-finite measure x on ®,
and possessing a density ¢(-, z, k), also assumed to be a Baire function in z.

Since X, = o a.s., once a rule R £ R is specified, the sequences {X;, ¢t =
0,1,2, ---} and {(X., A;);t = 0,1,2, - - -} are stochastic processes. The previous
Assumption A2° imposes a structure similar to that of a Markov process in that
the law of motion does not depend on the past history, but only on the present
state.

In a manner similar to Derman [9], the process {(X:, A;);t =0, 1,2, ---}
will be called a Markovian sequential replacement process. It is not true that
{X¢;t=0,1, ---} nor even {(X:, A;);t = 0, 1, ---} will always be Markov
processes; whether they are or not will depend on the rule R.

Two assumptions particular to the development in this paper and insuring the
ergodicity of the process are:

A3° For every x ¢ X and k ¢ A it is assumed that

lima...|g(y; @, k) — q(y; &', k)| u(dy) = 0.
A4 For every compact set G C X it is assumed that

Supzeafa q(y; z, k)u(dy) <1

for all k& ¢ A. The last assumption, A4°, is stronger than needed, as may be seen
in the examples in Section 4. However, it is easily verified and seems natural in
many applications of the theory.

Let w(z, k) be the immediate cost whenever the system is in state ¢ X and
decision k ¢ A is made. It often occurs that the cost in an actual situation is a
random variable whose distribution is determined by knowledge of the state and
decision. In such a case, with some loss in generality, attention is restricted to
w(z, k) representing the expected one stage cost under the appropriate distri-
bution. Let K(z) be the cost of replacing a system in state z. If wo(-, -) is the
cost function defined on X x A, then the relationship is:

wo(z, k) = w(zx, k) for k # ko
and wo(x, (ko, k)) = K(z) + w(zo, k) for k ¢ A.

A5° Assume that K(-) is bounded and continuous with 0 < K(z) = M for
all z ¢X. For every ke A assume that w(-, k) is a non-negative continuous
function on X with lim infs.. w(z, k) > 0 (For the limiting operation here, a
neighborhood of « is the complement of a compact set.). The notation a >> 0
means that a is much greater than zero, but not necessarily infinite. One needs
lim inf,., w(z, k) large enough so that Lemmas 3.2, 3.3 and 3.4 will hold. In-
tuitively, one needs the cost of continuing sufficiently large for some states so as
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to ensure that the expected time to a replacement action is finite. It should be
noted that sup,.xminga, wo(z, @) = M, where My = M + minga w(xo, k).
Let

P,(B,a|a:,R) =PI‘{X¢8B,A5=(I|X0=IE,R}

for Be ®,xz ¢ X and a € A, . Let the appropriate density be labeled p.(-, - | z, R)
where

p(y, a |z, R)u(dy) = Pr{X,edy, A, = a| Xy = z, R}.

Two common measures of effectiveness of a Markovian sequential decision
process are the expected total discounted future cost and the average cost per
unit time. The first, abbreviated to “discounted cost’’ assumes a discount factor
a e (0, 1), with the interpretation that a unit of value n periods hence has a
present value of a”. For a starting state of Xy, = x, the objective is to choose a
rule R so as to minimize

Y(zo,a, R) = 2 im0 atfoaer wo(z, a)pe(z, a | o, RB)u(dz).
The second criterion, abbreviated to ‘“average cost’”’ examines the function
o(zo, R) = lim infp.o T D 1= meo wo(z, a)pe(z, a | 2o, R)u(dz)

Section 2 presents the solution of the problem under the discounted cost
measure. Building upon the work of Blackwell [4] and Karlin [12], Derman [9]
has shown that an optimal non-randomized stationary rule exists for the case
where X is denumerable. Blackwell [5] recently has given a complete discussion
of the general case. The rule is characterized by a functional equation of the
dynamic programming type. Iterative methods for solving such functional
equations are now almost commonplace.

Section 3 uses the known results in the discounted cost model: (a) to show the
existence of a non-randomized stationary solution in the average cost case,
(b) to show the existence of a functional equation characterizing the solution in
the average cost case, and (¢) to show that the average cost solution is the limit,
in some sense, of the discounted cost solutions as the discount factor approaches
unity.

Section 4 presents some applications of the theory. The attempt is to show how
the work of several authors fits into this general theory of control of replacement
processes. For example, while supporting one claim in a quality control paper by
Girshick and Rubin [10], the theory also provides a counter example for another
of their claims.

