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1. Introduction. The regression model which will underlie the discussion in
this paper is as follows: An observation taken at a point ¢ in the closed, bounded
interval [a, b] has the form

(1.1) Y(t) = 25 Bfi(t) + X(b)

where f1, - - -, fr are given regression functions; 8; , - - - , 8; are unknown param-
eters; and the error, X (¢), is a random variable with EX (¢) = Oand EX*(t) < .
The model is not quite specified yet since, if more than one observation is taken,
say at {; and ¢, with both 4 and ¢, in [a, b], we must say something about the joint
behavior of the random variables X (4) and X (). Additionally, something
should be said about the possibility of “repeating’ an observation, i.e., whether
two or more observations may be taken at the same ¢.

The most thoroughly discussed model has been the one which assumes un-
correlated errors with constant variance and repeatable observations. In this
case, if n observations are taken at m distinct points ¢, , - - - , ¢, with u; observa-
tions taken at ¢;, ur + --- 4+ p. = n, the questions of best linear unbiased
estimation of 81, -+, B, or of some set of linear combinations of the g8.’s,
have answers which have been known for some time. In recent years, the cor-
responding design problems, involving optimum choice of the ¢;’s and u.’s, have
received extensive attention, notably in the papers of Kiefer and Wolfowitz
[14] and [15], and Kiefer [10], [11], [12] and [13]. In this paper, we are concerned
with such an n observation design problem when the error process has a smooth
correlation structure and observations are not repeatable. Our perspective is
most easily understood by viewing the error process X as a time series and the
experimenter as sampling in time. In this stochastic process context, where an
infinite observation set is considered feasible, linear estimation of the g.’s
is well understood, due especially to the efforts of Grenander [3], Hijek [4],
[5] and [6], and Parzen [17], [18] and [19] (this theory subsumes, of course, the
standard estimates for finite observation sets). Within this framework, the design
problem can be looked at also from a regret point of view, comparing n-observa-
tion designs with observation over all of [0, 1]; this is of interest since the es-
timators based on interval observation are frequently unknown or, if known,
may be difficult to compute; the estimators based on n observations require
the inversion of an n X n matrix and this may be more feasible. The best es-
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timators depend heavily on the form the correlation takes and we will assume
it is known up to a multiplicative constant. In the area of design for comparable
situations, we are aware only of the work of Hoel [8] and [9]; there is little overlap
in these papers with what we do.

The non-repeatability of observations is natural enough in time series design
problems, but it is not necessarily incompatible with uncorrelated errors. Elfving
[2] treats a problem possessing both of these elements, for example. In either
event the elimination of repeated observations introduces a different aspect into
the design problem. For example, suppose that the errors are uncorrelated with
constant variance, that k = 1 and that fi is continuous on [a, b] with |f;| having
a unique maximum at ¢, , say. If observations are repeatable, the design which
minimizes the variance of the best linear estimate of 8, is, trivially, that which
calls for n observations at ¢ ; if observations are nmon-repeatable there is no
optimum (in the sense just described) design. The difficulty, in this latter
instance, is that the optimum, if it existed, would be obtained by maximizing

»1 fi’(;) on the non-compact set @ < t; < --+ < ¢, < b. This phenomenon
is typical of problems with £ > 1 as well. In certain instances, the presence of
correlated errors will circumvent the non-compactness above and we turn now
to the model of our specific interest.

The design problem with correlated errors exhibits considerable complica-
tion when k = 1 (unlike the uncorrelated, repeatable case) so that we take k = 1
throughout this paper. The cases k > 1 will be considered in a subsequent article.
For convenience, we replace f; by f, 81 by 8 and [a, b] by [0, 1]. For non-repeatable
observations, an n-point design is an n-tuple {t;, --- , &} with0 =t < -+ - <
t» = 1 and we denote by D, the class of all n-point designs. If T ¢ D, , we let
V¢ be the variance of the best linear estimate (BLE) of 8 based on observations
taken according to T'. The criterion of optimality we shall use is the natural one
for k = 1, viz., T is optimum if V is minimized (over D,) by T*.

In order to understand some of the complications that arise, suppose X (-)
is a Brownian motion with, therefore, the covariance function R(s, t) =
EX(s)X(t) = min (s,¢) fors, ¢in [0,1]. For T ¢ D, , it is known (see Section 4)
that

(1.2) Ve = )/ 4 205 [(f(te) — F(2)% (b — )]

where, if & = 0 and f(0) = 0, the first term on the right hand side of (1.2) is 0,
and, if ¢ = 0 and f(0) # 0, we define V, ' = 4 w. Clearly, if f(0) # 0, no
design is better than taking one observation at 0; we may ignore this trivial
case and assume f(0) = 0. If the derivative of f fails to exist in an unpleasant
enough way (e.g., if fhas a discontinuity at some ¢ in (0, 1) or if f(¢) =
[t — &]|” 4+ C with0 < p < % near some ¢ in (0, 1)) then the supremum of the
right hand side of (1.2) is  for » > 1 and clearly there is no optimum design.
This is reminiscent of the uncorrelated non-repeatable observation model but,
unlike that case, optimum designs exist for a large class of functions. Indeed,
it will be seen, for example, that if f has a continuous derivative on [0, 1],
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optimum designs exist for this error process. The question raised by this is:
Given the covariance function R, for what functions f does there exist an op-
timum design?

In Section 2, the existence question will be treated under the assumption that
fis in the reproducing kernel Hilbert space § of functions on [0, 1] which is asso-
ciated with the covariance function B (we are no longer assuming X(-) is
Brownian motion). That this space is an appropriate place for the regression
function follows from the work of Parzen who first exploited the general theory
of these spaces in connection with time series regression analysis. Here we de-
velop regression results concerning § in a manner somewhat different than
Parzen’s in order to emphasize design considerations. Subsequently, we show
that for a class of R’s an optimum design exists for each n if f& § (optimum
designs may exist for f £F as well, note f(¢) = 1 in the Brownian motion case
as a trivial example).

Returning to the Brownian motion example, suppose f ¢ § so that, for each
n, an optimum design exists (Section 4). The problem of calculating these
designs confronts us. Examination of (1.2) reveals that such a calculation is
not a simple task; in fact, we are only able to calculate all exact n-point designs
for simple piecewise linear functions and for f(¢) = ¢*, where the optimum
n-point design is given by ¢; = 4/n, ¢ = 1, - - - , n. The difficulty in computation
leads us, in Section 3, to circumvent the problem of finding exactly optimum
designs by proposing an asymptotic ‘“solution,” which may then be used to
calculate approximately optimum n-point designs.

What we do is motivated by noticing that mings, Vr — [|f[[™* = V, for
f € . It is then natural to say that a sequence of designs {T, ;n = 1}, Tw e D, ,
is asymptotically optimum if

limn-»eo [(VT,, - VO)/(minTeD,, VT - VO)] = 1.

For some R’s and some f’s, we are able to obtain such sequences {T',}. For ex-
ample, when R(s, t) = min (s, ¢) and f has a continuous second derivative, we
find that the design T,* = (s, - -+ , tas) With

(1.3) 3.57. [f”(s)]zls ds = (j/n) f(l) [fn(s)]zls ds, ] — 1’ ceem,

is the nth element in an asymptotically optimum sequence. It is comforting to
note that, in the case f(¢t) = &, T,* as just defined, agrees with the exactly
optimum #-point design. (The reader may note that the T.* of (3.38) and the
T,.* of (1.3) differ; this may be reconciled by taking 7', in (3.38) and throwing
away the observation at 0 since for Brownian motion an observation at 0 provides
no information when f(0) = 0.)

For the kernel R(s, t) = min (s, t), we are not the first to give (1.3) as an
approximate solution to the problem of maximizing the right hand side of (1.2).
Siarndal ([20] and [21]) in treating other problems, has given this same result
under more stringent conditions on f. His argument invokes the existence of
unique optimum designs and this last is achieved by assuming f to be five times
continuously differentiable and convex (or concave).
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Asymptotically optimum sequences are obtained generally under some rather
strong restrictions on R and we discuss, particularly in Remark 3.2, why the
result seems hard to obtain for a wider class of kernels. A sidelight of the de-
velopment in Section 3 is contained in Lemma 3.1 where we obtain an estimate of

s — Vo' for T eD,, viz., that under milder restrictions than stated in
Theorem 3.1, Vo * — Vo' < K supogign (fiy1 — t) when T = {t;, -+, t.},
to = 0, t,y1 = 1 (the value of K can be seen in Lemma 3.1). This result enables
us to find an integer n, so that taking more than n, observations would lead to a
negligible gain in the variance of the BLE and, as such, may serve as a useful
guide in helping the experimenter decide on the number of observations to be
taken.

