LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS
WHEN THE MODEL IS INCORRECT!
By RoserT H. BERK
University of Michigan
0. Summary. The large sample behavior of posterior distributions is examined
without the assumption that the model is correct. Under certain conditions it is
shown that asymptotically, the posterior distribution for a parameter 6 is con-
fined to a set (called the asymptotic carrier) which may, in general, contain
more than one point. The asymptotic carrier depends on the model, the carrier of
the prior distribution and the actual distribution of the observations. An ex-
ample shows that, in general, there need be no convergence (in any sense) of the
posterior distribution to a limiting distribution over the asymptotic carrier. This
is in contrast to the (known) asymptotic behavior when the model is correct; see
e.g. [7], p. 304: the asymptotic carrier then contains only one point, the “true
value” of 6 and the posterior distribution converges in distribution to the dis-
tribution degenerate at the ‘“true value.”

1. Introduction. In the following, {X;} represents a sequence of abstract random
variables. A model is given which specifies that {X,} are equally and inde-
pendently distributed (e.i.d.) with one of the densities f( - | 8), where the indexing
parameter 0 takes its values in the parameter space 0, assumed to be a Borel sub-
set of a complete separable metric space. (The f(-| 6) are densities with respect
to some fixed o-finite measure on range X; X denotes a generic member of the
sequence). P denotes a normalized prior distribution on (the Borel subsets of)
0 and Py, denotes the corresponding posterior distribution of the parameter given
"Xy, -+, X; - Thus

(1.1) Pid = ([ 1 f(X: | 0) dP(6))/1fe I11 f(X: | 6) dP(6)]

for any Borel subset A of ©. (The assumption of measurability of f(z |-) as a
function of 6 is detailed in Section 2.)

In this paper we study certain aspects of the asymptotic behavior of the
sequence {P;} when {X;} are assumed to be e.i.d. with distribution ¥, which need
not correspond to any of the densities in the model. We define (below) a set 4, ,
called the asymptotic carrier, and establish that P, is asymptotically carried on
Ay, . By this is meant that if U is any open set containing 4, , lim P,U = 1 [F].
The symbol [F] means F—almost surely with the appropriate product-measure
interpretation implied as the context demands. Limits, otherwise unspecified, are
taken as k — o.
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Previous studies in this area have assumed that the model is correct. It is well
established that when {X;} are e.i.d. with density f(-| 6o), Px almost surely be-
comes degenerate at 6y as k increases. A general (and elegant) proof of this phe-
nomenon is given in [2], where it is established that P, almost surely becomes
degenerate at 6, under almost all 6, [P]. A result establishing this behavior for any
6, may be found in [7], pp. 304-5, where certain boundedness assumptions on
f(-] 6) are made (as well as the tacit assumption that 6, is in the carrier of P).
The approach taken here resembles that of [7]. Throughout, the term ‘‘carrier”
has a topological connotation, denoting the smallest relatively closed set having
probability one. Without loss of generality, we assume that © is the carrier of P;
then P assigns positive probability to every (open) neighborhood of every point
of ®. Topological statements about ® refer to the relativized metric topology.
Expectations, unless otherwise indicated are relative to F.

2. Assumptions. Before presenting the assumptions to be used throughout, we
discuss a certain modification of Equation (1.1). This equation remains valid if
(-] 0) is replaced by a function of the form

(2.1) u(z |8) = g(z)f(z | 6)

where ¢ is, for example, positive [F]. In [7], Le Cam essentially uses u(-| ) =
F(-18)/f(-| 60), where 6, is the “true value’ of the parameter. No reason for this
choice is given in [7], but the author is indebted to Professor Peter Huber for
supplying one: In proving the desired theorem, certain assumptions must be
made about the function used in (1.1). These assumptions are often less re-
strictive if an appropriate u( - | 8) is used in place of f( - | 6). An illustration will be
given after the assumptions to be made are presented. Another advantage of an
appropriate (| 0) is mentioned in [5], p. 905. Henceforth, we assume that an
appropriate u( -| 8) has been selected to be used throughout.

DeriniTiONs. (2) Hi(8; Xy, -++, Xi) = [H(X1|0) + --- + H(Xi|0)]/k
where H(-|0) = logu(-|8). If there is no confusion about the arguments, we
write simply H(6) or just Hy .

(b) 1(6) = EH(X | 6) = E Hy(6) forallk, n* = sup {n(0), 0 £ ©}.

(¢) As={0e0© :n(0) =% —5}.