2. The existence of an optimal stationary non-randomized rule in the dis-
counted cost case. Blackwell [5] has completely discussed the conditions under
which for a given « ¢ (0, 1) there exists a rule R, € R such that

Y(x, a, Ry) = mingx ¢(z, o, R) for z £ X,
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Since the replacement aspect of the problem is not important here, the notation
may be simplified by using the total action space A, together with the appropriate
cost function wo( -, -). Throughout this section & remains a fixed discount factor
with0 < a < 1.

TuaeorEM 2.1. (See Blackwell [5] for proof). If we(-, ) is bounded and A, is a
finite set then there exists a rule R,* ¢ R such that

¥(z, @, R,*) = mingx ¢(2, o, R) for all z . X.

A sequential control rule {D(s;1, )} is said to be stationary if D(s,—1, z) is
independent of s;_; for every « € X. For a stationary rule one may write D(s, i,
z) = D(z). A non-randomized stationary rule is a rule D(z) = (Di(z), ---,
Dynay () ) for which D;(z) is always either zero or one. Once the existence of at
least one optimal rule is demonstrated one may show that a non-randomized
stationary optimal rule exists. It is easily seen that any non-randomized station-
ary rule R may be stated as a partition {R(a); a £ Ay} of the state space X with
the interpretation that at time ¢, action a is taken if and only if X, £ R(a).

TreorEM 2.2. (See Blackwell [5] or Derman [9] for proof).

If wo(-, +) is bounded and A, is a finite set then there exists a non-randomized
stationary rule R, which is optimal. One has the equation (which holds for R.* as
well)

"’(x’ «, Ra) = minaer {’U)o(x, a) + af'P(y’ @, RH)Q(y; xz, a)ﬂ'(dy)}

The rule R, may be specified through the partition {R.(a); a € Ao of X where
R.(a) = {z; ¥(z, @, R.) = w(z, @) + af¥(y, a, Ra)q(y; x, a)u(dy) and
z2zR.(d) ford < a}.

It is easily seen from Theorem 2.2 that the boundedness condition on wy( -, -)
is excessively restrictive and may be replaced by the weaker assumption implied
by A5° that supzxminga, wo(z, a) = My < . For consider the cost function

wo(z, ) = min{we(z, a), M¢/(1 — a)}.
Since the cost function wo(-, -) is bounded there exists an optimal solution

R. , which minimizes the corresponding cost function ¥(z, «, R). Further, if a
rule R, to the unbounded problem exists for which

Y(z, a, R,) = ’I/(x’ @, Ra)

then R, is optimal in the unbounded problem, since in general ¢(z, a, R) =
¥(z, a, R) = ¥(x, a, R.). Using the inequality

J/(x’ «, R) = E{Z atwO(Xt ) At)}
= M/(1 - a)

one may easily show that the same control rule R, optimizes both problems,
since ¥(2, a, R.) = ¥(z, a, R,). The argument is that, when at state z, rule
R, need never choose an action a for which @(z, a) = M,/(1 — «a), for in this
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case it is no more costly to replace and return to x,, as may be verified through
the optimality equation.

Besides demonstrating the existence of an optimal non-randomized stationary
rule, Theorem 2.2 furnishes a means for finding such a rule. Let B(X) be the
space of all bounded continuous real valued functions on X. Under the supremum
norm ||g|| = supzx|g(z)|, B(X) is a Banach space. Let T. be the operator
in B(X) defined by:

(Tog)(z) = mingafw(z, a) + afg(y)q(y; 2, a)u(dy)}

for g ¢ B(X) and z ¢ X.
One has

(T.g)(z) — (Tg)(x)| = lglmaxaflg(y; 2, a) — q(y; ', a)|u(dy)
+ max, lwo(x,a) — wo (2, a)l.

Hence, that g ¢ B(X) implies that T.g ¢ B(X) follows from Assumption A3e.
LemMA 2.1. Let go(a, ) = 0 for all x ¢ X and define go(a, -) = Togna(a, -)
forn = 1,2, ---. Then {g.(e, - )} converges to a function g(a, -) € B(X) for which

g(a’ ) = Tag(a’ : )
The solution to this equation is unique in B(X). Hence
lim"-’w gn(“) . ) = 'p( Ty @ Ra)'

Proor. For any functions g; € B(X); ¢ = 1, 2 one has

|Tags — Togell < allgr — gill.

