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0. Summary. Recent results [5] of Hoel and Levine (1964), which assert that
designs on [—1, 1] which are optimum for certain polynomial regression extrap-
olation problems are supported by the “Chebyshev points,” are extended to
cover other nonpolynomial regression problems involving Chebyshev systems.
In addition, the large class of linear parametric functions which are optimally
estimated by designs supported by these Chebyshev points is characterized.

1. Introduction. Let f = (fo, f1, : -, fm) be a row vector of m 4 1 continuous
real-valued functions on a compact set X, where m > -0. (Unprimed vectors will
ordinarily denote row vectors, and the transpose of a vector or matrix will be
denoted by a prime.) The f; are assumed to be linearly independent on X. A
design is a probability measure ¢ (which can always be assumed discrete) on X.
(For a discussion of this see [8].)

Write

(1L.1) mi(§) = [fifide,  M(&) = (my(§), 0 £ 4, j < m}.

If N uncorrelated observations with equal variance ¢° (known or unknown)
are made, taking N£(x) observations at z for each z in X, and if the expected
value of an observation at z is 6f(z)" = D ¢ 6.f:(x) where § = (65, - -, 0,)
with the 6; unknown real parameters, then, if M(¢) is nonsingular, ’N "M ()
is the covariance matrix of best linear estimators of the vector 6. Moreover,

setting
(1.2) V(a, £) = aM(¢)a’

where @ = (a0, a1, -+, @n) with the a; real, ’N 'V (a, £) is the variance of
the best linear estimator of the linear parametric function 6a’. The function V
of (1.2) is defined to have the same meaning even if M is singular ; in particular,
V(a, £) = = if 8a’ is not estimatable under £.

As has been discussed in other papers, we do not restrict ¢ to take on values
which are integral multiples of N~'. This allows us to obtain optimum design
characterizations which cannot be obtained under that restriction, and at the
same time yields designs which can be implemented in practice through the use
of closely related &’s which do take on only values which are integral multiples of
N7L
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1628 J. KIEFER AND J. WOLFOWITZ

One problem of interest is to characterize, for each a, a design &, termed
a-optimum, which minimizes V(a, £); work on this problem has been done in [4]
Elfving (1952), [3] Chernoff (1953), and [8] Kiefer and Wolfowitz (1959). A
particular way in which this problem can arise, and which is of considerable
practical importance, is that f is extended continuously so as to be defined on
the set ¥ u X, and that for some point e in 'Y it is required to choose a design
which estimates optimally the regression 6f(e)’ at the point e, the design ¢
still being restricted to be a probability measure on the set X of points at which
we are permitted to take observations. For ein ¥ — X (resp., ¥ nX) this may
be called the problem of extrapolation (resp., interpolation) of the estimated
regression to the point e of the set ¥ on which the regression function is of interest
to us. This is clearly the problem of finding an a-optimum design when a = f(e).
(Other extrapolation and interpolation problems, such as that of minimizing
maxyy V(f(y), &) for certain sets Y other than those of the type mentioned in
the next two paragraphs, are considered in [9] Kiefer and Wolfowitz (1964a, b);
when Y = X, this problem has been considered extensively in other papers.)

Hoel and Levine (1964 ) [5] have considered this extrapolation problem in the
important case of univariate polynomial regression, where X = [—1, 1],
Y= (—w, o), fily) = 4 for y in Y. Their elegant main result is that, for
le] > 1, there is an f(e)-optimum design which, for every e, is supported by the
same set of m + 1 points (with weights which depend on ¢), namely, the “Cheby-
shev points” which were shown in [8] to be the support of the a-optimum design
when a = (0, 0, ---, 0, 1). (It will often be helpful to think of this a
as lime.z. [fm(e)]7'f(e).) It is well known (see Example 2 of Section 5) that this
conclusion cannot be extended to the f(z)-optimum design for |z| < 1.

(We are indebted to Dr. T. J. Rivlin for pointing out that part of the above-
mentioned development on p. 1556 of [5] which shows that ) ¢ [L.(e)| is maxi-
mized by the Chebyshev points, where the L; are Lagrange interpolation poly-
nomials, rediscovers a result proved by S. Bernstein on p. 186 of [2].)

A second result of Hoel and Levine is that, for e sufficiently large, their f(e)-
optimum design also minimizes max_,<, <. V(f(y), £), which is proportional
to the maximum over the interval [—1, e] of the variance of the estimated
regression. (In most of the literature to which we refer, V(f(y), £) is denoted by
d(y, £).)

It is natural to ask then, whether in this polynomial case there are vectors a
other than constant multiples of those in the one-dimensional set {f(e), |e| > 1},
such that there is an a-optimum design supported by this same set of Chebyshev
points. One of the results of the present paper (Theorems 1 and 2 of Section 4
and Example 2 of Section 5) is that there are many such q, in fact, an (m + 1)-
dimensional set of them in the (m + 1)-dimensional space of all a. This apparent
anomaly (in view of the low dimensionality of these designs in the space of all
admissible designs) is discussed after the introduction of necessary nomenclature,
in the first paragraph of Section 4, and is illustrated in Example 2(b) of Section 5.

It is also natural to ask whether the two Hoel-Levine results and the result



EXTRAPOLATION DESIGNS 1629

discussed in the previous paragraph can be extended to examples other than
that of polynomial regression. Theorems 4, 5, 1 and 2 give such extensions under
assumptions stated in the next section; the main assumptions (1 and 2) are
related to the behavior of the f; for a related Chebyshev approximation problem.
(The proof of Theorem 4 reduces, in the polynomial case, to one which differs
from that of [5].) It seems interesting to determine, under these assumptions,
the set of vectors a for which there is an optimum design supported by (that is,
which assigns positive probability to, and only to) the Chebyshev points, and
Theorems 1 and 2 show that this is the set T* defined in the next section. Also
of interest is the set 7' of vectors for which there is an optimum design supported
by some subset of the Chebyshev points. T* which is not generally merely
the closure of T (as will be seen in Example 2(b)), does not permit as simple
an analysis as T*. For the most part we are concerned with a subset R* of T
where a related Chebyshev approximation problem has a solution of a particular
form, and where the optimum design is unique (as it need not be in T* — R*).
The sets R* and T* — R* are not difficult to characterize explicitly (see (2.20),
Theorem 2, and (2.27)), but Theorem 3 describes the inclusion in R* of a set
A™ of vectors which is sometimes also easy to compute, namely, the set of vectors
a for which @' is not estimatable for any design on fewer than m -+ 1 points.
Theorem 3 is used in establishing Theorem 4. ,

Section 2 contains nomenclature, definitions, assumptions, and statements of
results from previous papers which we shall use. Section 3 contains proofs of
auxilliary lemmas which are used in the proofs of our main results (Theorems
1-5) in Section 4; Remark 5 in the latter section describes some further exten-
sions of our results. Finally, Section 5 contains some examples which illustrate
the relationship among T*, R* A* and other sets we shall consider.

The preliminary propositions, examples, and theorems of Section 2 will be
numbered decimally (2.z). All other theorems and examples, and all lemmas and
remarks, will be numbered consecutively without indication of section.

2. Preliminaries. Our basic model of f, X, and ¥ will be as described in Section
1. Throughout this paper, except when explicitly stated to the contrary (as, in
particular, in the extensions of Remark 5), X will be [—1, 1] and Y will be
(— o, «). We shall usually denote points of X, ¥ and ¥ — X by z, y, and e,
respectively. As described in Section 1, we always assume, without further state-
ment in the sequel,

AssumptioN 0. fy, fi1, - - -, fw are linearly independent on [—1, 1] and continuous
on (—w, =),

The functions fo, - - -, fi are called a Chebyshev system on the set U if every linear
combination Y_¢ c.f,, with not all of the real constants ¢, zero, has k or fewer
zeros on U. This condition can be rephrased in any of several equivalent forms
which will be useful in what follows: For distinet 2, 21, - -+, zx in U,

(i) the vector Do c(fi(xo), -+ -, fi(xx)) is not the zero vector unless all ¢,
are 0;
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(ii) the matrix {f;(z;), 0 < 4,7 < k} has rank k& + 1;

(iii) the vector (fo(zi), - -+, fu(xx)) cannot be represented as Dt ' c:(fo(x:),
c fi(@0).

In the lemmas and theorems of Sections 3 and 4, we shall make use of the
following five assumptions, stating explicitly where any of them is made. The
first two assumptions are used in all five of the theorems.

AssumptioN 1. The functions fy, fi, - - -, fm—1 constitute a Chebyshev system
on[—1,1].

If F is a continuous real-valued function on [—1, 1], we shall say that F changes
direction at zoif —1 < 2o < 1 and if F has a local maximum or minimum at .
In particular, if F is constant on any open subinterval of [—1, 1], it will be said to
have infinitely many changes of direction.

Assumprion 2. For each ¢ in E™™ (BEuclidean (m 4 1)-space), the function
fq' on [—1, 1] either has fewer than m changes of direction, or else is constant

on [—1, 1]. .
In proving our generalizations of the Hoel-Levine results we shall also use
AssumprioN 3. The continuous functions fy, fi, -+, fm are a Chebyshev

system on (— o, «);
AssumprTioN 4. For 0 < 7 < m, we have lim.,,., fi(e)/fn(e) = O;
AssUMPTION 5. |fu(e)| is strictly increasing (resp., decreasing) when e(resp.,
—e) is sufficiently large; lim,. 1. |fn(e)| = + «;and, for 0 < 7 < m, the quantity

supecial <t lfi(e + A) — fi(e)|/|fm(e + A) — fu(e)|

remains bounded as e — oo,

Assumption 5 can of course be phrased in terms of derivatives, if they exist.
We next remark briefly on Assumptions 1 and 2.

REMARK 1(a). We shall prove in Lemma 2 that Assumption 2 implies that
fo, fi, -++, fn constitute a Chebyshev system on [—1, 1] with D& d;f;(z) = 1
for some dy, - - -, d,. In the other direction we have the obvious

Prorosrrion 2.1. If fo = 1, the f; are differentiable, and {df;(z)/dx, 1 < i < m}
constitute a Chebyshev system on [—1, 1], then Assumption 2 holds.