The final section of this paper is given over to examples and remarks. We
intend there to exhibit the design problem in situations most amenable to the
types of calculations which are of interest. In particular, we defer until then the
(straightforward)- verification of some statements from prior discussion and
we give examples of asymptotically optimum designs.

2. Existence of optimum designs. In this section, the design problem is placed
in the context of the reproducing kernel space & of functions on [0, 1] associated
with the covariance kernel B. Parzen has identified this function space with the
class of regression functions which are natural in the presence of the underlying
correlation structure. We present a slightly different treatment of the appropriate
facts than those previously given so as to demonstrate the role of § in design
questions. Specifically, we show that the class, F,, of regression functions on
[0, 1] for which n-point designs produce minimum variances bounded away from
zero, forms a Banach space with a suitable norm, and that &, shrinks to F as
n— .

Then, supposing the regression function f to be in &, we study the problem of
minimizing minimum variance in the class of n-point designs. In order that the
minimum be achieved, it is generally necessary to consider “boundary” designs
to the set of possible designs and in certain circumstances, the minimum will
actually occur at a boundary point and thereby not correspond to a physically
realizable design. However, as we shall see below, this unpleasantness will not
occur under a further assumption on R.

Suppose now that Y (¢) is given by (1.1) for t£[0, 1] withk = 1 and EX(s)X (f)
= R(s, t). Our basic assumptions concerning this model are that the kernel
R thus defined on [0, 1] X [0, 1] forms a non-singular matrix when restricted
to T X T for any finite set 7" and that the process X is continuous in the mean
on [0, 1]. (‘The first assumption is for convenience only, the second is a stand-
ard “‘smoothing” assumption.)

We begin by considering finite observation sets drawn from the interval [0, 1].
Suppose T = {t;, -+ ,t,} issuchaset with0 S ti <t < -+ <t, = 1. Let ¥y
be the observation vector, Yz = (Y (t1), -+ - , Y(£))’, fr be the restriction to T
of the regression function, fr = (f(¢1), - - - , f( t.))’, and Ry be the restriction to
T X T of the covariance kernel, Ry = (R(t;, t;)). For minimum variance linear
unbiased estimation in this context, one wants an n-vector ¢ which satisfies
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Es(c'Y1) = c'f28 = B and, subject to this condition, which minimizes o5’ (¢'Y ) =
¢Rrc. This minimization problem is solved by a choice of ¢ = Rz fz/. fr Rz fr
and the corresponding estimate has variance ( fr Ry 'fz)~". Of course, if the set T
is enlarged through adjoining new points, this minimum variance does not
increase. We note here that, due to the positive definiteness of Rr, the collec-
tion of all n-vectors becomes a Hilbert space under the norm || ||r given by
lullz* = v'Rr u.

Let D, = {T|T = {t1, -+ ,ta},0 St < -+ <ty £ 1}. For f an arbitrary
real valued function on [0, 1], consider the functional suprep, ||fz||z Where fr
is again the restriction of f to 7'. (Since no difficulty should arise, we drop this
last T when considering the norm and write ||f]|r .) Now, let

(2.1) Fu = {fon [0, 1] | supzen, [Ifllr < o}.

F, is the class of regression functions whose n-point design minimum variances
are bounded away from zero.

THEOREM 2.1. F, is a Banach space under the norm || ||» defined by ||fl|. =
Suprep, ||f”r .
Proor. The fact that for each T ¢ D, , || |r is a norm, shows that ||af]|, =

|a] ||f]|» and that if ||f]}, = O, then ||f]z = 0 for all T, fr = 0 for all 7' and f = 0.
Secondly, [If + gll» = supzen, (If 4 gllz) < supzen, (Ifllz+ llgllz) = [flln =+ llglln -
Thus || || is a valid norm and we need only show completeness. Suppose then
that ||f — ful|l» — 0ask, m — «.Foreach T & Dy, ||fe — fllr — 0 and therefore
there exists a vector f* such that |fi — f*|lr — 0 as k — . In particular,
(fi)r — f" in a pointwise sense. If S and T are both in D, , SnT 5 &, we have
Ife = £7llz = lIfe — f¥llsnr and [lfi — f*[ls = [Ife — f*|lsnz from which it follows
that f° and f” agree on 8 n T. Consequently, there is a function f on [0, 1] which
satisfies (f)r = f for all T & D, . Now let N be so large that {ifi — full» < €
fork > N,m > N. Then ||fs — fllz £ [fi = fallz + [fu = fllz < e+ fm = fllz
fork > N, m > N and all T ¢ D,, . Choosing, for each 7' ¢ D, , m so large that
[fm — fllz < &, we have ||fi — fl|z < 2¢ whenk > N forall T. Hence ||fi — f]l.— 0

as k — .

By virtue of an earlier remark, the norms || ||, are non-decreasing in n so
that the spaces &, satisfy F, D Fn41 for all n. Let
(2.2) § = {fon [0, 1] | limpss [[flln. < e}

F is the class of regression functions for which all finite observation sets have
associated minimum variances bounded away from zero.

THEOREM 2.2. § is a Hilbert space under the norm || | defined by ||f| =
lim,, [f]] -
Proor. Clearly | || is a norm on §. To show completeness, suppose

Ife — full — 0 ask, m — o. 8ince [|fi — fulla < [Ife — full, there is for each n a
function f* for which ||fy — f"|l» — 0 as k — o, this by Theorem 2.1. Inasmuch
as this also implies that f, — f" pointwise, we have the existence of a single
function f € M)« F, for which ||fs — f]l» — 0ask — «, any n. Now
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Ife = flln = e = Falls + I = flln = lfe = full + [fw = Slla-

If N is so large that ||fs — fu|| < e fork > N, m > N, then |fs — fll. < e+
[ifm — flla - Choosing, for each n, m so large that ||fn — fll» < ¢, we have ||fi — flla
< 2eforalln. Hence ||fi — f]| — 0 as k— oo . It remains to show that the parallelo-
gram law holds. We note first that if f, g ¢ ,

lim, supz.p, (“f”q' + ”g“T)
= lim, suprep, [|fllr + lim. supzeo, llgllz = |Ifl + lgll>

for we can find a set T ¢ D, , n sufficiently large so that ||f]|z > [f|| — e and a
set T* ¢ D, , m sufficiently large so that ||g|[= > |lg]| — e. Then ||f|jzyrs +
llgllzgr= > lIfll + llgll — 2e. With this we note that

If + gl* + |If — gl* = lim, supren, |If + gll7 + lim, supren, ||If — gll7
lim, supreo, (|If + glz + If — gl7)

lim, supr.o, (2|5 + 2llglI7)

2 lim, suprep, |[f|% + 2 lim, supres, |lg|%

2071 + 2llglf*.

The Hilbert space § can be readily identified as the reproducing kernel space
of functions of [0, 1] asscciated with R. For this, we need only verify the two
defining properties of the kernel space, [1]:

(2.3) foreach t [0, 1], R(-, t) ¢ F,
(2.4) foreach fe Fand each t [0, 1), (f, R(-, 1)) = f(¢).

It is easy to see that (2.3) is satisfied, for |[R(-, t)||r = R(¢,t) when ¢t ¢ T and
IR(-,t)|lz < R(t,t) when t £ T. Secondly, if fe Fand t e T e D, ||f + R(-, t)||7
= |Ifllz + R(t, t) + 2f(¢). Since, for T & D,_; , we have ||f + R(-, t)||7yn =
Ifl7ue + R(, 8) + 2/(t) = |Ifllz + R(t, t) + 2f(¢) and

SUP7TeD, ”f + R() t)”iUU) = ”f + R(? t)”%‘ )
it follows that [If + R(-, t)[[% = [[flla + R(t, £) + 2f(¢). Similarly,

If + R(-, D= = 7 + R(t, 8) + 27(D),

and (2.4) is then concluded.

With regard to the estimation of the parameter 8, we see that there are un-
biased estimates of the form Y= ¢;Y(#;) which have variances not exceeding
Ifll=2 + 1/n, |If|2° being taken as zero if feF,. Let Z, = D i=icin¥ (tin),

n =1,2, ---, be any such sequence of estimators.
THEOREM 2.3. There is arandom variable Z such that for each 8, Es(Z, — Z)*—0
and Z is an unbiased estimator satisfying o5’ (Z) = |fII”, |If|”* being taken as zero

iffeg.
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Proor. Consider the estimator (Z, + Z,.,x)/2 for 8, based on at most 2n + k
points.