Thus 7. is a contraction operator in the Banach space B(X). It follows that T,
possesses a unique fixed point g(a, -) in B(X) and that ga(a, ) — g(a, ). By
uniqueness one has

g(e, ») = V(- a R.). Q.E.D.

Lemma 2.1 is by no means new, being necessary to Bellman’s “Principle of
Optimality” development. Earlier proofs, in principle the same as given here,
are given in [3]. :

3. The existence of an optimal stationary non-randomized rule under the
average cost criterion. In the study of Markovian sequential decision processes
under the average cost criterion it seems always necessary to make some assump-
tion concerning the ergodicity of the process. For a replacement process, this
assumption may take a simple form. If the time from immediately after one
replacement action (ko) to and including the next is called a cycle then one
assumes, roughly speaking, that all rules “of interest’’ result in finite expected
cycle lengths. Assumptions A4° and A5° more than suffice in the present case.

Given a replacement action (ko , k) acting at time ¢ on a state z, there is some
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ambiguity as to the value of X, . Should it be z or z, ? It is convenient to consider
X, = z and to introduce the new variables X; and A, where
Xi=mz if A= (ko,k)
= X, otherwise
and
Ar=k if A= (ko, k)
= A, otherwise.

Now let N : be the length of and W, be the total cost of the Ith cycle. For every
l=1,2 --- one has
W= 223" w(Xe, A) + K(Xw,)
W, = —N; 1 w(Xt ) At) + K(XNZ)
= w(m, An,y) + T w(Xe, A) + K(Xw,).

A semi-stationary control rule is a rule D(s;—;, ) which depends on the history
s:—1 only since the most recent replacement action. Let R’ c R be the space of
all semi-stationary control rules for which E{N;} < 4 «. For any control rule
R recall that ¢(x,, R) is the associated average cost per period.

o(xy, R) = lim infr., T30 Blwo( X, , A 1.

Under any rule R’ ¢ R', {N}} and {W}} are sequences of independent and identi-
cally distributed random variables. Further EN; < « and EW, < « provided
that w( -, -) is bounded. It follows by the strong law of large numbers that

o(o, R') = limuu (Wi + -+ + W)/(N1 + -+ + N))} = E¥{W4/E¥{Ny}

for any rule R’ ¢ R". The average cost per period may now be studied to some
extent by concentrating on the first cycle only.
TrareoreM 3.1. Let f ¢ B(X) and v € (— «, 4+ ) be related by

f(z) = min{K(z), w(z, k) — v + [f(y)a(y; @, k)u(dy); ke A}.
Let R’ be a stationary rule given through a partitioning of X by
R'(0) = {z:f(z) = K(=)}
R'(k) = {x:f(x) = w(z, k) — v + [f(y)g(y; z, k)u(dy)
and xzR'(j) for j < K}.

The interpretation is: At time ¢

(i) If X, e R%(0) then replace, followed by action k' where xo ¢ R'(K').

(ii) If X, e R*(0) for k = 0, take action k.
Then, under any rule R ¢ R’

E{W: — yNi} 2 f(x)

with equality at R = R°, provided R’ ¢ R’
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ProOF. Z; = D _ia {f(X:) — E[f(X ) | Si]} is an {S;} martingale with mean
zero. Since for all rules in R’, N; is an optional sampling for which EN; < ©,
one has E{Zy,} = 0. Addmg and subtracting v + w(X, A;) this becomes
upon expanding

E{ 24 [f(X) — (w(Xia, Acx) — 7 + BIf(X) | Sil)

+ w(Xea, A1) — 2]} = 0.
But E[f(X:) | Si-1] = [f(y)q(y; =, k)u(dy) if X,.1 = z and A,y = k, and by
assumption then

f(Xia) £ w(Xea, Ara) — v + E[f(X0) | Sen]

with equality only for rule R’.
Hence

B2 ML f(X) — f(Xe) + w(Xea, Ax) — 2} 20
or
B{(f(Xx,)} — f(@o) + B2 w(X., A) — 4] 2 0
Again, f(Xw,) £ K(X Nl) with equality under rule R’. Furthermore
= K(Xx,) + 200" (X, Al

Hence E{W. — yE{N 1} = f(x) with equality for rule R’, provided R’ ¢ R'.
QE.D.
For any real number v let S,* be the operator in B(X) defined by

(8)(w) = min{K(2), w(z, k) — v + «[f(¥)a(y; 2, k)u(dy); k ¢ A).

for f e B(X) and x £ X. Write S, for S,' when o = 1.
Let

vo = inf {¢(20, R); R e R}.