However, simple examples show that Assumption 2 is stronger than
{f:, 0 = 7 < m} being a Chebyshev system. An illustration is

Examprr 2.1. If {f;, 0 < 7 < m]} satisfies Assumption 2 and & ispositive and
continuous on [—1, 1], then {Af;, 0 < 7 < m} is Chebyshev but need not satisfy
Assumption 2 (e.g., let fi(z) = 2" and h(z) = 2 + sin 10z).

ReMArk 1(b). The form of Assumptions 1 and 2 appears to single out f,
for special treatment. This asymmetric form of the first two assumptions can be
replaced by a more symmetric form. For example, Assumptions 1 and 2 can
be replaced by the hypotheses of the following:

ProposiTioN 2.2 Assumption 2 and the assumption that fo, fi, -+, fm s
Chebyshev on a set [—1, 1]u {v} for some point vg[—1, 1] imply that Assumptions
1 and 2 are satisfied for {f;, 0 < i < m} where f = Qf for some nonsingular Q.
In particular, this conclusion is implied by Assumptions 2 and 3.
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(The second assumption of Proposition 2.2, without the v, is the conclusion
of Lemma 2 obtained under Assumptions 1 and 2. Example 2.1 above shows that
Assumption 3 alone does not imply Assumption 2.)

Proor oF ProrosiTion 2.2. We clearly need only prove that Assumption 1 is

satisfied for fo, - - -, fm_1 with some nonsingular Q. By linear independence there
is a nonsingular Q such that f(»)' = Qf(»)’ = (0,0, ---, 0, 1)". But then,
writing £, = 0, if0 S o <2, < - -+ < Ty < 1 we have

det {fi(z;), 0 < 4,5 < m} = det {fu(2,), 0 < 4,7 < m}

det @ det {fi(z;), 0 = 4, j = m} # 0,

the last by the Chebyshev assumption for [—1, 1] u {v}. This proves the desired
result.

The following example shows that the Chebyshev nature of {fy, fi, -+, fm}
on [—1, 1] does not by itself imply that {fo, - - -, fw_1} is Chebyshev for some @,
even if fo(z) = 1:

ExampLE 2.2. Suppose fo(z) = 1 on [—1, 1], and let fi(z) = cos vz and

fao(x) = sin 7z if —-15z=

1
2

-

= (14+snm)/2 if 3Igz=<1.

This system {fo, f1, fo} was given in [11] Volkov (1958) as an example of a
Chebyshev system on [—1, 1] which cannot be extended to be Chebyshev on a
larger interval (our example must of course be of this nature by Proposition
2.2). To see that this system is indeed Chebyshev, it is only necessary to graph
the function ¢;fi + cof2 (with ¢; and c: not both zero) in each of the four cases
0 < +¢ = ccand 0 = ¢, < ¢ and to note that this function assumes
each value at most twice. If now {f,, fi} were Chebyshev on [—1, 1] with
fi = 2., qif;, some linear combination of f, and f; would be of the form g; =
cfi + ¢f: and (by the Chebyshev property) would have at most one zero on
[—1, 1]. An examination of the four cases described above shows that any
function of this form has two zeros on [—1, 1], except for multiples of fi + ¢fz
with ¢ > 2. For g, of this last form we have g,'(r) = 0 for a single r satisfying
—1 < r < —1%, where we use primes to denote derivatives in this paragraph.
Let go be a linear combination of f, and f; with g positive throughout [—1, 1];
the existence of such a g, is shown in the first paragraph of Example 1 of Section
5. The development of that paragraph also shows (since gi(—1) < 0 < g1(1))
that ¢1/go is nondecreasing on [—1, 1]. Since (g1/g0)" = ¢1'/g0 — ¢:190 /90,
we see that (1/g0)'(r) = 0if and only if go (r) = 0. If go'(r) > 0, then, since
g0 (—1) < 0 for g;/go to beincreasing (because g;(—1) < 0,9,'(—1) < 0), there
isan s with —1 < s < r and A’(s) = 0; but then (g1/g0)'(s) < 0, a contradic-
tion. Hence go'(r) = 0. But then, since {1, gi, fi} span the same vector
space as {fo, f1, fo} and fi'(r) # 0, we conclude that go = ko + kg1 for some
constants k; with ko # 0. But then ¢; + ki(go — kig1) is a linear combination
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of fo and f; which, for a suitable choice of the constant ks , has two zeros in a small
neighborhood of r (since g7 (r) 5 0).

For reference in the proofs of Sections 3 and 4, we now summarize in Theorems
2.1-2.3 the known results of Chebyshev approximation theory and optimum
design theory which will be used. Suppose hq, h1, -, hn are continuous real-
valued functions on [—1, 1]. Then D¢ " ¢;*h. is called a best Chebyshev (uniform)
approximation to hn, on [—1, 1] if max_ 1<, <1 [hm(z) — D0 " cihi(x)| is mini-
mized, over all choices of the real constants ¢; , by the choice ¢; = ¢;* (0 < 7 < m).
The vector ¢* = (co*, -+, ch1) is then called a Chebyshev vector. A classical
result of approximation theory ([1] Achieser (1956), p. 74) is

THEOREM 2.1. If hg, -+, hm form a Chebyshev system, then there is a unique
Chebyshev vector c¢*, and it is characterized by the fact that there are at least m + 1
points at which the residual h, — m=1 0. *h; attains its maximum in absolute
value, this maximum being assumed with at least m + 1 successive alternations in
sign.

If ¢* is a Chebyshev vector, we shall denote by B(c*) the set where
|hm — D0 ¢;*h;| attains its maximum on [—1, 1].

We shall be concerned both with cases where hq, - -, hn_1 are a Chebyshev
system, and with cases where they are not (see Lemma 8, ete.). It will be shown
in Lemma 3 that, if Assumptions 1 and 2 hold, which in particular imply that
Theorem 2.1 holds with h; = f; (0 < 7 £ m), the set B(c*) consists of exactly
m 4 1 points —1 = zo* < 2,* < -+ < z,* = 1. We shall denote by X,,* the
set of these Chebyshev points.

If ho, b1, + -+, hn are continuous real-valued linearly independent functions
on [—1, 1], and if D g ¢.hi(zx) is the expected value of an observation at z,
where the ¥, are unknown real parameters and the observations are uncorrelated
with common variance o°, we are led to consider the game with payoff function

(2.1) K@t ) = Jhlha(z) — 287 ghi(2))(dx),

where the minimizing player may (by convexity of K in ¢) be restricted to
pure strategies which are vectors ¢ = (qo, -, gm—1) of real components, while
the maximizing player has probability measures ¢ (which can be taken to be
discrete) for his mixed strategies. From Section 2 of [8], we have the following
results:

THEOREM 2.2. The variance N 'vn(t) of the best linear estimator of ¥ when
the design & is used satisfies

(2.2) vm(£) = 1/min, K (¢, ¢).

Hence, £* is optimum for estimating ¥m if and only if it is maximin for the game
with payoff K;i.e., if and only if

(2.3) min, K (£%, ¢) = max; ming K(, ¢).

TueEOREM 2.3. The game with payoff K is determined, the minimizing player
has a pure minimaz strateqy q, and the maximizing player has a maximin strategy
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£* onm + 1 — p points, where p is the dimensionality of the convex set of Chebyshev
vectors for approximating hn by ho, - -+ , hm_y on [—1, 1]. The minimaz strategies
cotncide with the Chebyshev vectors. (Hence, from standard game theory, £ is maximal
relative to q and q is minimal with respect to &, if and only if £ is optimum and q
is Chebyshev.) The design £* is mazimin if and only if, for any Chebyshev vector
q*, (B (¢®)) = 1 and £* satisfies the “orthogonality relations”

(24) Jh () — 2207 ¢ hi(@)hi(2)E¥(d2) = 0, 0 =4 < m.
In the setting of Section 1 and the first paragraph of the present section,
we considered linear parametric functions 6a’ for a in B* = E™ — {0}

where E* denotes Euclidean k-space and 0 denotes the origin in whatever
Euclidean space is under consideration (or, where appropriate, a matrix of zeros).
Clearly, for every a and every real A # 0, ¢ is a-optimum if and only if it is
(Aa)-optimum. Thus, from the point of view of characterizing a-optimum
designs, one could replace B* by the real projective m-space P™ of its equivalence
classes under the equivalence a ~ Aa for all A # 0. Throughout most of the
developments of Sections 3 and 4, it is not profitable to do this, and therefore
all starred sets, such as A*, R*, and T™* will be regarded as subsets of B*. However,
because of the special role of the last coérdinate 6, in Assumption 1 (where £,
of the m + 1 functions f;, is absent), it is sometimes more convenient, especially
in explicit representations of the optimum designs for various parametric func-
tions, to consider the a’s in terms of two disjoint sets B = E™ and B, = P™ ', as
follows: To each a with a,, = 1 we make correspond the vectord = (bg, *+ - , bp_i)
in B defined by b; = a; (0 < © < m), and conversely; we shall thus think of the
m-vector b as corresponding to the linear parametric function 6, + ZI,"—I b.#;
and shall call a design which is optimum for this linear parametric function
b-optimum. Of course, for any a with a., ¥ 0 (whether or not a,, = 1), the a-op-
timum designs will then coincide with the b-optimum designs with

b= (a/Cm, * ", Qnoy/Qnm).

Similarly, the a’s with a, = 0 but not all a; = 0 correspond to points in By .
Welet T denote the mapping of B* onto B u By under this identification. Through-
out this paper we shall use @ to mean an element of B* and b to mean an element
of B. The disadvantages of working in terms of B and B, rather than B* will
be seen in Examples 1 and 2(c) of Section 5.

It will sometimes be useful in the developments which follow to work not
with the space E,, of probability (m + 1)-vectors with positive components (to
be thought of as being on X,.*), but rather with the set E,* = {n:n = \t for
some £ in =, and some real X # 0}, which can be regarded as the union of two
congruent convex cones in E™.