(d) If v is a (possibly random) real-valued function of § and A < O,
A ||v|le = sup {[v(8)|,0 & A}, A sup v = sup {v(0),0 & A}. (Thusn* = © sup 7.)
If A is empty, A [[v||o« = 0, A supv = — .

Assumprions. (i) f(z | 6) is measurable jointly in z and 6; for almost every
z [F], f(x |-) is continuous in 8, at all 6 ¢ B.

(ii) Forall@e ®, F{z : f(x|6) >0} =1

(iii) For every 6 ¢ ©, there is an (open) neighborhood U of 6 such that
EU [HX | )]lo < o.

(iv) There is a positive integer p such that for any real number r, there is a co-
compact subset D of ® (D’ = ® — D is compact) such that ED sup H, < r.

Assumption (ii) avoids the predicament of obtaining realizations of {X.} for
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which (1.1) is undefined. The assumption is not very restrictive as we try to
indicate next. Often, when Assumption (ii) does not hold, the following structure
is present: There is an increasing sequence of measurable subsets of range X, { B},
such that forall 4, FB; < 1, F (u B;) = 1 and such that, letting

A; ={0:{z:f(x|0) > 6} — B; is F-null},
ud; = {6: F{z:f(z|0) >0} <1} = A.

That is, the set, A of 8 that violate the condition in Assumption (ii) is the union
of an increasing sequence of sets A, , assumed here to be Borel subsets of ©. It
is easily seen that F[lim (Pz4;) = 0] = 1. This follows from the fact that almost
surely [F], a member of the sequence {X;} assumes a valuein B  (since FB; < 1);
when that happens, the posterior probability of 4; becomes (and remains) zero,
[F]; see (1.1). Hence asymptotically, the posterior distribution of § ‘“flows off”
the set A. Thus in investigating the asymptotic carrier of the posterior dis-
tribution, we need confine attention only to A', which, without loss of generality,
we may take to be ©.

Assumptions (iii) and (iv) are boundedness conditions needed to apply the
dominated convergence theorem. Assumption (iv) is a relaxation of a condition
used by Wald ([10]; Lemma 3) for similar purposes and seems to have been first
alluded to in [5], p. 904, for p = 2. Many multi-parameter models require the
extra flexibility this relaxation affords (the normal distribution with unspecified
mean and variance, for one). We further note that if Assumptions (i) and (ii)
hold, they apply equally well to u(z | 6) of the form in (2.1). Aninstance where
using a properly chosen u(z | ) is preferable to f(z | 8) is the univariate normal
distribution with unit variance and mean 6. Assumption (iv), letting u(-| 6)
= f(-| 6), requires that EX’ < «.If we takeu(z | 0) = f(z | 0)/f(x | 0) = exp
(6 — 6°/2),the condition reduces to E [X| < .

The quantity n(8) (Definition (b)) is essentially a measure of entropy; see
[6], pp- 12-15, [9] p. 19. It is well known (ibid) that

(2.2) 7(8) = E log f(X)

where f( - ) is a density for F; there is equality in (2.2) precisely when f(zx | 8) is
also a density for F. In a sense then 5(8) measures the similarity between F and
f(-]6). The asymptotic carrier, A,, mentioned in the second paragraph of
Section 1, is defined by

(2.3) Ag= {00 :9(8) =1"};
see Definition (¢).

3. Some lemmas.

Lemva 1. If A C © is compact, Assumption (iii) implies that EA |H(X |-) |«
< o,

Proor. For each 6 ¢ A, choose, a neighborhood Uy as guaranteed by (iii) so
that EU, |[H(X|-)]le < . A may be covered by a finite number of these
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neighborhoods, U, , - -, U, say. Then
AHX | )o = G [[HE [ )lo + -+ + Us [HX )],

from which the lemma follows.

Lemma 2. Under Assumptions (1), (iii) and (iv)

(a) n(6) s continuous

(b) 9™ is finite

(e¢) Ag s not empty

(d) Interior of As is not empty for 8 > 0

(e) As is compact.

Proor. (a) follows from Assumptions (i) and (iii) and the dominated con-
vergence theorem. Since n(8) = E H,(8) < ED sup H, for 8 £ D and the latter
term can be made arbitrarily small by proper choice of the co-compact set D
(Assumption iv), there is a compact set D’ such that D" supn = @ supn =n".
For6e D', |n(0)| < ED' |H(X|-)|l» < « (Lemma 1);hence |*| < «.Further-
more, since 7 is continuous, it achieves its supremum; hence A4, is not empty.
Since 45 D 7 '(n* — 8, 7% = 1 (»* — 8, =), which is open and includes 4, ,
the interior of A, is not empty. Finally, 4; = 7 '[* — 8, 7¥], so that 4, is closed.
There is a co-compact set D such that for § e D, n(6) < EDsup H, <n* — 5,
showing that A; € D’; hence A; is compact.