LEmma 3.1. If there exists a function f € B(X) with f = Sy,f and f(z*) = 0
and if the rule R’ assoczated with f as in Theorem 3.1 has a finite expected cycle
length, then R’ e R’ and R° is optimal with o(zo, R") < o(z0, R) for any rule
R &R (not restricted to R).

Proor. R’ is a stationary rule with finite expected cycle length, hence is in R'.
By Theorem 3.1, since f(x,) = 0 one has

E®(Wi) — vE™ (N} =0
or
E¥(WY/E®(NY = o(x, B’) = 70 < (a0, R)
for any rule R ¢ R. Q.E.D.

The next step is clear. A function f satisfying the conditions of Lemma 3.1
must be found. Define the family of functions {f, ; « £ (0, 1)} by

v fa(x) = ga(x) — galxo)
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where g.(z) = ¢(z, @, R.) is the unique solution to0 g, = T.g.. One has by
simple manipulations

fa(z) = min{K(z), w(z, k) — va + affa(y)q(y; z, k)u(dy); k € A}

where v, = (1 — a)ga(wo). Note that 0 < v, < M, for all e € (0, 1).

LemMa 3.2. If for some constant M1, ||fe|| S M, for all a € (0, 1) then (i) the
family {fa} is equicontinuous and (4z) there exists a compact set G such fo(x) =
K(z) forall x £ G and o € (0, 1), provided that lim inf,,, w(z, k) > 0.

Proor.

(i) fa(@) = fa(@)| = |[87.fa()](2) — [S7.fa())(z))]
< max{M; max[|g(y; z, k) — q(y; 2, k)| u(dy), |K(z) — K(z')|}

and the righthand side converges to zero independently of « as 2’ — z.

(ii) fa(z) = K(z) wherever w(z, k) — va + affa(y)q(y; z, k)u(dy) = K(z)
for all k ¢ A. Equivalently, where w(z, k) = K(z) + v« — aff«(y)q(y; =,
k)u(dy). But v = 0; lim inf,. w(z, k) >> 0 for all k € A and ||f.|| < M,. Hence,
let G be a compact set such that for z 2 G

ming w(z, k) > ||K| + M. Q.E.D.

It often is quite easy to show that the family {f.} is equibounded as required
for Lemma 3.2. In a typical case, z, is a preferred state in the sense that g,(z) =
ga(xp) for all z e X and a & (0, 1), and this may be easy to prove. In this case
one has ||f.|| = |K]||. A general condition, adapted from Bather [2], which implies
the result is:

A6° It is assumed that for every compact set G

supzeo [ lg(y; @0, k) — q(y; 7, B)lu(dy) < 1

for every k ¢ A, k' ¢ A, where the integral is over the domain

{yig(y; 20, k') > q(y; 2, k)}.
This condition is sufficient but not necessary, as will be seen in the examples.
LemMa 3.3. If lim inf,. w(z, k) > 0 for all k ¢ A and Assumption A6° holds,
then the family of functions {f.} ts bounded.
Proor. Easily f.(x) < K(z) for all ¢ X and the problem is to show that the
functions are bounded from below. Letting f.'(z) = g™ (z) — g."" (20),
where g™ (z) is defined as in Theorem 2.3 one may show

fa(n)(x) = mm{K(x), [W(x, k) - 'll)(xo ’ k,)]
+ affs" 7 (2)lg(z; %, k) — q(z; %0, k') lu(de); k & A}

where k' is an action appropriate at 2. Choose A such that (a) w(z, k) —
w(zo, k') > —A forall ke A and (b) K(z) £ +A4, for all z ¢ X. Let G be a
compact set such that r £ G implies w(z, k) — w(z,, k') > A, for k ¢ A. Define

B = supsomaxe [Ylg(y; z, k) — q(y; 2o, K')lu(dy).
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By A6° one has 8 < 1. Finally let B be such that
B> A{(1 +8)/(1 — B)} > A.