We shall apply Theorems 2.2-2.3 to the problem of determining a-optimum
designs in the setting of the first paragraph of this section by using the following
simple reduction of [7] Kiefer (1962), p. 795: For fixed a and 7, with a;, > 0,
write
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Piy = Piga = >0 adi/as, ,

(2.5) C =0, 15 19,
Gip = fio ’
gi = Gia =fi'_ (ai/aio)fio) RSN

Then D ¢ 0ig: = 2 s 0., and the problem of estimating a6’ when the regression
is 8f(z)' for z ¢ [—1, 1] is the same as that of estimating @i, When the regression
is pg(z)’ for x e [—1, 1]. Thus, we can apply Theorems 2.2-2.3 to the problem
of finding a-optimum designs by setting

(2.6) Vm = @i, , {Wi,0 =7 <m} = {pi, 15 i},
b = iy,  {hi, 0 <4< m} = {gi, 15 d}.
In particular, the payoff function (2.1) becomes
(27) K(t ¢ = 4 [fin(2) — Z‘iiéio ¢.(fi(z) — (ai/aio)ffo(x))]2$(dx),
the orthogonality relations (2.4) become

(2.8)  [Lilaafi(®) — 2 ¢ (aifi(®) — aifiy(2))]
Jaifi(x) — aifi(@)]E*(dx) = 0, @5 %,

and the related Chebyshev problem is that of approximating f;, on [—1, 1] by
{fi — (ai/ai,)fi, , © 7% 10}. All of these depend on the a and 7 under consideration
(although the latter dependence will be seen to be irrelevant).

The functions g; of course satisfy Assumption O if the f; do. However, the
same is not true of Assumption 1 (as will be seen in Lemma 8). Thus, although
Theorem 2.1 can be applied under Assumption 1 to help characterize a 0-op-
timum design (for estimating 6,, , where b = 0), and to find X,,*, we cannot
apply Theorem 2.1 in the same way to find other a-optimum designs.

We now define the sets whose study will be the chief concern of this paper. A
parallel notation will be used throughout: A starred symbol D* (say) will always
be defined as a subset of B* which is invariant under multiplication by a nonzero
scalar, and we will then always write

(2.9) D=17(D"nB, Dy=T(D"nB;

the starred sets D* will be our main objects of interest in Sections 3 and 4, but
it will be useful to consider the unstarred sets in the examples of Section 5. Under
Assumptions 1 and 2, as we have mentioned, there is, corresponding to
{fo, fi, -+, fm}, the set of m 4 1 Chebyshev points {z,*, z,*, - -+, zn"} = Xn".
We define, as used in Section 1,

(2.10) T* = {a:aeB* and there is an a-optimum design

supported by the entire set Xm*}.
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‘One could instead study the set 7'* (say) where there is an a-optimum design
supported by a subset of X,.*, but the set T* — T™ is less susceptible to study by
our methods. Let U be the subset of E™ defined by

(211) U = {(wo, &1, *** yTm—): all |z £ 1 andall z; different},
and write, for & = (29, -+ + , m_) in E™ and @ in B¥,
fo(wo) -+ fo(@m—) a0
(2.12) P*(%,a) = det( : B : )
‘ fu(@o) 0 fa(Zm1)  am
We define
(2.13) A* = {a:aeB* and P*(%a) %0 forall # in U}.
We also define
(2.14) N* = {a:aeB* and ab' isonly estimata-ble for designs
supported by at least m + 1 points of [—1, 1]}.

It is easy to see (Lemma 1 below) that N* = A*. The usefulness of this set is of
course that, for @ in A* any a-optimum design has at least m + 1 points of
support, so that X,,* is at least a possible candidate for this support.

For fixed a in B¥, suppose a;, # 0, and consider the system of m linear equa-
tions in the m + 1 unknowns 7%;,

(2.15) o (—1)nifanfi(z™) — aifiy(z,")] =0, 0 =i=<m 71,
We shall also consider the related system
(2.16) 270 (=1)tas f(2,%) — aifi(x*)] = 0, T # %

Dt = L
For 4, = m, putting b = T'(a), (2.16) becomes
(2.17) 2ot (=D {fia™) = bifm(z")] = 0, 0=1<m;
2ot = 1.

(It will be clear from the derivation of (2.20) and (2.27) that for fixed a, an 4 in
. is a solution of (2.15) or (2.23) for some 4, for which a;, # 0, if and only if
it is a solution for every such 7,.) The form (2.15) will be of chief concern in
Sections 3 and 4. We shall use (2.17) extensively in Example 2(b) of Section 5.
We now define

R* = {a: a e B* and for some 7, with a;, # 0 (2.15) has a solution
(2.18) 7 in %)

= {a:ae B* and for some 7 with a;, # 0 (2.16) has a solution

£in E.}.
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Write
(2.19) Fae = {((=1D)7x;®), 054, j
Fs = {fi(x.’i*): 0=4 j=m

mj,

IIA

By Lemma 2, Assumption 2 implies that these matrices are nonsingular, a fact
which we shall use repeatedly. Suppose a = 7F g« for some 5 in E,*. Since Fgx is
nonsingular by Assumption 2, a;, 0 for some 7, and a clearly satisfies (2.15),
since the latter can be written as aio(FRtn')i = a,-(an')io . Also, this form of
(2.15) shows that every a in R* can be obtained in this way. Thus,

-t

(2.20) R* = {a:a = 7F% forsome 7 in Z,%)
= (En)Fps.

We thus have an explicit representation of R* as a pair of congruent open convex
cones obtained from the linear mapping Frs acting on Z,*. One of these cones is
spanned by the m -+ 1 half-lines consisting of the positive multiples of column
vectors of Fg+ ; the other, of the negative multiples.

From (2.18) we also have

R = {b:beB and (2.17) has a solution in =}
(2.21) = {brbi = 2 7m0 (—1)Efu(x;™)/ 270 (—1)Eifm(z;™),

—
o

0<i<m, forsome £ in Z.}.

The importance of the set R* is given in Theorem 1. For @ in R*, it will turn
out that the residual of the best Chebyshev approximation of f;, by
{fi — (ai/ai,)fi,, © # %}, mentioned below (2.8), is oscillatory (that is, satisfies
the condition of Theorem 2.1) even though (Lemma 8) {f, — (ai/a:,)fi, , % # %}
is not a Chebyshev system for a ¢ R* — A*. It will also turn out that this residual
attains its maximum in absolute value at the z,*. Hence, the residual at z;* (first
factor of the integrand of (2.8)) is a multiple of (—1)’ and thus, writing

(2.22) g = "),

the orthogonality relations (2.8) will be seen to reduce to (2.16). The application
of the game theory of Theorem 2.3 will be used, in the proof of Theorem 1, to
show that R* ¢ T*.

We have mentioned in the previous paragraph that a ¢ R* implies the oscil-
latory nature of a certain Chebyshev approximation problem. One could also
study the designs in T* — R*, which are also supported by X,.*, but for which
(by Lemma 5 and Theorem 1) the solution to this Chebyshev approximation
problem has constant nonzero residual. Paralleling the development indicated in
the previous paragraph, we now consider, in place of (2.15), (2.16), (2.17), the
systems

(2.23) Do ronilaifi(x*) — aifiy(2,%)] = 0, 0<ism i%#i;
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(224) Z:n=0 éi[aiofi(xj*) - aiffo(xj*)] = 01 S i")
;‘n=0 & = 1;
(2.25) Do Elfi(xi*) — bifm(z®)] = 0, 0<i<m,

Z;'"=o & =1L
In place of (2.18) we now define
S* = {a: ae B* and for some i with a;, = 0 (2.23) has a so-

lution 7 in En¥}
(2.26)

{a: ae B* and for some 4 with a; # 0 (2.24) has a so-
lution ¢ in Ea}.
Using the second half of (2.19) we obtain in place of (2.20),

(2.27) S* = {a: a = nFs for some 5 in E,%}

In place of (2.21) we now have
S = {b:beB and (2.25) has a solution in =}

= {brbi = Do Eifu(x")/ 2 im0 bifm(z®), 0= i< m,

for some £ in E.}.

(2.28)

Using the results indicated at the outset of the present paragraph, we shall show
in Theorem 2 that T* — R* = S*. A major difference between R*and S*, which
will be illustrated in Example 2(b) of Section 5, is that the a-optimum design is
unique for a ¢ R*, while for a ¢ S* we can have other a-optimum designs whose
supports are not X,*.

While the set 7* defined just below (2.10) will be illustrated in Example 2(b),
we shall not analyze T* in general. Such an analysis would be more complicated
than that of T because of the variety of forms the residual can now have and the
necessity of determining when the orthogonality relations parallel to (2.15) or
(2.23) do indeed correspond to an a for which the residual attains its maximum
absolute value on the relevant subset of X,,*. In particular, for m > 1 the set 7*
is not generally the closure of T *,

The closure of R* or 8* (and, hence, of T™) in E™" — {0} is obviously ob-
tained by replacing Z,* in (2.20) or (2.27) by the closure of Z,* in E™' — {0};
that is, by the set of all (m + 1)-vectors not all of whose components are zero,
but whose nonzero components all have the same sign.

The definition of the generalization of the set considered by Hoel and Levine
is
(2.29) H* = {a:aeB* and a = N(e)' for somereal \ 5 0

and some real e with |e] > 1},
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(If f(e) = 0, 6f(e)’ can of course be estimated without error; such e are excluded
from H*, and under Assumption 3 they obviously can not exist.) In particular,
if fu(e) = 0 for |e] > 1, H, is empty and

(2.30) T(H") = H = {b:b; = fu(e)/fnle), 0=i<m,

for some e with [e¢] > 1}.

The examples of Section 5 illustrate the sets defined in this section.

We add the definition of a concept which arises in the first paragraph of
Section 4 and in Example 2(b) of Section 5, that of an admissible design £, which
is a design such that for no ¢ is M(£') — M (%) nonnegative definite and not the
zero matrix. The meaning of this concept is discussed in [6] Kiefer (1959).

In Example 2(a) we shall introduce some additional material from the litera-
ture, which is used only there.

