EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS1

By DAVID A. FREEDMAN

University of California, Berkeley

1. Introduction. W_0 {respectively, W_0' } and B_0 { B_0' } are positive real numbers, $\alpha \{\alpha'\}$ and $\beta \{\beta'\}$ non-negative real numbers with $\alpha + \beta > 0 \{\alpha' + \beta' > 0\}$. At time 0, urn $U\{U'\}$ contains $W_0\{W_0'\}$ white and $B_0\{B_0'\}$ black balls. At time n, a ball is drawn at random from $U\{U'\}$ and replaced, together with $\alpha\{\alpha'\}$ balls of the same color and β $\{\beta'\}$ of the opposite. If the nth draw from U $\{U'\}$ is white, $X_n\{X_n'\}$ is 1; otherwise, 0. The distribution of $X_1, X_2, \cdots \{X_1', X_2', \cdots\}$ is $D\{D'\}$, a probability on the space Ω of sequences of 0'r and 1's. Let $\rho=(\alpha-\beta)/2$ $(\alpha + \beta) \{ \rho' = (\alpha' - \beta')/(\alpha' + \beta') \}$. The object of this note is to prove (1) Theorem. $D \equiv D'$ or $D \perp D'$ according as $\rho = \rho'$ or $\rho \neq \rho'$.

If $\rho = \rho' = 1$, then (1) follows from De Finetti's theorem; if $\rho < \rho' = 1$, then (1) follows from Reference [2], Lemma 2.1 and Theorems 2.2, 3.1.

2. Generalities. Let \mathfrak{F}_n be the σ -field of subsets of Ω spanned by the first ncoordinates. If Π is a probability on Ω , let $\Pi(n+1,i)$ be the conditional Π -probability that the n + 1st coordinate is i, given \mathfrak{F}_n . If $\omega \in \Omega$, let

$$(2) S_n(\omega) = \omega(1) + \cdots + \omega(n)$$

and

$$(3) E_n = n^{-1} S_n - \frac{1}{2}.$$

If $\rho < 1$, by [2],

(4)
$$E_n \to 0$$
 with *D*-probability 1.

Since

(5)
$$D(n+1,1) = [W_0 + \beta n + (\alpha - \beta)S_n]/[W_0 + B_0 + (\alpha + \beta)n],$$

it follows from (4) that when $\rho < 1$,

(6)
$$D(n, 1) \rightarrow \frac{1}{2}$$
 with *D*-probability 1.

This may help to motivate the next result.

Let P {respectively, P'} be the probability on the two-point set $\{0, 1\}$ assigning measure $p \{p'\}$ to 1. Let $\epsilon = p' - p$.

(7) Lemma. If p and p' converge to $\frac{1}{2}$, then the P-expectation of $\log (dP'/dP)$ is $-2\epsilon^2 + o(\epsilon^2)$, and the P-expectation of $(\log (dP'/dP))^2$ is $4\epsilon^2 + o(\epsilon^2)$.

Proof. Expand $\log (1 + u)$ in powers of u.

Received 19 July 1965; revised 30 August 1965.

¹ Partially supported by the National Science Foundation, Grant GP-2593; and by the Sloan Foundation.

Let Π and Π' be probabilities on Ω , assigning positive measure to non-empty \mathfrak{F}_n -sets for all n. When the nth coordinate is i, let $L_n(\Pi', \Pi) = \log \Pi'(n, i) - \log \Pi(n, i)$; and let $L(\Pi', \Pi) = \sum L_n(\Pi', \Pi)$.

- (8) Lemma. (i) The following two statements are equivalent: $\Pi' \equiv \Pi$; $L(\Pi', \Pi)$ is finite with Π -probability 1 and Π' -probability 1.
- (ii) The following three statements are equivalent: $\Pi' \perp \Pi$; $L(\Pi', \Pi) = -\infty$ with Π -probability 1; $L(\Pi', \Pi) = \infty$ with Π' -probability 1.

Proof. Standard martingale argument.

- **3.** Proof of (1) when $\rho = \rho' < 1$. There is no loss in supposing $\alpha = \alpha'$, $\beta = \beta'$, which simplifies the computation. From (5) and (7), the conditional *D*-expectation of $L_{n+1}(D', D)$ given \mathfrak{F}_n is $O(1/n^2)$, as is the conditional *D*-expectation of $[L_{n+1}(D', D)]^2$ given \mathfrak{F}_n . Of course, (7) applies by (6). Similarly for D'. Now use (8) (i), and, for example, (10) of [1].
- **4.** If $\rho \neq 0$, $D \perp$ fair coin tossing. The proof of the singularity part of (1) uses (15) below, which I could not prove more directly. Let F be the probability on Ω under which the coordinates are independent and 1 with probability $\frac{1}{2}$. Recall (2) and (3).
 - (9) Lemma. $\sum E_n^2 = \infty$ with F-probability 1. Proof. Let f_n be the number of $j = 1, \dots, n$ with $E_j \geq j^{-\frac{1}{2}}$. Then