08 1(Zn + Zn1r)/2) = 08" (Z2)/4 + 08" (Zns) /4 + c0Vs (Zn ) Zniz)/2 Z |[fllonsk
Thus
2 coVg (Zn, Znsx) Z 4flner — 08°(Zn) — 06" (Znsr)
2 4fflzass — I — Wfllsde — 1/n — 1/(n + k).
This yields
Eg(Zn — Znii)" = 08(Zn) + 08 (Zntr) — 2 coVg (Zn, Znii)
2[I7117" + 2[1fll24 + 2/n + 2/(n + k) — 4/|fllznsx ,

which approaches 0 as n, k — . This completes the proof.

We conclude this development with some supplemental facts concerning &
and the random variable Z of Theorem 2.3. This material is standard and we
omit any proofs. The continuity in mean 1mposed on X(-) is equivalent to,
for each ¢ ¢ [0,1],

(2.5) R(s,s) + R(t,t) — 2R(s, t) = |R(-,s) — R(-, )|’ >0 as s—¢.

Using (2.4) it follows that & consists of continuous functions and is therefore a
separable Hilbert space. § is isomorphic to the L, subspace spanned by the
random variables {X(¢), ¢ ¢ [0, 1]} according to a mapping induced by

(2.6) Y[X(4)] = R(-, 1), te[0, 1].

If now {fi} is chosen to be a complete orthonormal family in &, then f ¢ ¥ may
be written as ) _; axfi and X(-) may be represented as X (t) = D, Xufu(t)
with {X,} an orthonormal sequence of zero mean random variables. This en-
ables us to define (Y, f) as D_x (Bax + Xi)ax and we can thereby identify the
estimator Z of Theorem 2.3 as (Y, f)/||f]|>. We turn to the question of optimum
design.

An optimum design in D, is a T* which maximizes ||f||r over D, . If f ¢ & we
may rewrite ||f||r as ||Pzf|| where Pr is the projection operator defined on & to
the subspace spanned by the functions R(-, t), t ¢ T (such subspaces are hence-
forth denoted by V[R(-, t), t € T]). To see that this replacement is valid, it
suffices to note the isomorphism between V[R( -, t), ¢t ¢ T'] and the Hilbert space
of n-vectors under the norm | ||z which is induced by setting, for te T,
Y R(-,t)] = R(-,t)r (this last is the restriction of R(-, t) to T').

Consider now the family {Pr, T ¢ D,} of projections operating on F. It will
be seen that the continuity in mean condition imposed on X (-) will insure that
as T ¢ D, approaches S ¢ D, , Pyf — Psf for all f 5. Thus ||P4f] is a con-
tinuous function on D, . In order that supr.p, ||P1f|| be achieved, it is necessary
to inspect the behaviour of ||Pzf|| near the boundary of D, . To this end, let
Do={T|T=1{ti,ta,  ,ta},0 St St < --- <ty <1}.8etsSe D, — D,

I\
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may be given two interpretations as n-point designs: Observations are taken at
the r distinet points of S, r < n, or, S represents the limiting case of n observations
takenatt; <t < .-+ <ty with|s; — ;| <e 7= 1,2, ---, n. We do not know
a priort that the second interpretation makes sense, that is, whether there is a
single limiting case. Boundary designs can easily be optimum when given the
second interpretation and when R has sufficient derivatives on the diagonal.
For example, it can be shown that if R(s, t) = exp [—(s — t)?/2] and f(¢) =
t exp (—1/2), then supr.p, |Pzf| = 1 = |f|| and the supremum occurs not in
D.but ratherase — 0in T = {0, ¢}. There is but a single limiting case in this ex-
ample and a decrease in variance is achieved over the design which takes one
observation at 0.

The difficulties inherent in such situations can be avoided by adding a further
agsumption on R. For 8 ¢ D, , consider the subspaces of F defined by I.(S) =
VIR(-,t),te Uss (s — ¢, s + €)] and I(8S) = ) >0 I(S). Inasmuch as each of
the subspaces I.(S) contains V[R(-, t), t € 8], I(S) does also. We are going to
assume that R satisfies the

DEFINITION. R is said to have a simple present if in &, I(8) = V[R(-,t),t e S]
for each S ¢ D, , all n. :

There is an equivalent (through use of (2.6)) definition phrased in terms of
the error process X(-), and a simple present there, for example, disallows
quadratic mean derivatives. When X (- ) is stationary, a sufficient condition has
been given for this behaviour (cf. [22]).

With these preliminaries, we are in a position to prove

TaeOREM 2.4. If R has a simple present and if {T+} is any sequence from D,
with limit S, Py, f — Psf for all f e .

Proor. Since a weakly convergent subsequence can be extracted from the
sequence {Pr,}, we relabel it {Pr,} and suppose Py, —, A. If f is in the range of
A, say Ag = f, then

1Profl’ = (Prusf, f) = limiw (Pr@f,Prg) = lime.w (f, Prg) = [f]%

that is, f € I.(8) for all € or, what is the same f ¢ I(S) = V[R(-, t), t & S]. Con-
sider first the action of A on a function g which is orthogonal to I(S). We have
seen that g must be orthogonal to Ag and from ||Prg||* = (g, Pr,g) — (g, Ag) = 0
it follows that Pr,g actually converges in the usual sense to 0. Hence Ag = 0.
Now let s £ S and suppose #; is drawn from T’ in such a way that the sequence
{t,} converges to s. Using (2.5), we find

IPrR(-, )| Z [[PanB(-, )| = R*(s, t:)/R(t, tx) — R(s, s)

= |[R(-, 8)|* as k— o.
Consequently, |[R(:, s) — PrR(-, s)|I* = |R(-, 8)|* — |PnR(-, 8)[* — 0
as k — « and hence forall f ¢ VIR(-, s), s &S] = I(S) we have Prf — Af = f.

Clearly then, A = Pg and the theorem is proved.
When R has a simple present, Theorem 2.4 insures that ||Pzf|| is a continuous
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function in T over D, for any f ¢ &, hence it achieves its maximum on D, .
Further, if S ¢ D, has r < n distinct points and the maximum is achieved at S,
any r-point design at the distinet points of S is optimum as is any n-point design
containing it.

REMARK. An analogue to Theorem 2.4 may be given which applies to a
much broader class of kernels R. If for a given R and all finite sets S, 1(S) is
sufficiently well behaved that it contains only derivative functions R (-, s),
7=20,1,2 ---, N(s), (these functions are the images under the mapping ¥
given in (2.6) of the quadratic mean derivatives of X(-) at s) then projections
can be assigned to sets S ¢ D, in such a way as to extend the continuity of the
functions ||Psf]| to D, . However, the range of the boundary projection at S
will generally contain V[R(-, t), ¢ ¢ S] properly and if f is sufficiently close to
derivative functions (in the sense of projection) optimum designs will occur on
the boundary. For the example given prior to Theorem 2.4, the optimum de-
si%? corresponds to projection onto the subspace spanned by R(-, 0) and
R (-,0).

3. Asymptotic optimality. In this section we derive our main asymptotic re-
sults for the problem of estimating the coefficient of a single regression function
with observations restricted to be taken in the interval [0, 1]. Thus, our model
will be

(3.1) Y(t) = 6f(1) + X(@);  tel0, 1],

where 8 is unknown, X (¢) is a covariance process with mean 0 and covariance
function R(s, t), and f is a continuous function on [0, 1]. For the present, we will
further restrict f to be of the form

(3.2) J(t) = [ R(s, )e(s) ds,

where ¢ is continuous on [0, 1] so that, in particular, f is in the reproducing
kernel space §. For the arguments that follow it will be essential that fe g
but, as will be noted in Remark 3.3 below, some of the arguments and results,
including Theorem 3.1, will hold for somewhat more general f’s in § than ex-
emplified in (3.2)

For any f ¢ F (not necessarily of the form described in (3.2)) we will say that
{T,;n = 1} is an asymptotically optimal sequence of designs for estimating 8
if
(3.3) L [(* = [1PrfI")/ (AP = supren,||P2fl*)] = 1.

This definition is equivalent to
(3.4) limu.. [(Var 87, — Var 8)/(infr.p, Var 8; — Var §)] = 1

where fr is the best linear estimate of 8 with observations taken in T and 8 is
the BLE of 8 when observations are taken over the entire interval [0, 1].

In order to find such sequences {7',} we examine the asymptotic behavior of
the denominator of (3.3). In the course of the development there will be some
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results which are of independent interest. These will be remarked on. We begin
by listing the assumptions we require; a discussion of the assumptions follows
their presentation.

AssuMPTION A. R is continuous on the entire unit square and has continuous
derivatives up to order two at every (s, ¢) in the complement of the diagonal in
the unit square, i.e., at every (s, t) with s # ¢. At the diagonal we assume that
R has all right and left derivatives up to order two.