8. Auxiliary lemmas. The lemmas of this section will be used in proving our
main results in the next section.

Lemma 1. N* = A%,

Proor. Since 6f(z,)" is the expected value of an observation at z;, any linear
parametric function which is estimatable under a design supported at
{€o, &1, -+ , Tm_y) OF a subset thereof must be of the form > ¢ v;6f(x;)" for
some real v, -, Ym1. Hence, 6a’ is estimatable under a design on
{@o, 1, -+ , Tm_y} if and only if there exist vy, - - - , Ym_s suchthat Y o " v,60f(z;)’
= 6a’ for all 6; that is, such that D 5 " vif(z;) = a. This last is equivalent to
P*(&, a) = 0. This completes the proof.

LemMma 2. Under Assumption 2, fo, fi, -+, fm form a Chebyshev system on
[—1, 1] and there are numbers d; such that Y _g d;f;(z) = 1 for x in [—1, 1].

Proor. If fo, fi, - - -, fm are not a Chebyshev system, there is a vector ¢ other
than the zero vector such that ¢'f has at least m + 1 zeros on [—1, 1]. Since ¢'f
clearly has at least one change of direction at some point strictly between any
two successive zeros, it follows that ¢'f has at least m changes of direction.

To prove the second assertion, write 2(x) = f(z) — f(0). Since ch(0)" = 0
for all ¢, Assumption 2 implies that, for each ¢, ch’ either has fewer than m changes
of direction or else is identically zero on [—1, 1]. If the latter holds for some ¢
which is not the zero vector, we must have ¢f(0)’ 5 0 (since otherwise ¢f(z)’ = 0,
contradicting Assumption 0), and d; = ¢;/¢f(0)" then yields the desired result.
If ch(z)’ is not identically zero for all nonzero c, the h; are linearly independent
so that, by continuity, there are m -+ 1 points z; (0 £ j < m) in [—1, 1], none of
them zero, such that H = {h;(x;), 0 < ¢,j < m} is nonsingular. Them + 1linear
equations cH = (0, ---, 0, 1) then have a solution ¢ = ¢ (say), and &h’ then
vanishes at the m + 1 points 0, 2y, 21, - -+ , Zw—1 and thus has at least m changes
of direction, which is a contradiction.

LemMa 3. Under Assumptions 1 and 2 the residual fn. — 2o " ¢;"f; of the unique
best Chebyshev approximation to fn on [—1, 1] of the form > omt c;fi, attains its
mazimum in absolute value at exactlym + 1 points —1 = zo* < 2,* -+ < & = 1,
the residual alternating in sign at successive ;.
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Proor. The alternating nature of the residual on m + 1 points follows from
Assumption 1 and Theorem 2.1. It then follows from Assumption 2 that the
residual cannot take on its maximum in absolute value at more than m + 1
points, and that z,* = —1, z,* = 1.

The reader is reminded of the definition which follows Theorem 2.1, according
to which {2o*, 2., - - - , .} will be called the Chebyshev points of {fo,f1, - - - , T}

LemMA 4. Assumption 1 implies that 0 ¢ A.

Proor. The proof of Lemma 1, witha = (0,0, ---,0,1) = a* (say), shows
that 6, is estimatable for a design on {xy, %1, ---, Zm-} if and only if
0 = P*(%, a*) = det {f:(z;), 0 < 4,7 < m}. The latter is not zero if the z; are
distinct, by Assumption 1.

LemmA 5. Under Assumptions 1 and 2, if an a-optimum design vs supported by
at least m + 1 points, then either a ¢ R* or else, for each iy for which a;, # 0, every
best Chebyshev approximation of fi) by {fi — (ai/ai)fs, , ¢ # 1o} on [—1, 1] has con-
stant nonzero residual. ’

ProoF. Suppose there is a best approximation D, ¢i [fi — (ai/a:,)fi,] such
that the residual r(z) = f;)(z) — Zi,éio ¢/ [fi(x) — (ai/aq,)fs,(x)] isnot constant.
By Theorem 2.3 and the hypothesis of the lemma, there are m 4 1 points
Ty < 21 < -+ < Zm in the support of ¢ at which |r(z)| attains its maximum on
[—1, 1]. It follows easily from Assumption 2 that, if »(x) is not constant, r(x)
alternates in sign at 2o, 21, * * - , T and thus has m zeros on [—1, 1]. In that case
the coefficient of f,, in  is not zero, since, if it were, » would be a linear combination
of fo, -+ -, fm—1 which has m zeros but which is not identically zero, contradicting
Assumption 1.

Writing r(z) = ¢[fa(z) — v hifs(2)], it follows from the oscillation
property of ¢ 'r(z) at @, 21, -+, &m and Theorem 2.1 that D o h; is the
best Chebyshev approximation of f, by fo, -, fm— . Hence zo, 21, -+, Zn are
the Chebyshev points and by Lemma 3 they in fact constitute the entire support
of £. Thus, a ¢ R*.

Finally, if r(z) = 0, then by Theorem 2.2 the variance of the best linear esti-
mator of fa’ is infinite, contradicting the fact that any design on m + 1 points
yields an estimator with finite variance.

LemMA 6. For fized a with a;, 5% 0, there are real constants ¢; and K such that

(8.1)  fir(®) — Diip cilfi(x) — (aifaiy)fin(z)] = K for ze[—1,1],

if and only of K # 0 and there are unique numbers d; such that

(3.2) Srdfiz) =1 for zel—1,1],
and
(33) K = a,-o[ZZ-';o a; d,’]_l, C; = —K dZ .

For fized a with a;, % 0 and fixed reals ¢, there are real constants ¢; and K such
that

(84) fin(®) = Dy cilfi(®) — (ai/aiy)fin(z)]
=K > "ocifix) for zel[—1,1]
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if and only if D5 a.c; #= 0 and
(3.5) K = a,[>vac]', = —Ke.

Proor. First suppose (3.1) holds. Since it is impossible for all ¢; to be 0 while
1+ Z,-;éio aici/a;, is also 0, the left side of (3.1) cannot be identically 0, by the
linear independence of the f;. Hence K # 0. The existence of numbers d; satis-
fying (3.2) now follows, and their uniqueness is a consequence of the linear inde-
pendence of the f;. Substituting K Y o d.fi(z) for K in (3.1), for each
1 (0 = 7 £ m) the coefficients of f; on both sides must be the same, again by
linear independence. This yields (3.3). The converse is obvious.

Finally, assuming (3.4), equality of the coefficients of f; on both sides yields
(3.5). The converse is again clear.

LemMa 7. Under Assumptions 1 and 2, suppose that Y o ' ¢c;*f; is the best
Chebyshev approzimation of fm by {fo, f1, -+ , fmo} and write cn* = —1; further-
more, let dy, - - -, dn be the numbers whose existence is guaranteed by Lemma 2. Then
a & R* implies Y 5 ac.™ # 0, and a & 8* implies Dy asd;: #= 0.

ProoF. Suppose a ¢ R* but that Y _g a.c;* = 0. Multiply the sth orthogonality
relation (2.15) by ¢;* and sum over ¢ = 4. We obtain

(3.6) 270 (= 1) 2o e fu(z™)] = 0.

] .
Since the term in square brackets in (3.6) is some nonzero constant times (—1)’,
this leads to a contradiction. Similarly, if @ ¢ S* but Y_¢ a:d; = 0, multiplying
the ith relation of (2.23) by d; and summing over ¢ = 4, yields

(3.7) 2o md 2o difi(z™)] = 0,

which yields a contradiction since Y_y dif: = 1.

LemMaA 8. Suppose a;, # 0. Then {a; f: — aifi, , 1 # o} 18 a Chebyshev system on
[—1, 1] f and only if a e A™.

Proor. For 0 = 7 < m and ¢ # 1y, subtract a;/a;, times the 7th row of the
matrix of (2.12) from the 7th row. We obtain

P*(-'Ey (1) = £a; det {f;(x]) - (ai/aio)fio(xi)y 1 iOy 0 é] < m}y

which at once yields the conclusion.

LemMA 9. Under Assumption 3, H* < A*.

The proof is immediate.

REMARK 2. Lemma 9 really uses something weaker than Assumption 3, namely,
the nonvanishing of det {f;(z;),0 < 7,j < m} when m different s are in [—1, 1]
and one z; is outside [—1, 1].

4. Principal results. Our first result is that a ¢ R* implies that the unique
a-optimum design is supported by the Chebyshev points, and that R is m-di-
mensional (and hence R* is (m + 1)-dimensional, which we already knew from
(2.20)). This last is perhaps surprising in view of the fact that, in such a simple
example as that of polynomial regression, the designs on the Chebyshev points
are only an m-parameter family out of the (2m — 1)-parameter family of designs
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on m + 1 points including =+1, all of which are admissible (see [6]), and the
Hoel-Levine set H is one-dimensional. We shall see why this is possible in Ex-
ample 2(b), where it will be seen that infinitely many different supporting sets
may yield a-optimum designs for the same a.