Then f”(z) > —B for all z ¢ X and a ¢ (0, 1). Suppose " (z) > —B for
allz e X and a € (0, 1).
Cask (i). z £G. One has w(z, k) — w(xo, k') > A for z £ G. Hence

min{K (z), [w(z, k) — w(zo, k)] + aff""" (y)q(y; @, k)u(dy)
— affa" P (¥)q(y; x0, K )u(dy); k & A}
= min{0, A + «(—B) — a4} = —B
CasE (ii). z ¢ G.

w(z, k) — w(:vo, K) + affa" " (@)lg(y; 2, k) — q(y; 20, k') lu(dy)

2 —A + aff.""(W)a(y; 2, k) — q(y; @0, k) uldy)
+ aff" P (W)laly; 2 k) — aly; 20, K w(dy)
—A + a(—B)B + a(—4)B
z —A(1+8) — BB =2 —B.

fa(n)(x)

v

Thus fo”(z) =2 —Bforalln = 1,2, - - - and the family {f.} is bounded. Q.E.D.
Before proceeding to the main theorems of this section, one more lemma will
be presented.
LemMa 3.4. If lim inf,. w(zx, k) >> 0 for k € A and for every compact set G
supzee [ oq(y; x, k)u(dy) < 1

then for every real number v there is at most one function f ¢ B(X) satisfying f = S,f.
The rule defined by f = S,f as in Theorem 3.1 has a finite expected cycle length.

Proor. Suppose f: e B(X), ¢ = 1, 2 both satisfy f; = S,fi. Let B =
max{||fill, |If2ll}. Let G be a compact set such that  # G implies w(zx, k) > ||K||
+ B + |y|. Then for z £ G one has fi(zx) = f.(x) = K(z). But from f; = S,f;
one has

() — fo@)| = [IAly) — £W)] a(y; =, k)u(dy)
=< I — £l foa(y; 2, k)u(dy)
and [lfi — £ll = i — Afl-Bwithg <1
where
B = supzeaf o q(y; z, k)u(dy).

Thus fi = f=.
Under the rule defined by f = S,f one repairs at time ¢ if X, ¢ G. Since

Pr{iX,neG| X, =2eG £8<1
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one has
E{Nj £1-(1 —8) +2(1 =)+ 3(1 —p)8* + -
= (1 —B)2mnf" < . QED.

The major theorem of this section is:

TureoreM 3.2. Let f.(x) = ¢(x, @, Ra) — ¥(x0, @, Ba) and v, = (1 — a)-
Y(xo, @, Ra). Under Assumptions A1° to A6°, (where A6° may be replaced by any
assumption assuring that {f.} is bounded):

(1) There exists a function f ¢ B(X) and a number v such that

(a) fo — f uniformly on compact sets as o — 1

(b)) va @ vasa—1

(e) f = S,fand f is a unique solution in B(X).

If A5° does not hold then (a) is true only for some subsequence and f may not be
unique 1 (c).
(i1) Let vo = inf {¢(xo, R); R ¢ R}. Then

(a) vo = v
(b) The rule defined by f = S,f as in Theorem 3.1 achieves the minimum average
cost of v .

Proor. By Condition A6° and Lemma 3.3 the family {f,} is bounded and thus,
by Lemma 3.2, is equi-continuous. Let {a,} < (0, 1) have lim @, = 1. By the
Ascoli-Arzela theorem we may require as well that there exists a function f such
that f., — f uniformly on compact sets. Since the set {v.} is a bounded set of real
numbers, one may require that v, — v for some real number v. By the bounded
convergence theorem, f = S,f and by Lemma 3.4, the rule defined by f = S,f
has a finite expected cycle length. Further, since f,(z,) = 0 for all a ¢ (0, 1)
one has f(2,) = 0. Let R* be the rule defined by f = S,f as in Theorem 3.1.
Then by Theorem 3.1, o(z,, R*) = v. If v = v, then by Lemma 3.1, R* is
optimal.

But for any fixed rule R

lim infa.,l (1 — a)ll/(xo, a, R) = go(xo , R)
[see Hardy [10], Theorem 96, p. 155 for the underlying theorem used here.] And
\//(170 ) O Ra) —S— \b(fvo y O R)
by definition of the rule R, . Hence, if vo = inf {¢(25, R); R ¢ R} one has
Yo < Y = hmn—»w Ya, = limn—wo <1 - aﬂ)‘l/(xﬁ y On y Ran)
< lim infoe (1 = an)y(2o, @, R) = (o, R)
for any rule R ¢ R.