Thus, for example,

limt“o,sTto (GZR/(atas)(s, t) = limtlto,sﬂo R21(S, t) = R—Z}']_—(to y to)

is assumed to exist for all & ¢ [0, 1] (note that we have introduced the notation
Ro to denote differentiation with respect to the second variable followed by
differentiation with respect to the first variable).

Assumption A requires little discussion except to note that when f is of the
form (3.2) and Assumption A holds then f is twice differentiable and in fact

(3.5) F() = [eR (5, t) o(s) ds + [i Ry (s, )e(s) ds
and
(36) (1) = [B"(t, 1) — By (4, (1) + [o R (s, )e(s) ds.

AssumprionN B. Let a(t) = Ry (¢,1) — Rs"(4,t) fort & (0, 1). a is continuous
on (0, 1), infocscq a(t) = ay > 0, and supoci<1 a(t) = oy < © so that @ may be
extended to a strictly positive continuous function on [0, 1].

Examples which satisfy Assumptions A and B are easy to give. One class is
with R(s, t) = w(min (s, ¢))v(max (s, t)) with «'(£)v(¢) — o' (¢)u(¢) never zero
and u and » both having two continuous derivatives. Another class of examples is
given by the stationary covariance functions of the form1 — a |t — s| + ¥ (¢t — s)
where 0 < ¢ < 1 and ¥ has two continuous derivatives.

For all stationary covariance functions « is, of course, constant and because R
is a covariance function « can never be negative. This last fact is generally true
when R(t,t) = c.

If «( t) = 0 and Assumption A is satisfied then R is differentiable everywhere
in the unit square. We have not been able to extend our methods to such cases.
Some of the difficulty may be seen in the example R(s, ) = exp [— (s — t)*/2]
(which is discussed above Theorem 2.4 in Section 2) where exactly optimum de-
signs may not exist and asymptotically optimum designs will not possess the
“nice” structure described in Theorem 3.1.

Assumprion C. For each te[0, 1] the function RLH(-, t) e%, and
SuPOgtgluR;;(‘, Ol < .

Assumption C obviously requires further explanation. Since every function in
F is continuous, C implies that Ri' (-, ¢) is a continuous function for each ¢.
Therefore, in particular, Ris (4, t) = lim, Lt R (s, t) = lim, e R (s, t) =
Ry (¢, t) and this occurs despite the fact, due to Assumption B, that Ra(-, )
does not exist at ¢. It appears then that C is a rather restrictive assumption in the
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presence of B. Before turning to examples which satisfy C, as well as A and B,
let us note here that the role of C is, primarily, to prove Lemma 3.2 below. In
Remark 3.2 we discuss the difficulty in verifying the conclusion of Lemma 3.2 and
why adequate conditions (other than C) are not easy to obtain.

As for examples which satisfy the three assumptions the easiest to see is
R(s, t) = min (s, t) since R15 (s, t) = 0. Another simple class of examples is
givenby R(s,t) =1 —\|t— s|if |t — s] < 1/hand R(s,t) = 0 otherwise (here
0 <\ £1).R%(s,t) = 0 and thus Assumption C is trivially true.

Somewhat less apparent is the class of convex stationary covariance functions
of the form

(3.7) R(s,t) = [/ {1 — X |t — s|}p(\) d\
where p is a probability density satisfying

(3.8) limp,e Np(N\) = ¢ < o,
(3.9) o' + 3p(M)IA AN < w,

for some a (we are assuming that the derivative p’ of p exists). Assumption A is
easy to verify. Assumption B is simple to check because a(0) = 2 f?f Ap(N) dA,
which is finite by virtue of (3.8). That Assumption C is satisfied is not so obvious
but follows from either H4jek [7] or Ylvisaker [23] where the norm structure of
reproducing kernel spaces derived from covariance functions of the type (3.7) is
discussed. In particular (3.8) guarantees that R3; (0, 0) exists and (3.9) is
equivalent to having |0R3; (-, t)/ds|" integrable over some interval [0, 1/a] which
will guarantee that R3; (-, t) lies in the reproducing kernel space generated by
(3.7). A subclass of these examples is given by

R(s,t) = [0 exp (—=\]|t — s|) dP(\)

with [§ 2 dP(\) < w.
For the remainder of this section we will use the following notation: When

{T. ;n = 1} is a sequence of designs with T, € D, ,and T’y = {t1n, - - , lua} With
0 é tm < tzn < e < tnn é 1 we Wlu pllt ton = 0, tn+1,n =1 and din =
tisin — tinfori = 0, - -- , n. In the proofs we will drop the index = in ¢;, and d.,

when doing so causes no confusion.

LemMA 3.1. Let f be as in (3.2) and let Assumptions A and B be satisfied. Let
Y1 = SUPo<i<1 l¢(t)|, K, = SuP0<8.t<f |R_2:F(s’ t)l’ K, = SUPo<s,ex1 IR;;(S: t)l
Then, if {T» ;n = 1} is a sequence of designs with T» € D,

(3.10) If — Prfl® < K supogj<ndia

where, if tin = 0 07 tan = 1, K = 50" (8a; + 3K, + 4K,) and if 0 < t1, and
twn < 1, K = 15¢:"(2001 + 3K + 4Ks).

Proor. Suppose, to begin with, that {, = 0O and {, < 1. Let v; = f;:i“ eo(s) ds
fori=1,---,nand put g.(¢) = Dy R({:, t)v: . Then
If = Pr I S If = gall” = JolF()) = ga(D)le(t) dt — 221 [f(8:) — ga(t)]vs

= D2 = {JHP () — ga(D)]e(t) dt — [f(t:) — ga(t:)]vi}.
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Because of Assumption A we know that f is twice differentiable everywhere and
gn is twice differentiable except on T, at each point of which, however, it has
right and left deriyatives.

Let gni(t:) = gn (1), gui(tiv1) = gu (tua), gui(ts) = gnt(t:), and let gle(t) =
ga” (t) if t € (t; , tiy1). Then, for t e (¢ , tir),
(811) f(&) = ga(t) = ft:) — gn(t:) + [f' (8:) — gnalta)1(t — 1)

+ 17 (0) — " (801(t — t:)/2

where 0; € (t;, tiy1). Now
(3.12) gni(ts) = i1 Ra(t;, ti)v;
and

(3.13) f(t)

f% Ry (s, t:)e(s) ds
= D e JUP Ry (s, t)e(s) ds + [+ Ry (s, t:)e(s) ds.
When j 5 3,
(3.14)  [i Ry* (s, t:)e(s) ds = Ra(tj, t:)v;i + [1*" Ru(ps , t:) (s — t;)e(s) ds
where p,; € (i, tjy1), while
JHH R (s, t)e(s) ds = [+ Ry (s, t:)e(s) ds
(3.15) = [t Ray (pos, 1) (s — t)e(s) ds
+ Ry (4, ti)vi .

Putting (3.12), (3.13), (3.14), and (3.15) together, we get
(3.16) If (1) — gns(td)] S a(t)vi + Ko 25 v (e = ty) dt

S apndi + (Kiy/2) D i di.
To estimate f* (0:) — gn:(8:) observe that from (3.6)

(3.17) " (0)] = e + Ko

for all 6 and that

(3.18) lgni(0)] = |25 B3 (4, t:)vi] < Kogn
for all 6 ¢ [¢t;, tiy1] so that

(3.19) If"(8:) — g7a(8)] < (ar + 2K2)r .

(3.11), (3.16), and (3.19) yield
[[54 (0) — ga(D)le(t) dt — [f(t:) — ga(ts)]vd
< (awpr di + (Kup1/2) 200 d5%) [14 (8 — t2)e(t) dt
+ (o + 2Ks)e1/2] [+ (8 — t:)e(t) dt
S (Ki/4)e’ (225-1457) 48 + o201 + K,)/3] 47,
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which, used in (3 .10), yields
(320) |If = Pr,flI* < (Kupi/4) (221 d5°)" + [(2en + K3) /3le” 207 d".

The conclusion of Lemma 3.1 for the case when ¢, = 0, {., < 1 follows immedi-
ately.

In the case ¢, > 0 and f., = 1 a similar argument will work by expanding
f(t) — g.(t) fort e (t;,tir1), in a Taylor series around the point ¢;,; (in the above
we expanded in a Taylor series around ¢;). When ¢;, = 0 and {,, = lwe have
If = PrJII* S If — Pr,_.f|I* where Ty = {tin, - , t-1,x} and we can apply
the result for n — 1 in the case t; = 0 and {,—; < 1. When ¢;, > Oand ¢,, < 1
an analogous argument can be carried out as follows: let v1 = [¢® o(¢) dt and
Y2, - -+, ¥» bedefined as above. To estimate f32 (f — gn)p expand f — g, around
t; and estimate ff:*‘ (f — gn)edt for © = 2 as in the above. The details will
only slightly differ and will yield the result stated. The mild complications we
run into in this last case are due to the need of estimating [ (f — g.)ponn + 1
intervals with the use of a linear combination of R(¢, -), - -+, R(t., *).