TureoreM 1. Under Assumptions 1 and 2, if a & R* the orthogonality relations
(2.16) have a unique solution (&, -, &m), and the corresponding design (2.22)
(which vs supported by the Chebyshev points) is the unique a-optimum design. (Thus,
R* © T*.) Furthermore, R contains a neighborhood of the origin in E™ (thatis, R*

contains a neighborhood of (0,0, ---, 0, 1) in E™).
Proor. Suppose a ¢ R*. Let ¢*, -+ -, ¢n* be as in Lemma 7. By Lemma 7,
v aic;* # 0. Hence, by Lemma 6 with ¢,/ = —¢;* and 4, such that a,;, = 0,

there are values ¢; = ¢; (say) and K # 0 (by (3.5)) such that, on [—1, 1],
(4.1) fio — Zz‘;éio clfi — (ai/ai)fi] = Klfm — o el
By Lemma 3 the right member of (4.1) attains its maximum in absolute value
on [—1, 1] at, and only at, the Chebyshev points zo*, - - - , 2, and this is there-
fore true of the left member. Hence, £* is maximal with respect to é = {¢:, ¢ # 7o}
for the game with payoff (2.7) if and only if the support of £* is a subset of X,,*.
On the other hand, since fi,(2;*) — Do Glfi(2*) — (ai/as,)fig(x;*)] is some
nonzero constant times (—1)% by (2.22) the orthogonality relations (2.8) reduce
to (2.16), and thus ¢ is minimal relative to any nonnegative solution to (2.16).
One such strictly positive solution is of course guaranteed by the definition of R*,
Since £* is maximal with respect to {;, i # 4o}, and the latter is minimal with
respect to £* standard game theory results, mentioned in Theorem 2.3, assert
that £* is maximin for the game with payoff (2.7). Hence £* is a-optimum. More-
over, these same results assert that the left member of (4.1) is the residual of the
Chebyshev approximation of f;, on [—1, 1] by a linear combination of the func-
tions {(fi — (a@i/ai,)fi,), ¢ # %o}, a fact of which we shall make use in 2 moment.
We now turn to the proof of uniqueness. According to Theorem 2.3, every
a-optimum design £ is maximal relative to the ¢ of the previous paragraph, and
hence, as deduced there, is supported by some subset of X,,* and (by Theorem
2.3) satisfies (2.16) (with , the interpretation (2.22)), with all £ nonnegative
(perhaps some zero). If there were more than one such solution, the (m + 1)
X (m 4+ 1) matrix L, whose (7, j)th element is

(42) (La)ij = fi(®,") — (as/ai)fo(a), 0Sism, i#4, 055 <

(—1),, , i=1d, 0<j=<m,
would be singular, since (2.16) can be written as La(%, — &, &, -+ ,(—1)"tm)’
=(0,---,0,1,0,---,0), with the 1 in 4th place in the last vector. Now

(—1)7 can be written as Ko 2_4 ¢.*f:(x,*) for some nonzero constant K, . Hence
(4.2) yields

m,

I 9 Pl, 0
(4.3) Lo = Koc* Fse
O P2’ Im—io
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where I, is the » X r identity matrix, ¢* = (¢, &¥, -+, ¢n’), and p =
(—aO/aio y Uty T Gi1/ay), o= (—igt1/@ig 5 -+, —am/ai,). The second
factor on the right side of (4.3) is nonsingular by Lemma 2. The determinant of
the first factor, which can be computed by adding — Koc;* times the ith row to
the 7sth row for each ¢ # 4, is Koaz, >4 ac:*, which is nonzero by Lemma 7.
Hence, L, is nonsingular and there is a unique a-optimum design.

It remains to show that R contains an open neighborhood of the origin. When
b = 0, there is an optimum design £* on the Chebyshev points by Lemma 3 and
Theorem 2.3 with h; = f; and ¢; = 6, , and all £ are then positive, since other-
wise 0, would be estimatable on fewer than m -+ 1 points, in violation of Lemmas
1 and 4. This shows that 0 ¢ R. Moreover, if a = (b, 1) in the first factor on the
right side of (4.3) is varied by varying b in a small enough neighborhood of 0,
L,y remains nonsingular (since » g ' bjc;* % —cm" for b near 0) and the co-
ordinates £; of the solution to (2.16), which will vary continuously with b, will re-
main positive as they were when b = 0. (Alternatively, this last sentence may be
replaced by (2.20).) This completes the proof of Theorem 1.

THEOREM 2. Under Assumptions 1 and 2, T* — R* = 8% and, if aeS¥
the orthogonality relations (2.24) have a unique solution which corresponds to the
design (2.22) on the entire set Xm". There is no other a-optimum design supported
by X" or a subset thereof. ( There may be other a-optimum designs.)

Proor. The proof parallels that of Theorem 1, so we merely outline the dif-
ferences. Suppose a ¢ S*. By Lemma 7, Y o a;d; ¥ 0. By Lemmas 2 and 6
with a;, # 0, there are constants ¢.” and K 5 0 such that, on [—1, 1],

(4.4) Fia(®) = 2iwio fu(@) = (ai/ai)fio(@)] = K.

Hence, every ¢* is maximal with respect to ¢ = {c., ¢ % 4} for the game with
payoff (2.7). By (2.22) and (4.4), the orthogonality relations (2.8) become
(2.24). Therefore ¢’ is minimal relative to any nonnegative solution of (2.24),
while, as we have already seen, the latter is maximal relative to ¢’. Hence, by
the standard game theory results cited in the proof of Theorem 1, any nonnega-
tive solution of (2.24) is a-optimum. One strictly positive solution of (2.24)
is guaranteed by the definition of S*, and this is surely a-optimum.

If there were two a-optimum designs with subsets of X,.* for support, there
would be more than one solution to (2.24), which can be written as
Ma(ko, &1, -+, En) = (0, ---,0,1,0, ---,0), where M, is obtained from the
L, of (4.2) by replacing (—1)’ by 1 in the 4th row. Since > ¢ difi(x) = 1,
the equation for M, corresponding to (4.3) is obtained by replacing the 4th
row of the first factor on the right side by (dy, di, -+, dw). Adding —d; times
the 7th row of this factor to the ith row for ¢ > 4, we obtain a;, > ¢ a;d;
for the determinant of this factor, which is thus nonzero by Lemma 7. Hence
there is only one a-optimum design supported by a subset of X,,*.

By Lemma 5, T* = R*u 8% so that it remains to show that R* and S* are
disjoint. If, to the contrary, there were an a in R* n 8¥, then for a;, % 0 there
would, by our previous development, be two different Chebyshev approxima-
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tions to fi, by {fi — (ai/a:)fiy, ¢ 5 %}, one with constant residual and one with
oscillatory residual. The Chebyshev vectors are thus at least one-dimensional.
Applying Theorem 2.3 with p = 1, we conclude that there is an a-optimum design
supported by m or fewer points. Since a ¢ R*, this contradicts the conclusion of
Theorem 1. The proof of Theorem 2 is now complete.

REeEMARK 3. Example 2(b) of Section 5 will illustrate the lack of uniqueness of
a-optimum designs for a & 8%, as well as the fact mentioned in Section 2 that the
set T* defined just below (2.10) and discussed above (2.29), has a more com-
plicated structure than T (in particular, that 7™ is not merely the closure of 7).

THEOREM 3. Under Assumptions 1 and 2, A* C R*.

Proor. Suppose a & A*. Let 4, be such that a,, > 0. By Lemma 8,
{(aifi — aifi,), © % 4o} is Chebyshev, and hence by Theorem 2.1 the best
Chebyshev approximation of a;fi, by {(a:f: — aifi,), ¢ ¥ %} has an oscillatory
residual. Since a ¢ 4¥, any a-optimum design is, by Lemma 1, supported by at
least m + 1 points. Lemma 5 now yields a & R*. ~

The next (and last) two theorems of this section are direct generalizations of
the Hoel-Levine results discussed in Section 1, since their example of polynomial
regression satisfies the assumptions of these theorems.

TueorEM 4. Under Assumptions 2 and 3, H* c R* If also fu(e) 5 O for
le| > 1, then T(H*) = H C R.

Proor. By Proposition 2.2 of Remark 1(b), Assumptions 2 and 3 imply
that Assumptions 1 and 2 are satisfied for {f;, 0 < ¢ < m} where J/ = Qf,
for some nonsingular Q. Let 4,* and R, be the sets defined by (2.13) and (2.18)
if f is replaced by J and 8 is replaced by 8 = Q™" (so that 6/’ = 8f’). Then ad’ =
aQ' "¢, so that the vector a in A;* must be multiplied by Q" to give the cor-
responding vector in A*; that is, A* = A4,*Q'”, and similarly R* = R,*Q"".
Since 4, © R;* by Theorem 3, we thus obtain A* © R*. Lemma 9 now com-
pletes the proof that H* < R*. The remainder of the theorem follows from (2.30).

REMARK 4. Assumptions 2 and 3 may be replaced in Theorem 4 by Assump-
tions 1 and 2 and the assumption indicated in Remark 2.

A consequence of our conclusion that H* ¢ R* < T under Assumptions
1-3 is the result of Hoel and Levine [5] mentioned in Section 1, that H* < T*
if fi(z) = «*.

The last theorem of this section concerns V(f(y), &) = f(y)M(&)f(y)’
which, we recall, is proportional to the variance of the best linear estimator of
the regression function 6f(y) at the point y of ¥ when the design £ on [—1, 1]is
used. '

THEOREM 5. Under Assumptions 1, 2, 4, and 5, if k is a real function of e,
1 < e < o, such that always k(e) < e and lim inf..; o k(e) > — o, then for e
(resp., —e) sufficiently large, the unique f(e)-optimum design £° minimizes
maxew svse V(Y), €) (resp., maxeg,s—ecco V(@) €)).

Proor. We shall prove only the first conclusion (as e — -+ »), the case
e — — o being treated similarly.

By Assumption 4, f(e) = fa(e)(0o(1), ---, 0(1), 1) as e — + =, so that for e
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sufficiently large the second part of Theorem 1 shows that the f(e)-optimum
design £ is unique and is supported by X,.*. Moreover, the proof of Theorem 1
shows that

(4.5) limes o £9(2.%) = £ (), 0<7i=m,

where £* is the unique optimum design for estimating 6, .
Since £ minimizes V(f(e), £), the theorem will follow if we prove that, for
some real e,

(46) - maxo gyse V((y), £7) = V(f(e), £7) fore > e«

It was shown in the proof of Theorem 1 that the unique optimum design
£* for estimating 6,, has £*(z;*) > 0 for 0 £ ¢ £ m. It follows from Lemma 2
that M(£*) is nonsingular. Hence, from (4.5), M(£®) is nonsingular for
sufficiently large, and we can write

(4.7) M7 (E9) = M7'(£) + {o(1)} ase— +w

where {o(1)} is a matrix whose elements approach 0 as e — -+ . Since f is
continuous and V(f(y), &) = f(y)M " (£)f(y)’, it follows from the nonsingularity
of M(£*) and (4.7) that, for every compact set K,

(4.8) max,ex [V (f(y), £7) — V(f(y), £)| — 0 ase— +oo.

We shall show below that there is an ¢ > 0 and real ko and e, , ko < e, such that
e > e; implies

(a) V(f(y), &) is strictly increasing in y for y = e ;
(4.9) (b) V(fler + 1), £7) — V(f(er), £7) > ¢

(c) k(e) 2 ko

(d) V(f(er), £*) = maxi,gy<e, V), £9).