Thus vo = v and v is unique, in the sense that for any convergent sequence
{fan' » o'} on€haslim, . va,” = 7. But then limy.e fo,” = f since by Lemma 3.4
and Condition A5’ the solution to f = S,f is unique. But in a complete metric
space, a limit exists if and only if there exists a convergent subsequence and

every convergent subsequence has the same limit. Hence f, — f and v — 7.
Q.E.D.
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Unfortunately this theorem does not state that the average cost per unit time
under the optimal discounted cost rule R, approaches the minimum average cost
per unit time, v, = inf {¢(2y, R); R ¢ R}. However this is the case as shown in:

TuroreM 3.3. Under Assumptions A1° to A6°

lima_,l (0(1‘0 y Ra) = %Yo .

Proor. Let fo(z) = ¢(2, @, Ra) — ¥(x0, @, Re) and yo = (1 — a)¥(x0, , Ra).
Theorem 3.2 has yielded that lima.1v. = 70 . Hence one need only show that
o(xo, Ra) = va + O(1 — @) where O(1 — a) > 0 as a — 1. But

fo(z) = min{K(z); w(z, k) — va + affa(y)q(y; z, B)u(dy), k £ A}

and R, is the rule determined by this equation as in Theorem 3.1. Following the
proof of Theorem 3.1 one can show

0= E{Wl} - fa(xﬂ) - 'YaE{Nl} - (1 - a)E{ kN=IEl Efa(Xk.H) le}
Since fo(20) = 0 and (20, R.) = E{W:1}/E{N}
o(to, Ra) = va + (1 — a)E{205" Bfo(Xi1)| Xi}/E{N3}.

The functions {f.} are uniformly bounded and thus ¢(xz,, B.) = v« + (1 — a)e
where 0 < |e| < sup ||f]| < . Q.E.D.

Thus, for a replacement problem both an average cost and a discounted cost
solution exists. The optimal rules may be taken to be stationary and non-
randomized. Finally, as the discount factor a approaches one, the optimal dis-
counted cost rule approaches, in some sense, the optimal average cost rule.

There are two generalizations of the entire preceding theory which are easily
made. The first is to allow the starting state x, to be chosen according to some
fixed distribution, both initially and after each replacement. Secondly, replace-
ment need not be considered instantaneous, but may take a period of T units
during which no transitions are made. These generalizations affect the previously
developed formulas in a straightforward manner.

4. Some applications.

4.1. The Girshick and Rubin model of a production process. Consider a simple
production process which is assumed always to be in one of only two states, a
good state and a bad state. Specifically, production begins in the good state and
while there a chance event occurs before each item is produced so that the
probability of remaining in the good state is 1 — = and the probability of a
transition to the bad state is =. Once in the bad state, the process remains there
until trouble is removed.

Associated with each item produced is a measurable characteristic or quality,
denoted Y, assumed to be a random variable with a distribution depending on
the unknown state of the machine. Let po(-) and pi(-) be the density function
for quality given that the machine is in the good and bad states, respectively.

A statistical control rule is a rule which specifies when the system is to be
brought from production to repair, which has the effect of placing the process in
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good state. Other than immediately after repair, the true process state is assumed
unknown at all times. Hence a control rule must be based on the quality history
of produced items. This history is adequately summarized in the posterior proba-
bility given the quality history that the next item will come from a machine in
the bad state. This probability at time ¢ is denoted X, . Costs are associated with
repairing the process and with the quality of each item produced, and the ob-
jective is to minimize the average cost per unit time.

Let X = [0, 1) be the state space of posterior probabilities. Let o = 0 which
assumes that a repaired machine is known to be in the good state. If the ¢th
item has-quality Y and X, = x then

(i) The posterior density for Y is

zp(y) + (1 — 2)po(y)
and by Bayes’ rule,
(i) Xep = lzp(Y) + 7(1 = 2)po(¥Y)]/[zp1(Y) + (1 — 2)po(Y)]

assuming no repair.
If it costs Ko(Ki) units to repair a good (bad) system and if an item of quality
y costs C'(y) one has

K(z) = zK: + (1 — 2)K,
w(z) = ¢[C(y)m(y)dy + (1 — z) [C(y)po(y)dy.

where w(zx) rather than w(z, k) is written since no action other than repair is
allowed. Both are linear functions in « and assumed to be increasing, since
z = 1 corresponds to a process in the bad state. Write E,(-) for expectation
under the distribution of X .1 given that X; = z and no repair is made. Further-
more, the difference w(zx) — K(«) is assumed to be non-decreasing in x.