REMARK 3.1. Considering only the case where ;, = 01it is clear from (3 .20) that
there are designs for which |f — Prf||>. < K/a’; in particular, take
T,=1{0,1/(n—1), ---,(n— 1)/n}. (In fact, since Y i d’ = D7 d;-1/n=
1/nand Xt d = (2 d;)*1/n® = 1/n% this choice of {T,} minimizes the right
hand side of (3.20).) Thus infr.p, [|f — Prf|* £ K/n®is a consequence of
Lemma 3.1. Although the constant K may be improved, the order of magnitude
1/n* cannot, in general, be improved for the types of covariance functions and f’s
we are concerned with. This will be seen in the theorem below.

Lemma 3.1 besides being of use in the development of this section has inde-
pendent interest in that it provides us with some idea of how many observa-
tions one needs to take before additional observations yield trivial gain. Thus,
if we measure the (relative) gain in taking more than n observations by
v» = (Var 8, — Var 8)/Var 8, then Lemma 3.1 provides an upper bound on v, ,
namely, v, < K/n’(||f||> — K/n”). This use is heightened by the fact that Lemma
3.1 does not require Assumption C.

LemMa 3.2. Let f be as in (3.2) and suppose that Assumptions A, B, and C are
satisfied. Let { T} be a sequence of designs with T, € D, and such that supo<j<n djn — 0
asn — . Let g, = Pr f so that gu(t) = D i1 R(tin , t)Min (the mi, being de-
termined by the fact that g,(t:) = f(tw) fori =1, --- ,n). Then

(3.21) (a) mu — 0, My, — 0,

and
(b) Min = ¢(tin)<di—1,n + dzn)/2 + Qin di—l,n + bin d;n
(1=2,---,n — 1) where sups<icn— {|@in| + |bin]} >0 as n— .

It follows from (3.21) that
(3.22) SUPnz1 Do imt [Min] < o
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and that F,(t) = D i< Min defines a sequence {Fa} of functions of uniformly
bounded variation which converges weakly to F which is defined by F( t) = ff) o(s) ds.
Proor. First observe that, due to Assumptions A and B, whenever ¢; ¢ (0, 1),

(3.23) g " (t:) — g () = a(t)m:,  a(t:) > 0.
From Assumption C (and the comments following Assumption C) we can talk
about a function Rs(s, t) which is defined for all (s, ¢) in the unit square and
agrees with the second partial derivative of R whenever the latter exists. Thus
.‘]n”+(ti) = yn”“(ti) = > " Ru(t, t)ym;; i =1, ---, n. It follows that for
i1=1 -, n—=1

f(tip1) — ga(ti)

= f(t:) — gu(ts) + [ () — g ()] di + [ (0:) — ga” ()] d5*/2,

where o; € (;, tiy1). From this we conclude
(324)  f(t) — g/ () = —(d/2)f" (0:) — gu'(00)); i=1,---,m— 1
Similarly
(3.25) Ft) — g~ (8) = (di/2)[f"(8:) — g." (8)]; £ =2, -+ ,m,

where 0; € (ti_1, t:;). From (3.6) and Assumption C we obtain

(3.26) (@) — g (8) = —a(t)e(t) + (Ral+, t), f — gu),

where ( , ) denotes the scalar (or inner) product in §. Subtracting (3.25) from
(3.24) and using (3.23) and (3.26) we obtain, fori =2, --- ,n — 1

(3.27)  a(t)m: = a(8:)e(8:) di/2 + a(oi)e(o:) dif/2
— (Ras( -, 0:), f — gu) dica/2 — (Rua(+, 02), f — ) di/2
Using the continuity of ¢ on [0, 1] ((3.2)), the continuity and positivity of « on
[0, 1] (Assumption B), the boundedness of ||[Ra( -, ¢)|| (Assumption C), and the

result that ||[f — g/l — 0 as sup dj — 0 (Lemma 3.1) we obtain (b) of (3.21).
To obtain m; and m, after obtaining m, , - - - , m,—1 is easy since

(328)  muR(t, ) + mR(ta,z) = f(z) — 2275 R(t;, x)m;
forz = & , ¢, . From (3.21) (b), the continuity of ¢ and R, we obtain
(3.29) XIS R(t;, x)my = [se(DR(, =) dt + o(1) = f(z) + o(1),

where the o(1) term goes to 0 as n — «. Solving (3.28) for m; and m, and using
(3.29) yields (3.21) (a). The rest of Lemma 3.2 follows in obvious fashion from
(3.21).

REMARK 3.2. It is relevant for the proof of Lemma 3.3 that we point out that
(3.27) is valid without sup dj, — 0.

The part of Lemma 3.2 which is most relevant for us is (3.22). With this last
fact it would be unnecessary to have Assumption C. Although this doesn’t seem
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apparent from the proof below of Theorem 3.1 we point out here that we could
with some modification alternatively prove Theorem 3.1 with Assumption C re-
placed by (3.22). The difficulty we have is finding adequate conditions for the
validity of (3.22). That the question of the validity of (3.22) seems to be non-
trivial may be seen in the following: Consider the integral equation of the first
kind

(3.30) F(&) = [sR(s, t)e(s) ds,  telo, 1,

where f is given, R satisfies Assumptions A and B (and is a positive definite func-
tion, i.e., is a covariance function), and ¢ is unknown. To solve (3.30) numer-

ically we might proceed by taking n points ¢ , - - - , ¢, and solving formy , - - - , m,
in

(3.31) f(t:) = 2251 R(t; , t:)m; .

The question of how m, - -+, m, is related to ¢ is critical in deciding on the

utility of (3.31) for numerical approximations of ¢. The literature seems to be
silent on numerical solutions of (3.30) except to remark on the difficulties of ob-
taining such. Now, if (3.22) were true, so that {F,}, as defined following (3.22),
would be of uniformly bounded variation, it would follow from

JiR(s,t) d(F — F.) = |If — Pr,fI" >0,

that F, — F weakly and, consequently, (3.31) could be used to obtain an ap-
proximate solution of (3.30) in an obvious sense. With Assumption C we have
the somewhat stronger conclusion (and more convenient approximation) con-
tained in (3.21) although the “error term” in the approximation is elusive, since
the best we can do here is to give bounds on the error term which depend on ¢ (of
course, the same difficulty occurs in estimating the difference between F, and F').

LemMa 3.3. Suppose Assumptions A, B, and C are satisfied and that f is given
by (3.2) where ¢ is such that {t | ¢(¢) = 0} does not contain an interval of positive
length. If { T} is a sequence of designs with T» € Dy then ||f — Pr,f|| — 04f and only

if
SUPo<j<n djn — 0.

Proor. The ““if”’ part is a consequence of Lemma 3.1, so we need only concern
ourselves with the “only if”’ part.

If sup; d;» does not approach 0 then there is a positive number ¢, a number
ce(0, 1 — ¢) such that ¢(c¢) # 0, and a sequence {n;} such that 7., < [0, c] u
[c + ¢, 1] (thus sup; dj», = €). We might as well assume that {n} is the sequence
of all positive integers. Put C = [0,c] u [¢ + ¢, 1]. Then, since T'» C C for alln we
have |f — Prfl* = If = Pef |* + [|Pof — Pr,f|* Z |If — Pdf||* which implies
that ||f — Pof ||* = 0, i.e., that f e F(C). Let C, = [0, cJu [c + 7,1 for0 <7 <e.
Then f e F(C,) forall0 =9 Z e