If we let K be the interval [ko, ei], we can by (4.8) find an e, such that the left
side of (4.8) is <e/2 for e > ;. Then (4.9) implies that V(f(e; + 1), £) =
mMaXi, <y <ey+1 V (F(Y), £9) if e > max (e1 + 1, &) = e (say); consequently,
from (4.9) (a), we obtain (4.6) for ey = e;.

We now prove (4.9). The hypothesis of the theorem on k implies (¢) if ¢ is
sufficiently large. (4.9) (d) follows from the validity of (4.9) (a) with £ re-
placed by £*, which will be proved below, and from the fact that

lime.io V(f(e), £) = o;

the latter follows from Assumption 4, according to which V(f(e), £*)=
f (@)om(E¥) (1 4 0(1)) as e — + o, where v,,(£*) is the lower right element of
M7'(£*), and from the fact (Assumption 5) that f,’(e) approaches -+ o with e.
Next, we note that

(410) V(f(y + A), &) — V(f(y), &)
= [f(y + &) + [Ty + ) — f(y)].
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By Assumption 4, f(y + A) + f(y) = (fa(y + A) + fu(y))(o(1), o(1),

-,0(1),1) asy — 4+ =, with the o(1) terms uniform for positive A. Similarly,
by Assumption 5, f(y + A) — f(y) = (fuly + A) — fa(y))(0(1), O(1),
<+, 0(1),1) asy > + oo, with the O(1) terms uniform for 0 < A < 1. We
also note, from Assumption 5, that

(4.11) Fal(y + 8) = fu(y) > 0
for y sufficiently large and all A > 0. From these and (4.7), we have
(412) V(fy + A), £9) — V(f(), £)
= Un'(y + 8) = S @lom(E) (A + 0(1))

as min (y, e) — + o, uniformly for 0 < A < 1. (4.11) and (4.12) yield (4.9)
(a) and (b) for e, sufficiently large. (4.9) (a) with £ replaced by £* is proved in
the same way. This completes the proof of Theorem 5.

REMARK 5. Extensions. The results of this section can be extended by altering
the nature of X and Y. For example, it is well known that much of the Chebyshev
approximation theory, in particular Assumption 1 and Theorem 2.1, apply if X
is a subset of the 1-sphere (boundary of the unit circle). Without going into fur-
ther detail, we note that a case of practical importance which can be treated by
our methods is that where there are open intervals in [—1, 1] where observations
are prohibited for technological reasons; [—1, 1] is then replaced by a union of
closed intervals. Similarly, Y can be altered from (— o, ©) — [—1, 1]; for
example, it may be that it only makes sense to define f on [—1, ») because
z -+ 1 is inherently nonnegative; for another example, if X is a union of disjoint
intervals as mentioned just above, ¥ might be (— «, «©) — X. For the required
approximation theory results, see, e.g., [10a], section 2.3.3. These results apply,
in particular, to the polynomial csae where X is two intervals, studied inde-
pendently by [4a] Hoel (1965), some of whose arguments can be simplified by
use of this theory.

6. Examples.

ExampLE 1. The case m = 1. For the sake of completeness (and for use in
Example 2.2) we first determine the possible Chebyshev systems when m = 1,
and then, in the next paragraph, show that under the stronger Assumptions
1 and 2 there is essentially only one example. We first show, then, that f {f,, f1}
18 a continuous Chebyshev system on [—1, 1], then, for some nonsingular D and
g = fD, we have go(z) > 0 and h(zx) = g¢i(x)/go(z) strictly increasing for all x.
This result is probably known (although we did not succeed in finding a refer-
ence), and the proof is quite simple: We first show there is a linear combination
go = fa’ which is positive throughout [—1, 1]. By the Chebyshev assumption,
there are linear combinations G; = fa’, i = +£1, with Gi(4) = 0, Gi(—1) = 1.
If Go = Gy + G:, then either (i) Gy is such a g ; or else (ii) Gy has at least two
zeros (contradicting the Chebyshev assumption); or else (iii) G, has a single
zero at ¢ (say) with —1 < ¢ < 1, in which case Gy — (sgn G1(¢))G1/2 has at
least two zeros. With the existence of a go thus established, we need only observe
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that the Chebyshev nature of {1, h} follows from that of {fo, fi}, and that & is
hence strictly monotone and can be taken as increasing by making a change of
sign if necessary.

If now we also impose Assumptions 1 and 2, since Gy(4=1) = 1 we see that
Gy(z) = 1, because otherwise Gy would be a nonconstant function with at least
one change of direction. Hence, in this case we can find D such that go(z) = 1
on [—1, 1] and ¢:(21) = =1, with g, strictly increasing on [—1, 1]. Write
f8' = g¢'. Now map X onto another copy Z of [—1, 1] using the mapping g .
The regression problem on Z with regression yo + y12 then corresponds to that
on X with regression ¥ 4+ ¥4¢:1(z) in such a manner that if ¢ is a-optimum on Z,
then an a-optimum design £ on X is defined by &(z) = £ (g1(z)).

For the linear regression problem on Z just described, it is easily verified that
A = {bg : |bo| < 1} and that A,is empty (since ¥, can be estimated by an observa-
tion at z = 0). The Chebyshev points are zo* = —1, xq* = 1, so that

1 -1
Fre = )
-1 -1

Hence, writing o = 9o — m1and ¢ = —n9 — 71, we have from (2.20) that a general
element a of R* has the form (a, o). Since ¢ % 0 for n £ 5", we see that R, is
empty. Since the range of a/s for n in &;* is the interval (—1, 1), we conclude
that R = A. The points by = =1 of B correspond to optimum designs on one
point: £(&1) = 1. All admissible designs in this problem are well known to be
supported on X;* or a subset thereof, and from this or (2.27) we see that S*
consists of all points of B* except R* and I'""(b,) for each of the two additional
points by = =1 of B. (As Example 2 (b) and (¢) shows, no such simple result
holds when m > 1.) The point S, = T corresponds to estimating v, , which can
be done optimally both by the design ¢ (say) for which £(1) = £(—1) = %
and also by any of an infinite number of inadmissible designs, the simplest of
which is the design & (say) for which £(0) = 1; it is easily verified that
M(£) — M(£") is nonnegative definite, of rank 1.

The above characterizations also hold for the regression g¢’ on X.The linear
transformation which took f into g can then be used to characterize the cor-
responding sets for the original problem with regression f§" on X. For example, as
in the proof of Theorem 4, if g’ = Qf’, then (4™ for ¢)Q"™ = A™ for f. However,
R need no longer be connected. For example, if fo(x) = 1 + z/2, fi(z) = 1, so

that
0 1
Q = )
2 =2

one obtains (ag, a1) = (@ + @/2, @), where (ao, a1) refers to f and (do, @)
refers to ¢ (treated in the previous paragraph). Thus, for f we obtain

R=A4=(-x»,3)u(} =),
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with By = Ao = “point at infinity.” This unnecessary complication points up
the advantage of working in terms of R* (as described by (2.20)), whose geo-
metric characteristics are unchanged by the linear transformation Q.

As for H, suppose we extend the map of X — Z to (— o, ©) — (— w0, »)
by the identity map on (—w, ) — [—1, 1]. Write ¢A(z)’ for the regression
function on (— w0, ») as extended from Z, so that k;(z) = z° for z ¢ Z. Under
Assumption 3 it is easy to see that the graph of A; crosses (and is not merely
tangent to) that of ko at 1 and at no other point of (— o, « ), and that hi(z) = 0
only at z = 0. Under Assumption 4 (for example, if hi(z) = 2° on (— o, ®))
we obtain H = (—1,0)u (0,1) = A — {0} (another result which does not
hold if m > 1); if Assumption 4 does not hold (for example, if ho(z) = 1 and
hi(z) = 22/[1 + |2|] for || > 1), H is a proper subset of A — {0}.

ExampLE 2. Polynomial regression (fi(z) = z*), m > 1.

(a) General results. The Chebyshev points in the polynomial case are well
known (for example, see [1]) to be z;* = —cos (jr/m), 0 < j < m. Thus, R*
and 8* can be described explicitly from (2.20) and (2.27), as we shall do in
detail below for m = 2, 3.

The set A™ has been characterized in [10] as follows: Define real-valued func-

tions S; and @, on E™ (whose points we write asz = (%o, - - , Tm_1)) by
(5.1) Si(x) = (1) 2 Pwpz, - Zi; 1=j5=m,
where > denotes summation over the set 0 < 4, < 4 < -+ < i; < m, and

(52) Qh(x) = Z(h)(l - 1‘51)(1 - xiz) (1 - xih)(]- + xih+1)

where the m subscripts in the summand are distinet ( 2@ consists of one term)-

Define the points b® = (by™, -+, b%4), 0 < b < m, by

(5.3) Qu(z) = 1+ 27 bi2iSi(x).

In particular, 8™ = (1,1, ---, 1) and b” = ((=1)", (=)™, ---, (=1)").
The points b”, -+, b™ can be shown not to lie in any hyperplane of E™, so

that they span an m-dimensional simplex. Let A,, denote this simplex minus the
closed edge containing b® and b"™. The main result of [10] is

THEOREM 6. For polynomial regression withm > 1, A = A,, and A, is empty.

As we shall see in Example 2(c¢), R, is not generally empty.

We note that H is the twisted curve {(¢", ", .-+, £'):0 < |¢| < 1}, whose two
open components have end-points b, ™, and (in common) 0.