$$\lim \sup n^{-1} f_n = 1$$

with F-probability 1. Indeed, $\lim \sup n^{-1}f_n$ is constant F-almost surely, by the Hewitt-Savage 0-1 Law. The distribution of $n^{-1}f_n$ converges to the distribution of the Lebesgue measure L of $\{t: 0 < t < 1, B(t) \ge t^{\frac{1}{2}}\}$, where $B(\cdot)$ is standard Brownian motion, by the Invariance Principle. If $\lambda < 1$, L exceeds λ with positive probability, so $\lim \sup n^{-1}f_n \ge \lambda$.

- (10) REMARK. (i) If $\rho = 0$ and $W_0 = B_0$, then D = F.
 - (ii) If $\rho = 0$, but $W_0 \neq B_0$, by (i) and Section 3, $D \equiv F$.
- (11) LEMMA. If $\rho \neq 0$, $D \perp F$.

PROOF. Only $\rho < 1$ needs proof. By Section 3, there is no loss in supposing $W_0 = B_0$. Then, from (4) and (5),

(12)
$$D(n+1,1) = \frac{1}{2} + \rho E_n + o(E_n).$$

From (7) and (12), the conditional F-expectation of $L_{n+1}(D, F)$ given \mathfrak{T}_n is $-2\rho^2 E_n^2 + o(E_n^2)$; and the conditional F-expectation of $[L_{n+1}(D, F)]^2$ given \mathfrak{T}_n is $4\rho^2 E_n^2 + o(E_n^2)$. By (8) of [1], and (9),

(13)
$$\frac{[L_2(D,F) + \dots + L_{n+1}(D,F) + 2\rho^2(E_1^2 + \dots + E_n^2)]}{4\rho^2(E_1^2 + \dots + E_n^2)}$$

 \rightarrow 0 with *F*-probability 1.

Therefore,

(14)
$$[L_2(D,F) + \cdots + L_{n+1}(D,F)]/(E_1^2 + \cdots + E_n^2)$$

 $\rightarrow -\frac{1}{2}$ with *F*-probability 1.

Using (9) again, $L(D, F) = -\infty$ with F-probability 1. Apply (8) (ii).

REMARK. In contrast with (11), for $\rho < 1$, D-almost all ω are normal, that is, each k-block of 0's and 1's occurs with relative frequency 2^{-k} . This follows easily from (4) with the help of Levy's martingale strong law of large numbers. For a discussion of this theorem, see [1].

(15) Lemma. If $\rho < 1$, $\sum E_n^2 = \infty$ with D-probability 1.

PROOF. If $\rho = 0$, use (9) and (10). If $\rho \neq 0$, from (7) and (12), the conditional D-expectation of $L_{n+1}(D, F)$ given \mathfrak{F}_n is $2\rho^2 E_n^2 + o(E_n^2)$; and the conditional D-expectation of $[L_{n+1}(D, F)]^2$ given \mathfrak{F}_n is $4\rho^2 E_n^2 + o(E_n^2)$. From (10) of [1], L(D, F) is finite D-almost surely on the set where $\sum E_n^2 < \infty$. Use (8) (ii) and (11).

5. Proof of (1) when $\rho \neq \rho'$, both less than 1. By Section 3, suppose $W_0 = B_0$ and $W_0' = B_0'$. From (7) and (12), the conditional *D*-expectation of $L_{n+1}(D', D)$ given \mathfrak{F}_n is $-2(\rho - \rho')^2 E_n^2 + o(E_n^2)$, and the conditional *D*-expectation of $[L_{n+1}(D', D)]^2$ is $4(\rho - \rho')^2 E_n^2 + o(E_n^2)$. The case $\rho = 0$ has been observed in the proof of (11). For the same reason as (14), but using (15) instead of (9),

(16)
$$[L_2(D', D) + \cdots + L_{n+1}(D', D)]/(E_1^2 + \cdots + E_n^2)$$

 $\rightarrow -\frac{1}{2}$ with *D*-probability 1.

Use (15) again and (8) (ii).

- **6. Conjecture.** There is a Borel function f from Ω to the real line, such that for all W_0 , B_0 , α , β : with D-probability 1, $f = \rho$.
- 7. Acknowledgment. I am grateful to the referee for a number of useful suggestions.

REFERENCES

- [1] Dubins, Lester E. and Freedman, David A. (1965). A sharper form of the Borel-Cantelli lemma and the strong law. Ann. Math. Statist. 36 800-807.
- [2] FREEDMAN, DAVID A. (1965). Bernard Friedman's urn. Ann. Math. Statist. 36 956-970.