Fix n. We can find a sequence {S,} of designs with S, ¢ D, for n = 4 such that
8Sn C Cy, 8y C 81, {0,¢,¢+1n,1} © 8, ,and ||f — Ps,f||*— 0. In addition, we
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can choose S, so that, putting S, = {1, *** , Onn}, 0in = Cit1,n — Tin, Tsrn = 7
(¢* actually depends on n but we suppress it), supizi 8 — 0. In fact, we can
choose {S,} so that, for each n, there is a », with T, C Spii for allk = », . Since
(3.27) is valid under the present hypotheses (see the first sentence of Remark 3.2)
we have, for ¢ = 1,7, * + 1, n,
wi = ¢(0:) (81 + 8:)/2 + 0(1)[8:i—1 + 8]
where f(o;) = D=1 R(0;,0:)p;, i =1, --- ,n. Thus, for all z ¢ [0, 1],
(3.32) limg. 2 i R (0s, 2) = [§ R(o, 2)¢(0) do,
LMy D imivs2 wiR(o:, €) = [o40 R(o, 2)e(0) do.
Now
(3.33) wR(0,z) + paR(c, x) + paR(c + 1, 2) + paR(1, z)
= f(z) — [ 255" wR(o;, ©) + 233 wiR(aj, 2)]
for z £ S, . From (3.27) we can conclude that px, and pixy1,. are bounded in n,
and, with the aid of (3.33), we also have that u1, and p,, are bounded in n. Hence,
we can extract a subsequence along which pin, witn, Bit+1,n, Bnn CONVErge respec-
tively to limits Ao, As , Aets , M . The subsequence may as well be taken to be the
original sequence. Since Pg,f(z) — f(z) for each z&[0,1] (this because
If = Ps,fll —0), wecan use (3.32), (3.2), and the existence of N , Ac , Moty , M b0
conclude that
f(z) — Ps,f(x) = f(&) — 251 wiR(os, ®)—
fﬁﬂ R(Uy x)(’(a) do — >‘0R(0) x) - >\0R(c’ x) - >\¢+qR(C + M x) - )‘IR(]-’ x)
and, therefore.
(3.34) NR(0,2) + AR(c, 2) + AeraR(c + m, 2) + MR(1, )
= [ R(o, z)e(0) do
The differentiability of the right side of (3.34) at ¢ and ¢+% and the non-differ-
entiability (Assumption B) of R(c, - ) at ¢ and R(c + 1, -) at ¢ + n implies that
Ne = Netn = 0. Hence, for all z ¢ [0, 1],
(3.35) MR(0, 2) + MR(1, 2) = [ R(o, 2)e(0) do.
The dependence of Ao and \; on 4 can be determined by puttingz = 0, 1in (3.35)
and solving the two linear equations in N\ and A, . This yields
limg,o (Mo(n)/7) = e(€)po,  limg.o (M(n)/n) = e(c)ps

(po and p, are easily calculated).

This, used in (3.35) after dividing (3 .35) by n and letting 7 — 0, gives, for all
z €0, 1], o(c)pR(0, 2) + o(c)mR(1, x) = R(c, z)p(c). Since ¢ (¢) is not 0,
R(c, ) is not differentiable at ¢, and R(0, -) and R(1, -) are differentiable at c,
we have a contradiction and Lemma, 3.3 is proved.
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TuEOREM 3 .1. Let Assumptions A, B, and C be satisfied and suppose that for
telo, 1,

(3.36) f(t) = [AR(s, )e(s) ds
with ¢ continuous on [0, 1]. Then
(3.37) limpae 7 infrep, If — Pof]” = 22{[6 la( D)o ()] dt}®.

Furthermore, the sequence {T,*} defined by

(338) [o [P dt = [ — 1)/(n — D] [ola(®)e’ ()" d,

i=1, -+, n, where ti, is the smallest solution to (3.38) (ambiguity will occur

when ¢ s 0 on an interval) is an asymptotically optimal sequence of designs.
Proor. Suppose first that ¢ is never 0 on [0, 1]. Our first step will be to show

that, if {T, ;» = 1} is a sequence of designs with ¢, = 0, t,, = 1 forall n = 2,

and with sup; d;, — 0 then,

(3.39) lim inf,.. n’|f — Prf|* = +°/12

where 7 is the value of the term in braces on the right side of (3.37). If we do so,

and if {T,} is any sequence of designs with sup; d;, — 0 then, by adjoining 0 and

1 to T, (when they aren’t present), we form a sequence {S,} with S, ¢ D,. and

satisfying (3.39). Since ||f — Ps,f|I* < ||f — Pr.flI> we conclude that (3.39) holds

for all {T,} with sup; d;,, — 0. With the aid of Lemma 3.3 (which enables us to

ignore {T,} for which sup; d;, does not go to 0) we find that

(3 .40) lim inf,.e n® infrop, [If — Pofl]° = +°/12.

Our second step will be to take the sequence {T',*} given by (3.38) and show
that

(3.41) lim, e 2l — Prof]’ = ¥*/12.
(3.40) and (3.41) then yield (3.37) and the asymptotic optimality of {T,*}
follows from (3.37) and (3 .41). The third part of the proof will be to remove the
restriction that ¢ is never 0. We now turn to the first part, namely, the proof of
(3.39).

Let g. = Pr,f. Then
(3.42) |If = gal® = [ 1f(1) = gu(Ole(0) dt = 2050 [H7* (F — gu)eedt.
Since f(#1) = ga(t;) forz =1, --- , n, and since (3.24) and (3.26) in the proof
of Lemma 3.2 are valid, we can expand f(t) — g.(t), for t &€ (¢;, ti+1) in a Taylor
series and obtain

F(t) = ga(t) = (=di/2)f" (0:) — ga" (a)](t — i)
+ [f"(00) = ga" (eIt — t:)*/2
(3.43) = (di/2)a(o)e(0:)(t — 1) — alo)e(o)(t — t:)*/2
— (di/2)(Rn(-,0:),f — ga)(t — 1)
+ (Rao(+, 00), [ — gad(t — £:)*/2
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where ¢, and ¢; are in (¢;, t;yq). Fors =1, --- ,n — 1 put
Ay = [i# (¢t = t)le(t) — e(00)] dL,
As = [ [o(t) — o(on)]l(t — t:)*/2] dt,

(844)  As = [l la(o)e(or) — alos)e(e)le(DI(t — t:)*/2] dt,
Agi = (di/2)(Raa(-, 05), f — gu) [157 0(0)(t — 1) d,
Agi = [0 (Raa(-, 00), F — gn)l(t — 4:)*/20e(2) di,
By = SUP¢; <s,¢<t;41 I‘P(t) - $"(3>|;
Bai = SUpy; <s i<y, |2(e(s) — alt)e(t)].

All these quantities depend on 7, of course. From the continuity of ¢ and « on
[0, 1] we have, as n — «,

(3‘45) SUP1<i<n—1 By = 0(1), SUP1<i<n—1 B;; = 0(1).

'S

An obvious calculation shows

(3.46) |Ayi| € Biidi/2, |Az| £ B1:id’/6, |Asl| < Bagn d’/6
where g1 = supo<¢<i |¢(t) |. Assumption C and Lemma 3.1 yield
(3.47) |A4i| + |45 = Ko diz(stu d;)

where K, is some constant. Using (3.44) in (3.43) and then using (3.46) and
(3.47) we obtain

JE (D) = ga(D)]e(t) dt = alo:)e’(0:)di'/4 + a(a:)e(o:) didy;
(3.48) — a(o:)e(0:) Az — a(e:))@ (0:)di/6 — Agi
— Asi + Asi
> a(o:)(a:) di/12
— dJ[KiBi; + KBy + Ko sup; dj]
for appropriate constants K; and K, . Let
Prn = SUPi<i<n—1 [KiBi + K:B,; + K, sup; d;].

From (3.45) and the fact that sup d; — 0 we know that p, — 0, and, since «
and ¢ are continuous and never 0, we have, for all n large enough,

(3.49) (o)’ (6:)/12 — p, =20 fori =1,---,n— 1

Using (3.49) in (3.48), referring to (3.42), then using a Holder inequality and
the Riemann integrability of ag” we obtain, for n large enough,

If — gl = 215 [e(oi)¢’(04)/12 — pal di°
(3.50) = [1/(n — D [ale)e’ (¢:)/12 — p]" di}?
= [1/12(n — 1)"1{[3 [a(8)" ()] dt}* + o(1/n%)
= [1/12 *]¥* + o(1/n%).
Thus (3.39) is established.
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We turn now to the asymptotic behavior of ||f — Pyn*fll where T,% is given
in (3.38). From (3.38) and the mean value theorem it is easy to Verlfy that
v/(n — 1) = [t (a1 dt = di*e(6:)°(8:)]"° for some 6; ¢ (8%, tih1). A
calculation similar to that leading to (3.48) (in fact, we could use the first part
of (3.48) with o, replaced by any o € (¢; , ti41) and With the A’s suitably modified
although still satisfying (3.46) and (3.47)) yields

(851) |If = Profll’ = (+°/12) i [1/(n — 1)°] + o(1/n")
= ~*/120* + o(1/n%).

(3.51) and (3.39) yield (3.41) and thus, as noted following (3.41), yield (3.37).