(b) The case m = 2. As in the case m = 1, a complete analysis of the a-op-
timum designs, for @ in B*, is possible here, but would be much more complicated
as m increases, as will be seen in (c¢). We begin by describing the structure of
b-optimum designs for all b in the (by, b1)-plane B. From Theorem 6, we have

A = triangle with vertices (—1, 0), (1, 1), (1, —1),

minus closed segment joining the latter two.
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Recalling the first paragraph of Example 2(a), we have X,* = {—1, 0, 1}
and

1 -1 1 1 1 1
th = _]. O 1 y Fst = —1 0 1
1 0 1 1 0 1

Setting & = 5o + 72 and B = 5. — 70, we have from (2.20) that a general element
a of R* obtained as a linear combination of the columns of Fgs, is of the form
(e — 1, B, a). Since a # 0 for g ¢ E,", we obtain that R, is empty. Moreover, R
is the set of points of the form (by, b1) = (1 — my/a, B/a). For n & E,¥, the
-variables 7;/a and B8/a can vary independently of each other over domains
(0, ©) and (—1, 1), respectively. Hence, R = {(by, b1): bo < 1, |bi] < 1}.
Similarly, by (2.27), a point of S* is of the form (a« + m, 8, @), so that S is
empty, S = {(bo, bi):bo > 1, |by] < 1}. Thus, Tois empty andT'(T*) = T =
{(bo, bl)i bo ?5 l, ,bll < 1}

In subdividing the plane B into regions where the b-optimum designs are of
various forms, we shall encounter repeatedly the parabola by = b, which con-
sists of 0, the set H = {(*,¢):0 < t| < 1}, and the set J (say) where by = b," = 1.
The point (£, t) of J with |t| = 1 corresponds to the linear parametric function
f(t6'. Since |t7'| < 1, this linear parametric function can be estimated by the
design £” (say) for which £ (¢™) = 1. It was shown in [6] that ¥ is admissible
for [t| < 1. Since f(¢7*)8’ and its multiples are the only linear parametric functions
estimatable under £, it follows that £ must be f(¢)-optimum for 0 < |¢|< 1.
(£ will be discussed with By.) No two of these £”’s allow estimation of the
same linear parametric function. Hence, if there were a design other than £
which was also f(¢™')-optimum, it would have to be supported by at least two
points, and thus it would allow estimation of some linear parametric function
not estimatable under £, from which it follows easily that é* would be inad-
missible. Thus, we have shown that

J = {(£,t):]f| = 1} = {points of B where there is an
optimum design supported by one point}.

( The analogue of this holds for general m, withJ = {(£", "™, --- ,t): |t| = 1}.)
In analyzing B further we shall use the fact that, for a design supported by
more than one point, the residual to the best Chebyshev approximation of z° on
[—1, 1] by {1 — ba®, # — bz’}, being quadratic and attaining its maximum in
absolute value at the points of support, must be of one of the following forms:
(i) a multiple of 2° — 1, with support a subset of X,*;
(i1) a constant;
(ili) a quadratic with derivative 0 at ¢, 0 < |q| = 1,
and with values of equal magnitude and opposite sign, at —1 and ¢ if ¢ > 0,
and at 1 and ¢ if ¢ < 0, these two values being the support in the respective
cases (the case ¢ = 0 is covered by (i) above);
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(iv) a multiple of 2 — L with L < % and support {—1, 1};

(v) a quadratic or linear function with nonzero derivatives of the same sign
at 41, and with values of equal magnitude and opposite sign at the two points
of support —1, 1.

Corresponding to these, there are three forms of the orthogonality relation
(2.4) which we shall consider:

(I) the Equations (2.17), where we no longer demand that all £ be positive,
but only that two be positive and one nonnegative; this corresponds to (i) and,
with £(0) = 0, to (iv) and the case of (ii) where the support is {—1, 1};

(I1) corresponding to (iii) and (v), the equations (a) and (b) for ¢ > 0 and
g < 0, respectively:

E(—1)(1 —b) — £(@)(1 = ¢'b) =0,

(a) §(—1)(=1 —b) — £(9)(g — ¢'br) = 0,
g(—1) + &(9) =1;

(5.4)
£(1)(1 — bo) — £(¢)(1 — ¢’bo) = 0,
(b) (1)1 — by) — £(q)(g — ¢b1) = 0,
£(1) + £(g) = 1;

(III) corresponding to the part of case (ii) not covered in (I), equations which
will be discussed below, and which lead to (5.8).

It is trivial that for each fixed b there exists a vector ¢ = (¢, ¢1) which yields
a residual with each of the possible sets of extrema and oscillations of sign
represented by (I), (II), and (III). Hence, in each of these three cases, any ¢ with
the given support is maximal relative to any ¢ yielding such a residual, and if the
orthogonality relations are satisfied then ¢ is minimal with respect to ¢£. From
Theorem 2.3 it then follows that ¢ is b-optimum; it is unnecessary to go back to
(i)=(v) and compare residuals to find which approximation is best, where the
best approximation is not unique, etc.

The regions where these three forms hold can be described as follows: parti-
tion B into disjoint sets By, B, B, J, defined by

By = {(bo, b1): b = 1, [bo] = 1} — {(1, 1)} — {(1, — 1)},
(5.5) By = {(bo, b1): |bs] > 1, b < b},
By = {(bo, b1): bp > max (b12, 1)},
We shall show that, for L = I, II, III, the orthogonality relations of case L
have a solution on two or more points if and only if b ¢ B, .
Case I is treated by the same computation which yields R; in fact, the Equa-
tions (2.17) have a nonnegative solution on the closure of R,

Cl(R) =BIU{(1’1)U{(1;_1)}
(5.6) — Ru{(bo, 1):bo < 1} u{(bo, —1):bo < 1} u {(1, b): [ba] < 1)
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In this last partition of (5.6) we have, respectively, none of the three £(x;*)’s
zero, only £(—1) = 0, only £(1) = 0, only £(0) = 0, £(1) = 1,and {(—1) = 1,
the last two being points of J. (The point corresponding to £(0) = 1, which does
not arise from (2.17), will be seen later to be in By .)

In describing Case II, we shall use the partition of By into disjoint sets
L, —» < s < «, defined as follows:

(5.7) Lo = {(bo, b1):bo— sby = 1 + s, by < by} ifs >0,
={(bo,b1)2b0—8b1=1—8,b0<b12} 1f8§0

Thus, L, is that portion not in ¢l(Byr) of a line passing through (1, —1) if
s = 0 and through (1, 1) if s < 0; in particular, Lo = {(1, by): |bs] > 1}. Con-
sider now the orthogonality relations (5.4) (a) in the case 0 < ¢ < 1. Equating
the ratios £(—1)/£(q) in the first two equations, one obtains by — sby = s + 1
where s = (1 — q)/q > 0; from the positivity condition 0 < £(—1)/£(g) < «
one obtains 0 < (1 — bog’)/(1 — by) < o or {by > ¢} u {by < 1}, which with
by — sby = s + 1 yields L, as the subset of B for which the b-optimum design
is supported by the two points —1, ¢ and the residual has opposite signs at these
two points. (The support {—1, ¢} arises in case III with constant residual.)
The case —1 < q¢ < 0 of (5.4) (b) similarly yields L, with s = (1 + ¢)/q¢ < 0.
Finally, the case ¢ = 1 of (5.4) (a) coincides with ¢ = —1in (5.4) (b) and yields
Ly as the subset of B for which the b-optimum design is supported by the two
points 1, —1 with residual of opposite sign at the two points. (The set {(1, b1):
|b1] < 1} encountered in case I also has support {1, —1}, but with residual of
the same sign at the two points.)

For any be S every best Chebyshev approximation has constant residual
(Theorem 2 and Lemma 5). Since for b in By u By; the residual is not constant,
as we have seen, it follows that S C Byy. On By u By the optimum design is
unique because the orthogonality relations have a unique solution. For b in
Byy; there is no uniqueness of the b-optimum design. In fact, while the b-optimum
design for each b in B — By is unique and hence admissible, for each b in By
there are infinitely many different supporting sets of admissible b-optimum de-
signs, and also infinitely many different supporting sets (including supporting
sets with an arbitrarily large finite number, or an infinite number, of points) of
inadmissible b-optimum designs. Since the admissible b-optimum designs are of
greater theoretical and practical interest, we shall exhibit only the totality
of these, for each b in By . We shall then indicate by an example the existence
of inadmissible b-optimum designs.

It was shown in [6] that the supports of admissible designs are of the
form {—1, g, 1} with —1 < g < 1, or subsets thereof, and conversely. The
orthogonality relations (2.4) for the set {—1, g, 1} in case III are

E(—1)(1 — bo) 4 £(g)(1 — bog®) + £(1)(1 — be) = 0,
(68)  E(—1)(—1 — b)) + £(q)(q — bg") + £(1)(1 — b)) = 0,
g(—1) + £(q) + £(1) L
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We seek a nonnegative solution to these for which 0 < £(¢) < 1; this condition
is equivalent to that of finding a solution for which at least two of the com-
ponents are positive (to eliminate J) and for which £(g) > 0 (to eliminate the
part of (ii) included in case I, namely, the interval {(1, b1): |b;)] < 1} denoted by
Lo below). In describing such solutions, it is convenient to write

L = {(bo, b1):by — sby = 1 + s, bo > br’} if s = 0,

= {(bo, by):bo — sby = 1 — 8, bp > by} if s < 0;

(5.9) M, = {(bo,by): by — rby = 1 — 7, by > b’} ifr>1,
= {(bo, by):bo — rby = 1 + 7, bo > br’} ifr < —1,

= {(bo, b1): |bs] = 1, by > 1} if r = oo,

Thus, L, , L, and the two points (¢, ¢”*) and (1, —sign ¢) of J (or(1, 1) and
(1, —1) if s = 0) constitute a partition of the line encountered in conjunction
with (5.7). For r 5% , M, is the intersection with By of a line of slope 1/r
through (1, 1) if » > 0 and through (1, —1) if » < 0, while M., consists of two
half-lines in By .

The Equations (5.8) have the formal solution

£(g) = (bo — 1)/bo(1 — ¢°),
(5.10) £(1) = [1 + bi(1 — @) — bogl/2bo(1 — q),
g(—=1) = [1 — bi(1 + ¢) + bogl/2bo(1 + @).