Let
g9."(x) = 0
9" (z) = min{K(z) + w(0) + aBoga'™ (X111), w(z) + aBaga'™ (X))

It is important to show that if g(-) is any monotonically nondecreasing function
of  then E.g(X 1) is also.

Differentiability is assumed and an attempt is made to show that the derivative
is positive. If r(z) = api(y) + (1 — 2)po(y) and #’ = 1 — = then

(d/dz){X 1pa} = 7'papo/[r(z)]° ‘ and
(d/dx){Eeg(X 1)} = [¢ (Xes)ln'pr(y)po(y) /r(2)]dy
+ fg(Xm)[pl(y) — po(y)ldy.

The first term on the right is clearly positive since g(-) is assumed to be non-
decreasing. For the second term let 4 = {y:pi(y) > po(y)}. One has
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Jo(X o) r(y) — po(y)ldy
2 [minges g(Xen) — maxyea 9(X )] [ alpr(y) — po(y)ldy,

Thus since g(-) is monotonic nondecreasing, it suffices to show that if y; has
p1(y) > po(y1) and ys has p1(y2) < po(yz) then Xiy1(y1) > Xeya(ys) or

[zp1(y1) + (1 — 2)po(y1)l/[2pr(y1) + (1 — 2)po(y1)]
> [zpa(yz) + 7(1 — 2)po(y2))/lxpr(y2) + (1 — 2)po(ys)]

Letting p1(y1)/po(y1) = 1 + 6 and p1(y2)/po(y2) = 1 — 8, where both 8, and
d; are positive, this inequality reduces to

[z[l + &] + #(1 — 2)]/[2z[1 + &] + (1 — )]
> [2[1 — &] + «(1 — 2)]/[z1 — &] + (1 — x)].

With further simplification one has the equivalent 1 — 8; < 1 + §; which is
true by assumption. Thus, if g(x) is a monotonic nondecreasing function of z
then E.g(X 1) is also.

It follows that for every ae(0,1) and n = 1,2, --- that g&(z) is non-
decreasing in z and hence, go(z) = lim g&" (z) is also. One has g,(0) = min, ga(z),
which takes the place of Assumption A6°. Consequently, the form of the optimal
rule is “Repair at time ¢ if and only if X, > £ for some critical value £*. A
rule of this form is optimal under both the discounted cost and the average cost
criteria.

Girshick and Rubin [10] first discussed this model of a production process. In
the average cost case they presented the above as being the form of the optimal
rule, and they gave some integral equations describing the ‘“steady state’” be-
havior of the system as a function of the critical value £*. Breiman [7] verified
that the above rule form is optimal in the special case where inspection is by
attributes, each item being classified as good or defective, and this simple case
is adequate to show that the second proposal of Girshick and Rubin is not
optimal.

This proposal concerns the non-100% inspection case, where inspection costs
are allowed and where the rule must specify which items to inspect as well as
when to repair. The optimal rule form is given by these authors as:

“At time ¢

(a) If X; < A1, then continue production but do not inspect the next item;

(b) If Ay £ X: < \; then continue production and inspect the next item
produced;

(e) If A\; = X, then stop and repair the machine.”

Let po(p1) be the fraction of good items produced when the machine is in the
good (bad) state. For this example:

7|'=
Do =
D=

|
(S X
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It costs K = 1 unit to repair the machine, ¢ = 2 units for each defective produced
and e units per item inspected. Let I be the inspection action and NI the non-
inspection action. One has the cost function

w(z, NI) = clzgs + (1 — z)qo)
w(x, I) = e+ clegr + (1 — x)q0]

where ¢;: = 1 — p;.

When no inspection takes place, X,; = z + (1 — z)7 if X, = z, while under
inspection X, is defined through Bayes rule as before.

For the moment assume a zero inspection cost . The optimal procedure in
this case is to always produce at least two items, inspecting the second one. If
it is good then produce a third item, then repair; otherwise, repair immediately.
The minimum average cost per unit time is yo = . Let f°(-) be the solution to

f(z) = min {K, fx:(2), f1(2)}
where
fvr(z) = w(z, NI) — o+ f(x + (1 — z)7)
fi'(®) = w(z, I) — vo + Ef(X1a).

