A NOTE ON MINIMUM DISCRIMINATION INFORMATION!

By S. KurLLBacK AND M. A. KHAIRAT®

The George Washington University

This note contains a simple proof of the minimum discrimination information
theorem in Kullback (1959), pp. 36-39 and an affirmative answer to a suggestion
in a personal communication from Dr. I. J. Good that the theorem could be
applied even to random elements of a Banach space.

Let X be a space of points z, S a o-field of sets of X, and P, a probability measure
on S. Let T'(x) be a real valued S-measurable function such that

(1) M, = fx exp (T(x)) dP; < o
and let the probability measure P* be defined by
(2) P*(A) = [4 (exp (T(x))/M,) dP;, forAeS.
Suppose that T'(x) is P*-integrable, and let
(3) 9 = [x T(x)dP*.
Now let P; be an arbitrary probability measure on S. If P; << P, define
(4) I(P1, P;) = [x[log (dP:/dPy)] dPy,

otherwise define I(Py, P;) = o. It is clear that I(P*, P,) is finite; in fact,
from (2) and (3),

(5) I(P*,P;) = 6 — log M.
THEOREM. If P is a probability measure on S such that T is Pi-integrable and
(6) [xT(x)dP, = 6,
then
(7) I(Py, Py) = I(P* P;) = 6 — log M,

with equality if and only if Py = P* on S.
Proor. If I(P1, P;) = c« thereis nothing to prove. Suppose then that
I(Py, P;) < «.In this case P, < Py, and we write f(z) = dP;/dP, . Then

(8) I(Py, Py) = [xf(z) log f(x) dP;
and
(9) I(P*, Py) = [xf*(x) log f*(x) dP,
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where f* = dP*/dP, = ¢" /M, by (2). In view of (3), (6) and f* as just defined,
we have that

(10) [xf(x) log f*(z) dPy = [xf*(x) log f*(z) dPs.

We see from (8), (9) and (10) that it suffices to show that the left-hand side of
(10) cannot exceed the right-hand side of (8), that is, that

(11) Jxf(z) log [f*(2)/f(2)] dP; < 0.
Since logz < 2 — 1 for all z = 0 with equality only for z = 1, and since
(12) [xfdP; = [xf*dP; = 1,

it follows that (11) holds with equality only if P, = P*.

The foregoing applies to any probability space (X, S, P;) and any statistic
T. Suppose now that

(a) X is a real separable Banach-space;

(b) X*is the dual space of X consisting of all the continuous linear functionals
z*(z) on X; ,

(¢) Sis the o-algebra generated by the continuous linear functionals on X;

(d) my, my are elements of X;

(e) P,is a probability measure defined on S with the mean value m; defined

via a Pettis integral, that is, 2*(z) is Ps-integrable for each z* and ms is a
(Eecessalrily unique) element in X such that «*(ms) = [xz*(z) dP; for all
z in X"
We write my = E3(x) [ef. Grenander (1963), p. 128, Mourier (1953), p. 164;
(1956), p. 231, Pettis (1938)]. Let 2™ be a fixed contihuous linear functional
and take T'(z) = z*(x) and write M, in (1) as Ma(z™). Let Py be a probability
measure and m; an element of X such that

(13)  [xy*(2) dPy = y*(m) = [x (y*(2) exp 2™ (2)/Ma(2")) dP

for all continuous linear functionals y* in X*, that is, my = Ei(z). Then (13)
holds in particular when y* = z*, that is, P, satisfies (6) with 6§ = z*(m,)
defined by (3), and we have (7) with 6 — log My = z*(m;) — log Ma(z™).
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