The condition 0 < £(g¢) < 1 is equivalent to by > 1. We also require the non-
negativity of the numerators of £(1) and £(—1) in (5.10), with at least one being
positive. It is easy to verify that £(1) = 0 on the line through (1, —1) of slope
¢/ (1 — q), and that ¢(—1) = 0 on the line through (1, 1) of slope ¢/(1 + ¢).
We conclude that, for —1 < ¢ < 1, (5.8) has a solution for which 0 < £(¢) < 1
for b in the set V, defined by

V, = {triangle with vertices (1, 1)(1, —1), (¢"*, ¢)} n B
(5.11) if0< g <1,
VO = {(bo, bl): bO > 1, lb1| < 1}_

In each case, all three components of ¢ are positive if b is in the interior of V,,
while two components are positive on that part of the boundary which is in
V,. The latter is M., if ¢ = 0 and, if ¢ ¢ 0, consists of the two open line seg-
ments L, and M,’, where s = (1 — ¢)/gand r = (1 + q)/q if ¢ > 0, and
s= (14 ¢q)/gqandr = (1 — q)/qif ¢ < 0.The rest of the boundary of V, of
course consists of the interval L, of By and the points (1, 1), (1, —1), and (if
g% 0)(g?% g™ of J. Thus, for any point b = (bo, b1) in By there is an ad-
missible design supported by ¢ and one or both of the points 1, —1, provided
that b & V,. From the condition of nonnegativity of £(1) and £(—1) in (5.10),
this interval of g-values, always of positive length for b in By, is

{g: (b — 1)/(bo — b)) = ¢ = (b1 + 1)/(br + o)},
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the endpoints corresponding to designs for which £ has only two nonzero com-
ponents. Hence, for each b in By, there are infinitely many different supporting
sets of admissible b-optimum designs.

As an illustration of inadmissible a-optimum designs for I'(a) in By, con-
sider (2, 0, 1)-optimality, that is, optimality for estimating 26, + 6,. Among
the admissible designs for this problem, obtained above, two examples are
q=0,8—1) = &1) = %, £0) = 3, for which

1 0 % 2 0 -2
(5.12) M@ ={0 3 0], M'(®=[0 2 0],
1014 -2 0 4

for which V(a, £) = (2,0, 1)M7(£)(2, 0, 1)’ = 4, and the design with ¢ = %,
£(1) = 0,¢((—1) = %, £(3) = %, for which M () is singular, but for which V (a, £)
is again 4. Among the many inadmissible designs are symmetric designs supported
by {(1 —€), —(1 — ¢),0} with0 < e < 1 — 27 and with £(£(1 — ¢)) =
14(1 — ¢)’. For such a design

10 1
UE) ={0 3 0 ,
3} 0 (1-¢%2
(1-¢e%2 0 -3
M7U(E) = [4/(1 — 4e + 2€)] 0 (1—4e+25)/2 0 |,
-1 0 1

so that again V(a, §) = 4. The inadmissibility of such designs is exhibited in the
fact that, for ¢ given by (5.12), M(¥) — M(¢) (or M7'(¥) — M7'(¥)) is
nonnegative definite of rank one. It is not difficult to obtain inadmissible b-op-
timum &’s here supported by any number of points = 2 (a 2-point design being
given by ¢ just above when e = 1 — 274 or even with ¢ absolutely continuous
with positive Lebesgue density on [—1, 1].

It remains to consider B,.The unique optimum design for estimating 6,
is, by the same argument used in discussing J, that for which £(0) = 1. For
— o < s < , the unique optimum design for estimating s, + 6, to which
corresponds the problem of approximating z on [—1, 1] by {*, 1 — sz}, is easily
found by calculations parallel to those for B (solutions to the orthogonality rela-
tions now existing only in the case corresponding to II above). We obtain an
optimum design supported by {—1, ¢} if ¢ > 0 and s = (1 — ¢)/q, and by
{1, q}if ¢ < 0ands = (1 + ¢)/q. In particular, for s = 0 we obtain the unique
optimum design for estimating 6; , for which £(—1) = #(1) = 3. We note, then,
that if we think of By = P' = {by, —© < 1/s £ o} in the usual manner,
b being the “point at infinity”” of all lines in B of slope 1/s, — < 1/s £ o,
then the optimum designs for these points b of By can be obtained, for
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—w < 1/s < o, as limits of the corresponding designs for the family L; ; for
s = o we have the optimum design for estimating 6, considered at the outset of
this paragraph, which can be thought of conveniently as the limit of designs as
b— o in Rorin B;orin By orind.
We note also that, in the notation of and the sentence following (2.10),
T = {(bo,b):|bf = 1} u{(L,b):—w <b < 0},
T* = 1™(T) u {bw} U (b}

As an example of the explicit computation of how large the ‘‘sufficiently large”
of Theorem 5 is, we consider the case k(e) = —1,e > 1. For b = TI'(f(e)) =
(7% ¢7"), writing ™" = ¢, (2.17) yields

= (09,89, 69) = 2@ - OI'A =201 = ), 1+ 1),
so that

Il

2—-¢ ¢t 1
ME) =/2-DI ¢ 1 ¢t],
1 t 1

1 0o -1

MPED) =2-8)/a-6H)1l 0 1 —t],

-1 —t 2
and thus
V), )1 = £)/(1 = 26) = 1 — " — 2t + 24" = pu(y) (say).

The function p; is easily seen to have local minima at y = [3t = (9 + 16)%/8
and a local maximum at y = 0, all three of these points being in [—1, 1]. Thus,
max_i<, < p:(y) = max (p(—1), p:(0), pt(t_l))~ Since p,(—1) > p.(0), we
seek ¢ such that p,(—1) — p.(t") = 0, that is, such that 26' — £ 4+ &£ + 2¢
— 2 £ 0. This last is satisfied for t < .694, or ' = 1.44. Thus, for e > 1.44 the

- £le)

design £ minimizes max_i1<, <. V(f(y), £). We remark that it is even easier to
conclude that, since p,(y) is increasing for y = 1, the design £ minimizes
maXi<yce V(f(:l/), E) fore = 1.

(¢) The case m = 3. The set A = Az;of Theorem 6 is determined by the points

b(O) = (—1) 17 —‘1))
b(l) = (11 —%7 —%)1

b(2) = (_17 _%7 %))

b® = (1,1, 1).
The set X% is {—1, —4, &, 1}, and
1 -1 1 -1
-1 3 % -1
o=l -1 1 -
-1 3 3 -1
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Settinga =m0+ n5,8 =1 — 75,¥ = m — 12,0 = no + m + 72 -+ 73, we obtain
from (2.20) that a general element of R* has the form

(5.13) a= (8= (¢ —3a)/2 (48 — v)/4, (¢ — 92)/8).

Thus, R, is no longer empty as it was when m = 2. To obtain R, we consider 5 to
be in 5, and thus ¢ = 1, and find

R = {(8[8 — v]/[1 — 9a], 4[1 — 3e]/[1 — 9a],
(514) 2[4B - 7]/[1 - ga]): (a7 ﬁ7 7) & {0 <a< 1)
a#3n{—-1<B/la<l}in{-1<vy/(1—a)<l1}};

the value @« = 3} yields points in R, discussed below. The variables «, 8/a
v/(1 — &) vary independently in (5.14), so that for b in R the range of b; is
(—o,1)u (4, = ). For each fixed value k of b, (that is, for each fixed value of a)
the range of (b, bz) in (5.14) is an open parallelogram R(k) (say) in the plane
b, = k,symmetric about (0, k, 0), but whose dimensions and angles depend on k.
Thus,

R = Up<ior >4 R(by)

is no longer connected as it was when m = 2.

The set R, can be obtained as the set of elements of (5.13) withe = 9a = 1
and b; = (¢ — 3a)/2 = %; thisis, by an analysis similar to that of (5.14), the set
of ratios (bo/b1, ba/b1) = (3(8 — 7¥), 3(8 — v/4)) in the region |8 < §, [v] < §.
This can be thought of as a ‘“parallelogram at infinity’’ corresponding to the
ratios (bo/b1, bo/b1) of (5.14) as a — 3.

The set S* can be analyzed similarly. As was the case with R, the sets S and 7'
no longer have the simple structure of the case m = 2. As in the next to last
paragraph of Example 1, this again points up the greater simplicity of working
with R*, S* and T*. The convexity of the cones which constitute half of R*and
S* can of course be carried over to R and S in a different parametrization, one in
which R, and S, are empty so that R = I'(R*) can be thought of as a base
(section) of a cone which constitutes half of R*, and similarly for §. Thus, in
place of z° we seek a function fy(z) = >4\’ such that, if we work in terms of
f = (fo ) f~1’ f~2 ) .f3) inStead Of fa the qua’ntity Zg (—1)j77:'f~3(xi*), WhICh cor- .
responds to the last element of (5.13), and the quantity s n;fs(z;*) for the
corresponding development for S*, are never 0 for ne&Z;*. Writing A =
(Mo, My A2, N3), this says that all non-zero elements (there is at least one such) of
(%0, &1, &2, &3) = AFges must-be of the same sign, and all non-zero elements of
(f0, =1, &2, —&3) = Mg must be of the same sign. Hence, either (i) { or
F2570,000220,01=¢3=0,0relse (il) fror ¢ # 0, &1f3 = 0, &2 = {4 = 0. Since

-1 1 4 —4 6 0 0 0
-1 2 1 =2}, (0§00
1 2 -1 =27 1loo0 % o)
1 1 —4 —4 0 00 6
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the solutions in case (i) are easily seen to be N = £[ko(—1, 1, 4, —4) +
ke(1,2, —1, —2)] with ko = 0, ks = 0, ko 4+ k2 > 0, and in case (ii) they are A =
£k (—1,2,1, —2) 4 ks(1, 1, —4, —4)]with k; = 0, k3 = 0, k; + k; > 0. For
any such \ and f; we can, for example, take f; = 2z’ for 0 < 7 < 2 and the
transformation from f to f will be nonsingular.

A development analogous to that of the previous paragraph can be carried out
for general m.

We shall not analyze B* further in the manner of Example 2(b). The number of
cases to be treated and the complexity of the resulting regions increase with m,
as is evident even from the above characterization of R.

ExampLE 3. Other Chebyshev systems are discussed in the literature of ap-
proximation theory. As illustrated in Example 2.1 of Remark 1, Assumption 2 is
somewhat stronger than the assumption that {f;, 0 < ¢ < m} is Chebyshev. The
sufficient condition for Assumption 2 which is given in Proposition 2.1 of Remark
1(a) is useful in applications, as is the condition of Proposition 2.2.
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