The validity of (3.37) when Z = {t| ¢(t) = 0} is not empty requires further
argument because (3.49) may not be valid for all ¢ when ¢ has zeroes, and the
subsequent use of the Holder inequality may not make sense. However, we can
proceed as follows: Since ¢ is continuous, Z is compact. Hence, for each ¢ > 0,
there are open intervals I; = (aj, b;), 1 < j £ k. whose closures are disjoint
and such that A, =ul; D Z and > u(Il;) < u(Z) + € (uis Lebesgue meas-
ure). f T = {7, ---, 7} let m(T) = ma,xls,s,_l (ripg — 7;). Let b = O,
ar,+1 = 1. Let T,,] =T,n[b;,ajul,j=0, , ke . Let T,,J = Tu; u {b;, aju}.
We can show, as in Lemma 3.3, that ||f — Pr,, f|| — 0 if, and only if, for each
choice of ¢, {I;} satisfying the above, maxo<;<, m(T,,J) — 0. This agrees with
Lemma 3.3 when Z contains no intervals. Let us suppose then that we are deal-
ing with such a sequence {7} and let us suppose that e > 0, {I;} etc. are as
above and, in addition, that |¢(f)] < e on A.. Since [0, 1] — 4. = H. is
compact, we have ¢ bounded away from 0 on H.. We note here that
Ye = [u. [a(®)’ ()12 dt — v as e — O (v is defined in (3.39)). Let us adjoin to
the design T, all the endpoints of the intervals I, ---, Ii, and, in addition,
let us adjoin at most [u(I;)n] ([x] is the greatest integer less than x) points from
each I; so that, in the new design so formed (call it 8,), any point in S, nI;
is at most 1/n from its immediate predecessor and its immediate successor.
Let J, = {i|s;ieHe, sipne H., s; is not a left endpoint of one of the I7s).
Now », = Card J, < Card (T, nH,.) + k. =< n + k.. Let h, = P,,f. Then,
for i J,, (3.48) and (3.49) are valid with h, replacing g, , S, replacing T,
so that, for n large enough,

Sier [3(F = hadedt = s lalo)e’(0:)/12 — po] dS
(1/12-9){ [ a, [a(t)" ()] a1 + o(1)]
= (1/12-%)7 8L + o(1)]

2 (1/12-(n + k)" 11 + o(1)].

Now, if s; and s, are two successive points in S, with either s; or s; in 4. or s
a left endpoint of one of the I;’s, we have s; — s; = 1/n and, from the first part
of (3.48),

\%

(1%

(3.52)

[[21f(t) — ha(2) Jo(t) ] <7 (1/7°)
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where r.— 0ase— 0. There are at most »_;& (w(I;)n]+1) < ke + (u(2) +on
such pairs s; , sz, so that

(3.53) [fa. (f = Bade di] < ro(u(Z) + €)/n* + rde/n’.
Combining (3.52) and (3.53) we obtain
(3.54) n?llf — PofI’ = (v/12)[1 + 0(1)] — r(u(Z) + ¢)

and, since T» C 8., lim inf,.. n’|lf — Prf|* = +°/12. Thus
lim inf,.. n* infrep, |f — Pof|* = +*/12.

Since (3.51) is valid whether or not ¢ has zeroes, we are then able to conclude
that (3.37) holds and that {T,*} is asymptotically optimal. This concludes the

proof of Theorem 3.1.
ReMARk 3.3. Theorem 3.1 may be extended to f’s which are of the form

(3.55) f(t) = [SR(s, )o(s) ds + Dicy meR(ax ,t)

where the u:’s are not zero and the a;’s are all in [0, 1]. ¢ is still assumed to be
continuous. In this case, to obtain asymptotically optimal designs we should
adjoin, to the designs defined by (3.38), the points a;, ---, a5 . Often, as in
the examples discussed in Section 4 (in particular, see (4.9) et seq.), L = 2
and a; = 0, a; = 1, so that nothing has to be adjoined to the designs of (3.38)
to obtain asymptotically optimal designs.

That there is something to be done in order to extend the results to f’s of the
form (3.55) is due to the non-differentiability of f at a;, --- , a. . However, f
does possess right and left derivatives at these points and this makes it possible
to carry out the extension. We will omit the details since, for the most part, they
are repetitions of earlier arguments. We first note that Lemma 3.1 is valid for
f of the type (3.36) and that Lemma 3 .3 is also valid. Lemma 3.2, as it stands,
is not true, but can easily be modified to hold. Now if {7} is a sequence of
designs containing a; , - - - , az foralln = L and if we put f(¢) = [3 R(s,t) dF(s),
P f(t) = f(l) R(s, t) dF, (the definition of F is obvious from (3.55) and F,
is the appropriate discrete signed measure whose support is 7',) then

If = Prfl* = [3 (f = Pr,f) d(F — F.) = [3 (f — Pr,f) dF = [§ (f — Pr.f)e dt

where the last two equalities result from f — Pr,f being 0 on T, . Proceeding as
we did in the proof leading to (3.48) except that we use right derivatives at ¢;
we obtain (3.39) for sequences {T,} of the kind considered here. For other
sequences {T',} we adjoin {a;, ---, ar} and argue as we did following (3.39).
(3.51) can be established without difficulty once we have adjoined @, , - -+, ar
to the designs and thereby removed the effect of having > uR(ax , t), and
having done so we are finished with the proof of the extension.

REMARK 3.4. If we imposed further restrictions on ¢ and & we could obtain a
better estimate of the second order term in the approximation infs ||f — P4f|* =
¥'n%/12 4+ o(n™?). In fact, if ¢ and « are continuously differentiable then the
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o(n™?) term can be replaced by O(n ) as can be seen via (3 .48). (3.48) could
also be used to obtain upper bounds on ||f — Pzf||* which would improve upon
those found in Lemma 3.1. However, the bound in Lemma 3.1 is valid even
when Assumption C does not hold.

REMARK 3.5. It is easy to verify that we need not restrict ourselves to the inter-
val [0, 1] and that Theorem 3.1 holds without change provided we alter (3.38),
when the interval is [a, b], by substituting « for 0 and b for 1.

4. Miscellaneous remarks. This section is devoted to miscellaneous remarks
and examples which will elaborate. on points raised in the previous discussion
and, at the same time, exhibit concrete cases.

The major difficulties encountered in applying the results of Section 3 are in
obtaining explicit information about & and the norm on &. The reproducing kernel
spaces which, at present, are the most easily handled from a computational
point of view, are those which correspond to covariance kernels having the
form R(s, t) = u(s)v(t),s < t. Here thenorms || |rand | | are easily found.
Let us therefore take R(s, t) = u(s)v(t), s < t, where u and v are twice con-
tinuously differentiable functions on [0, 1] which satisfy

(4.1) u(t)v(s) — u(s)v(t) > 0, s <t
(4.2) ' (B(t) — u()'(t) >0, telo,1].
The matrices Ry, T ¢ D, , are shown to be positive definite by virtue of the

positivity of u and v together with (4.1).
For f a function on [0, 1]and T = {t;, --- , t.} € D, we have

(4.3) Iz = 2255 [(FG)(tera) — F(tan)o(B))?/
0(8)0(tgr) (b)) (%) — w(t)v(tern))] + (1) /u (h)o(t)
and if f/v is absolutely continuous we can write
Al = 2065 [t (o)) [ (u/o)T + £(0) fu(t)o(h).
That ||f||7 is actually fr R fr may be verified by checking that (f, R(-, t))z
= f(t) for t ¢ T. In a similar fashion, one shows that
(4.4) IfI1F =[5 [(f/0) "/ (u/v)'] 4 £°(0)/u(0)0(0).

F, therefore, is the class of functions f for which the integral in (4.4) is finite and

f/v is absolutely continuous.

The simplicity of the norm structure for these examples allows one to verify
directly the simple present condition of Section 2. Let 6 = (&1, -+ -, €, 01, * =+, 84)
where ¢; , 6; are all positive and let I,(S) = VIR(-,?),t¢ Ue (st — e, 8 + 8),
S = {s1, -+, 8} € D,] where the intervals (s; — e , sx + 8) are taken to be
disjoint and contained in [0, 1]. It is easy to verify that

(4.5)||Prysf* = 2ormt [SEE1(F/0)"/ (w/0)T + (81— &) /u(s1 — e)v(s1 — &)
+ SRS (/o)) [ (w/v) ).

Now the simple present condition is equivalent to requiring ||Pr,ofl* = ||fII®
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for all 6 only if f ¢ V[R(-, s), s £ S]. Looking at the nth term in the first summa-
tion on the right side of (4.5) it is clear that if we fix all ¢;’s and §,’s except for
8, which we let vary over (0, 1 — s,] that we obtain (f/»)"* = 0 on (s,, 1]orf = cv
on (8, , 1]. Similarly, on [0, s;)

Fs1— a)/u(ss — e)o(si — &) — £7(0)/u(0)0(0) + ¢* = [¢7[(F/v)" "/ (u/v)']
orf = cuon|[0,s). Finally, on an interior interval (s; , s+1),
(S /o)) o (ufo)' = o [(F/0) ™/ (u/v) 1.