4. Main theorem.

THEOREM. Suppose a model for the abstract random variables {X.} specifies that
they are e.i.d. with one of the densities f(-| 0), where the range, ©, of the indexing
parameter 0 is a Borel subset of a complete separable metric space and the f( -|0) are
densities with respect to a fixed o-finite measure on range X. Let P be a prior dis-
tribution on the Borel subsets of ® and let Py, denote the posterior distribution of 6
gwenX,, - -+, Xy, (see Equation (1.1)). If {X;} are actually e.i.d. with distribution
F, and Assumptions (1)—(iv) hold, then Py is almost surely [F] asymptotically car-
ried on a set Ao (see Equation (2.3)) in the sense that if U is an open set containing
Ao, lim P,U = 1 [F].

Proov. (The following is an adaptation of Le Cam’s proof ([7], pp. 304-5) that
P, is asymptotically carried on {6} when f(-| 6) is a density for F.)

Let U be an open subset of © containing A, . Since A; | Ao and the A, are
closed (Lemma 2), thereis a 8; > Osuch that 0 < & < 8, , implies that A; € U (or
else as 5— 0, A;n U’ is a nested system of non-empty closed sets which, therefore
have a non-empty intersection. Since nd; = Ay, this contradicts 4, < U.
We note that for any k, P.U > 0 [F]. (Assumption (ii) guarantees that

Y£(X:| 6) > O [F)forall 8; also PU > Osince O is the carrier of P. Hence (1.1)
implies that P,U > 0 [F].) Since the interior of A; is not empty (Lemma 2),
a similar remark applies to PrA; . Let 0 < & < &, ; we may write

(4.1) L. = P.U'/P.U < P,A,'/P:A; .
Referring again to (1.1), (4.1) may be expressed as
(4.2) Li < (A4|lexp Hille/Asllexp Hill)*
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where
Al = (falv(8)]* dP(8))"".

One is thus led to investigate the asymptotic behavior of expressions such as
Allexp Hy|lx . This may be done with the aid of the generalized strong law of
large numbers (GSLLN) for Banach-valued random variables (see Han$ [4],
Theorem 39; Mourier [8], Section 3.1). We first take A to be a compact subset
of ® and consider the space of continuous real-valued functions on A, which,
under the norm A|| - || is a separable Banach space. We are interested in the
behavior of the averages, { H;(8)}, of successive independent observations of
the (Banach-valued) random variable H(X | -). (Note: Criterion 6 of [4],
p. 72 may, with Assumption (i) be used to establish that H (X | 6) is a generalized
random variable.) By Lemma 1, EA|H(X | )|« < o, so that the GSLLN
implies that

(4.3) lim A|| By — nll = 0 [F].

With the observation that if », v;, v2, --- are elements of an L. space,
lim ||ox — 9|l = O implies that

(44) lim [lexp v — exp o]le = 0 and lim [Joelle = [lo],

(4.3) implies that

(4.5) lim Allexp Hillx = Allexp 1|« [F].

In particular, if Ay C A, this last expression is just exp 7.
We also wish to consider the case A = A;'. As guaranteed by Assumption
(iv), there is a positive integer p and a co-compact set D such that

(4.6) EDsup H, < o* — 5.

Since for 8 ¢ D, 7(8) = E H,(6) < ED sup H, < n* — 5, we see that D C 4,
and A, = Du (D' — A;) where D' — A; has compact closure. Thus we may
write
(47)  As|lexp Hulls < As'[lexp Hillw

= max {D|lexp Hillo, (D" — A4s)|lexp Hill}.

The second term in the brackets is easily bounded since D' — A; has compact
closure. Equations (4.3) and (4.4) with A = closure of (D’ — A;) imply that

(4.8) lim (D — 4s)lexp Bulle = (D" — As)llexp nlle < exp (2 — ) [F]

since outside A; , n(8) < n* — 6.