For a zero inspection cost € one has

fzo(x)=x+1—31 for —géxsl
(%)x—l—% for §§x§g
=<§)x for 0§x§§
fz'iu’(x)=x+% for liléxél
=gx+% for i§x§ﬁ
=<%)x for Oéxéi—.

The functions are graphed in Fig. 1. Now suppose e is a small positive quantity.
To a first order approximation f* is given by

f(2) = min {K, fri(2), f;"(z) + .

This results in inspection being undesirable for posterior probabilities in the
vicinity of 0 and .6 while in the vicinity of .5 inspections are desirable as may be
seen in Fig. 2. Examining the physical situation makes the reason for this clear.
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Repair Zost /

1.0 -

Inspect l Repair | 0

Fi1c. 1. Risk Function (Zero Inspectioﬁ Cost)

The first item is not inspected since it is known to come from a good machine.
The third item is not inspected (assuming it is produced), since it is always
followed by repair. However the information gained by inspecting the second
item is sufficient to offset a small inspection cost. Since the ‘“no inspection”
region consists of two disjoint intervals, the rule as given by Girshick and Rubin
is not optimal. These intervals are not vacuous since

X() =
X 1= %
X, =% If the second item produced is good

=1 If the second item is bad.

o

4.2 A normally distributed random walk. The average cost functional equation
may be used to derive explicit solutions as this example due to Bather [2] shows.
Suppose that the state space is the real line with o = 0. Assume a model wherein:

(i) If no replacement is made then

Xy = X+ Ne41 -
(ii) If a replacement is made then
X t+1 = Rt

where {n,} is a sequence of independent normally distributed random variables
with zero mean and unit variance. Briefly, the process is a normal random walk
which replacement restarts at zero. No actions other than replacement are
allowed, and thus “k” will be dropped from all notation. Assume the simple cost

functions
w(z) = az’; a>0

K(z) = K.
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Repair Cost
1. -
Risk
o £ i
No No
OInspect Inspect Inspect’ Repair 1.0

Fia. 2. Risk Function (Positive Inspection Cost)

The risk function given here is for the Girshick and Rubin model, non-100% inspection
case. The absissa is the probability X; = z that the machine has broken down at time ¢.
The dashed line gives the no-inspect alternative while the solid line is associated with
inspection. At X, = z, the optimal decision corresponds to the lowest of these two lines and
the repair cost line at 1.0.

All of the necessary assumptions are satisfied in this particular case. Letting
g (z) =0 and
g™ (z) = min (K + «Ege™ (1); w(z) + aEgl® (z + 7))
where the expectation considers 5 as a normal zero-one random variable, one
sees that
min, g™ (z) = & (0).
According to the earlier remarks one need not verify Assumption A6°. Further,
g (x) is symmetric about the origin and increasing as |z| increases. It follows

that under both the average cost and the discounted cost criterion, the optimal
rule is of the form:

“Repair at time ¢ if and only if X, > A.”

for some critical value A. ‘

To find the optimal critical value \*, Bather assumes that the variance of the
process is small compared to the length of time between repairs so that a con-
tinuous time Wiener process approximation is valid. He shows the existence of
the analogous average cost functional equation:

f(z) = min {K, (a2’ — v)(At) + Ef(z + Az)}

where Az is normally distributed with zero mean and variance (At). Expanding
in a Taylors series,
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Sz + Az) = f(z) + f (2)Az + 3(Az)’f" (2) + -+
and taking expectations
Ef(z + Az) = f(z) + 3(A0)f" () + - -+
one arrives at the differential equation
f(@) = (a2’ — ) (At) + f(z) + 3(A1)f"(z) 4+ -+ for —A =2 =< +\
As At — 0 one has

f(z) = 2(y — az’)

or

f(z) = y2* — 3az* + Cx + C;.

The side conditions _
o) =K, f() =0
imply that C; = C; = 0 and thus one has
v = 2a\’ + K/N.

To minimize the average cost per unit time v, one takes derivatives with respect
to A? yielding

dy/d(\*) = 3a — K/\.
Equating to zero gives the optimal critical value \*
\* = (6K/a)t.

Box and Jenkins [6] and Antelman and Savage [1] arrive at this same answer
by different paths and all three authors treat much more general problems than
the example shown here.
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