This implies by the Cauchy-Schwartz inequality that (f/»)" = ¢” (u/v)’
and therefore f = cxu + ¢'v on (sx, Si1). On the other hand, it is easy to see
that VIR(-, s), s € S] contains all continuous functions of this form.

Turning to asymptotically optimal designs, we see first that the integral
equation (3.2) may be solved for these covariance kernels. Indeed, let f satisfy, for
@ continuous,

(46) f(t) =[1R(s, D)e(s) ds = v(t) [su(s)e(s) ds + u(t) [iv(s)e(s) ds.
Then, f is twice continuously differentiable and
(A7) f(t) =0'(@) [culs)e(s) ds + u'(t) [tv(s)e(s) ds,
(48) (1) =" (®) [su(s)e(s) ds + u” (1) [T v(s)e(s) ds
+ o(t) (u(t)0'(t) — u'(D)o(1)).
Solving (4.6) and (4.7) for [ou(s)e(s) dsand [} v(s)e(s) ds and inserting these
in (4.8) gives
49) o= —{f" =" [(fu' — fu)/(u'v — w')]
+ u"[(f" = )/ (u'o — o))}/ (u's — w’).
For R(s, t) = min (s, t), (4.9) reduces to —f". If f is twice continuously dif-
ferentiable then it may be seen that
7(t) = [sR(s, t)e(s) ds
+ {[f(0)u'(0) — w(0)f'(0)1/u(0)[u'(0)2(0) — w(0)s'(0)}R(0, ¢)
+{If /(1) — £ ()]/p(DR (1)e(1) — u(1)e'(DHIRA, ©),
where ¢ is given by (4.9). The presence of the ‘“‘end terms” reflects the need for
having the extension of Theorem 3.1 described in Remark 3.3.

The explicit computation of asymptotically optimal designs depends, of course,
on our ability to integrate the function (u'(£)v(t) — w(t)v'(¢))"*(¢(1))* in a
sufficiently closed form. Even for the Brownian motion kernel, where this funec-
tion becomes (f”)*?, this computation may be awkward to perform. The simplest
functions to treat in the Brownian motion case are the power functions 7,
with v > 1, where the nth design T,*for ' is easily calculated to be

tjn = (]-/n)Bl(Z-y—l),j = 1: 27 (2
For kernels not of the form R(s, t) = u(s)v(¢), s < ¢, the amount of known
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kernel space information is relatively meager. The evaluation of || |-, for
example, involves the inversion of Rr, and when this is possible it must be
viewed as a fortunate accident. The only example of which we are presently
aware is (essentially) R(s,t) = 1 — |s — | on [0, 1]. Here, for

T= {t17 e 7tn} SD,.,
1% = 25 [(F(tisn) — FED)Y (b — )] + (F(t) + F(t))7/2(2 — ta + 1),

which indicates a close parallel with the Brownian motion case. The evaluation
of | | is more feasible (cf. [8]). Of prime importance for obtaining the designs
of Section 3, however, is the solution of the integral equation (3.2); the norm
of f can be determined from this solution.

A class of kernels for which (3.2) has tractable solutions for important special
cases is given by R.(s,t) = (1 — [s — ¢|)", s, tin [0, 1], forn = 1,2, --- . R,
is completely monotone of order n + 1 and in fact, generates all such stationary
covariance kernels in a suitable sense [16]. These kernels satisfy Assumptions
A, B, and C in Section 3 as can be seen by observing that R, is of the form (3.7)
(whenn = 2,p(A) = X°(1 — X)*™n(n — 1) for A > 1 and p(\) = 0 other-
wise) and p(\) satisfies (3.8) and (3.9)).

For n = 1 and f twice continuously differentiable, (3.2) has the solution
¢ = —f"/2 with end terms involving R(-, 0) and R(-, 1). This can be extended
to R(s,t) = (1 — Ns — t)*, s, ¢tin [0, 1], for A > 1. Here ¢ is a linear combina-
tion of the values of f” at the points ¢ + 7\~* with r an integer and the end terms
involve R(-, ™\™) and R(-, 1 — r\™"), r integral.

For n = 2 and f sufficiently smooth, (3.2) can be transformed to a linear dif-
ferential equation with constant coefficients. For example, if n is odd and ¢ is
(n — 1) times differentiable,

(4.10)  —(1/20) ([3 Ra(s, D)e(s) ds)™(t) = 242 "[(n — 1)1/(2k) ™ (2).

There are (n — 1) linearly independent solutions to (4.10) set equal to zero
for each of which fﬁ R.(s, t)o(s) ds is a polynomial of degree at most n. These
polynomials together with R.(¢, 0) = (1 — t)" and R,(¢, 1) = ¢" are linearly
independent so that (3.2) can be solved for all polynomials of degree n. More
generally, one must solve the nonhomogeneous equation (4.10) set equal to &,
say. For n even the situation is analogous. As a special case, if n = 2 and if f
has two continuous derivatives, we obtain

1) = [5 Ra(s, O1=F"(8)/4 + § [85 + F6(7(0) + F(1)] ds
+ [ [of + 3(0) — #5f(1) — f/(0)/4]Rx(2, 0)
+ [ [5F 4+ H(1) — &F(0) + f(1)/4]Ra(t, 1).

REFERENCES

[1] AronszaIN, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68
337-404.



REGRESSION PROBLEMS WITH CORRELATED ERRORS 89

[2] EvFviNGg, G. (1956). Selection of nonrepeatable observations for estimation. Proc.
Third Berkeley Symp. Math. Statist. Prob., 1 69-75. Univ. of California Press.

[3] GRENANDER, ULF (1950). Stochastic processes and statistical inference. Ark. fiir Mat.
1 195-277.

[4] HAsEK, J. (1960). On a simple linear model in Gaussian processes. Trans. Second Prague
Conf. Inf. Theor. 185-197.

[5] HAsEK, J. (1961). On linear estimation theory for an infinite number of observations.
Teor. Veroyatnost. ¢ Primenen. 6 166-177 (English translation).

[6] HAsEK, J. (1962). On linear statistical problems in stochastic processes. Czech. Math. J.
12 404-444.

[7] HAsEK, J. (1962). An inequality concerning random linear functionals on a linear space
with a random norm and its statistical application. Czech. Math. J. 12 486-491.

[8] HoEL, PauL G. (1958). Efficiency problems in polynomial estimation. Ann. Math.
Statist. 29 1134-1145.

[9] HoEL, Paun G. (1961). Asymptotic efficiency in polynomial estimation. Ann. Math.
Statist. 32 1042-1047.

[10] KieFER, J. (1959). Optimum experimental designs. J. Roy. Statist. Soc. Ser. B 21
272-319.

[11] KIEFER, J. (1961). Optimum experimental designs V, with applications to systematic
and rotatable designs. Proc. Fourth Berkeley Symp. Math. Statist. and Prob.
1 381-405. )

[12] KIEFER, J. (1961). Optimum designs in regression problems, II. Ann. Math. Statist.
32 298-325.

[13] K1EFER, J. (1962). Two more criteria equivalent to D-optimality of designs. Ann. Math.
Statist. 38 792-796.

[14] KiEFER, J. and WoLrowiTz, J. (1959). Optimum designs in regression problems. Ann.
Math. Statist. 30 271-294.

[15] KierER, J. AND WoLFowiTz, J. (1960). The equivalence of two extremum problems.
Canad. J. Math. 12 363-366.

[16] Lfivy, PauL (1962). Extensions d’un théoréme de D. Dugué et M. Girault. Z. Wahr-
scheinlishkeitstheorie und Verw. Gebiete 1 159-173.

[17] ParzEN, EMANUEL (1959). Statistical inference on time series by Hilbert space meth-
ods, I. Tech. Report No. 23 (NR-042-993). Appl. Math. and Statist. Lab., Stan-
ford Univ.

[18] ParzEN, EMANUEL (1961). Regression analysis of continuous parameter time series.
Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 469-489.

[19] ParzEN, EMANUEL (1961). An approach to time series analysis. Ann. Math. Statist. 32
951-989.

[20] SirNDAL, CARL-ERIK (1962). On a maximizing problem with several applications in
statistical theory. Ark. fiir Mat. 4 385-392.

[21] SArNDAL, CARL-ERIK (1962). Information from censored samples. Almquist and Wiksell,
Stockholm. )

[22] TuruBaLiN, V. N. anxp FreuiN, M. 1. (1962). On the structure of the infinitesimal
o-algebra of a Gaussian process. Teor. Veroyatnost. ¢ Primenen. T 196-199 (Eng-
lish translation).

[23] YLvisakRER, N. Donarp (1964). Lower bounds for minimum covariance matrices in
time series regression problems. Ann. Math. Statist. 36 362-368.