To obtain a bound for the first term in brackets in Equation (4.7), we bound
H.(6) fork = pand 8 £ D by considering the U-statistic formed fromX, , - - - , Xx ,
based on D sup H,(8; X1, -+, X,). If a denotes a selection of p indices from
among {1; --- , k}, we have, for all such « and 6 ¢ D,

(4.9) p 2P H(Xui|0) = Hy(0;Xar, -+, Xap)
< Dsup Hy(0; Xar, -+, Xap).
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By summing (4.9) over all (%) values of @ and combining the sums on the
LHS, we find (upon division by appropriate constants) that
(4.10) He(8) < (5)7' 22D sup Hy(0; Xar, - , Xap)

= Au(D; Xy, -+, X&) = Hy(D)
where the last two equalities are definitions. Thus for p = 2 and 8 ¢ D,

Hi(0) £ Au(D; X, -+, Xi) = [2/k(k — 1)] & D sup Hy(6; X, X;)

where the sum is over 1 < 7 < j < k. Thus for 8 ¢ D, we bound H, by a random
variable, I:I,i(D), that does not depend on 6. Furthermore, we note that the
U-statistic H,(D) is strongly consistent, i.e.

(4.11) lim A,(D) = ED sup B, £ 2* — 5 [F].

This follows from the martingale convergence theorem and the representation
(4.12) H.(D) = E[D sup B, | A(D), Hiya(D), ---1[F]

This representation follows easily from the fact that for all ¢,

(413) EID sup Hy(+; Xar, -+, Xep) | Bu(D), Hua(D), -] = h [F,

where h denotes the RHS of (4.12); a fact due to the symmetry present in (4.10).
By summing (4.13) over the (%) values of a, one obtains

()b = El(3)H.(D) | (D), Hea(D), ---1 = (5)H(D) [F]

(see Equation (4.10)) and (4.12) follows. (The idea is, of course, exactly that
used by Doob in establishing the SLLN as a consequence of the (decreasing)
martingale convergence theorem; see [3], pp. 341-2.) Equation (4.10) implies
that D|lexp Hillo < exp Hi(D), from which it follows (Equation (4.11))
that

(4.14) lim sup D|lexp Hill» < exp(n* — 8) [F].
Together, (4.7), (4.8) and (4.14) imply that
(4.15) lim sup A;'|lexp Hlx < exp (n* — 5) [F).

It then follows from (4.2), (4.5) and (4.15), taking A = A;in (4.5) and using
the remark following it, that

lim sup (L)' < ¢ [F];
or that lim P,U = 1 [F]; establishing the theorem.

6. Discussion. If A, contains just one point, the theorem shows that asymp-
totically, the posterior distribution almost surely becomes degenerate at that
point. When f(z | 6,) is a density for F, Equation (2.2) shows that 4, = {6},
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so that the known asymptotic behavior of Py in this case follows as a special
case of the theorem. Even when the model is incorrect, it happens in many
cases of interest that Ao contains only one point. Thus for a normal model with
specified covariance structure, 4, contains only the point EX, provided E|X| < «
or, if the covariance is unspecified, only the point EXX' or (EX, Cov X) accord-
ing as the mean is or is not specified, provided E|X|* < . (We assume the mean,
if specified, is zero; Cov X denotes the covariance matrix of X under F, X/,
the transpose of X.) Hence asymptotically, the effect of assuming a normal model
is to center attention on the true mean and covariance structure of X. This
statement is easy to verify directly when P is also normal. (Naturally the pre-
ceding fails to hold if the carrier of P excludes the relevant point a priori or
if the relevant moments are not finite.) Examples can also be given for which 4,
contains more than one point; we present one here in connection with an ex-
ample mentioned in the summary.

The following example shows that, in general, there need be no distribution
over A to which P, almost surely converges (in some sense). Let ® = {0, 1}
and fy, 8 = 0, 1 be the corresponding (distinct) densities for X. Let P(1) =
p>0,P0)=¢g=1-—p>0. Then

L. = Pu(1)/Pu(0) = (p/a) L1 r(X:)
where r(z) = fi(z)/fo(x). Suppose F is such that n(0) = (1), or equivalently,

that E log r(X) = 0; in this case 4o = {0, 1}. Since log L; is a sum of e.i.d.
random variables, it follows ([1], Theorem 4) that

lim sup Ly = + o, lim inf Ly = 0 [F],
hence that
lim sup Px(1) = 1, lim inf Pi(1) = 0 [F],

showing that asymptotically, the posterior distribution exhibits no stability
on Ao .

For more complex models it can happen that there is a non-degenerate dis-
tribution to which P; almost surely (weakly) converges. It is hoped to report
on this phenomenon in a subsequent paper.
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