SOME GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPLICATIONS TO STATISTICAL DESIGNS¹

By Hiralal Agrawal²

University of Bombay

1. Introduction. If S_1 , S_2 , \cdots , S_n are n sub-sets of a given finite set S, then we say that (a_1, a_2, \cdots, a_n) is a system of distinct representatives (SDR) for the sets S_1 , S_2 , \cdots , S_n if a_i belongs to S_i and all a_i 's are distinct. The necessary and sufficient condition in order that the sets S_1 , S_2 , \cdots , S_n possess an SDR is that the union of any k of the sets contain at least k distinct elements ([6], [8]). The concept of distinct representatives has been generalized in various directions with a wide field of applications ([5], [8], [9]). In this paper some further generalizations are given with applications to design of experiments.

2. Generalization.

DEFINITION 2.1. If S_1 , S_2 , \cdots , S_n are the n sub-sets of a given finite set S, then (O_1, O_2, \cdots, O_n) will be called a (m_1, m_2, \cdots, m_n) SDR if

- (i) $O_i \subseteq S_i$,
- (ii) $n(O_i) = m_i$, and
- (iii) $O_i \cap O_j = \emptyset$, $i \neq j, = 1, 2, \dots, n$, where $n(O_i)$ is the number of elements in the set O_i .

If $m_1 = m_2 = \cdots = m_n = m$, the sets will be said to possess an m-ple SDR. We can prove the following theorem on similar lines as Theorem 2.1 of [8].

THEOREM 2.1. A necessary and sufficient condition in order that S_1 , S_2 , \cdots , S_n may possess a (m_1, m_2, \cdots, m_n) SDR is that

$$n(S_{i_1} \cup S_{i_2} \cup S_{i_3} \cup \cdots \cup S_{i_k}) \geq \sum_{j=1}^k m_{i_j},$$

$$1 \leq i_1 < i_2 < \cdots < i_k \leq n; \quad 1 \leq k \leq n.$$

3. Applications.

Lemma 3.1. Given positive integers v, b, r and k such that bk = vr and v > k then there exists an equi-replicate binary incomplete block design in v treatments each replicated r times in b blocks of constant block size k.

THEOREM 3.1. In every binary equi-replicate design (with column as blocks) of constant block size k such that bk = vr and b = mv, the treatments can be rearranged into blocks, so that every treatment occurs in a row m times.

Proof. Form the sets S_1 , S_2 , \cdots , S_r where S_i is the set of all block numbers containing the treatment i. Now,

Received 23 November 1964; revised 12 July 1965.

¹ This work was financially supported by a Junior Research Fellowship of the Council of Scientific and Industrial Research (Delhi).

² Now at Banaras Hindu University, Varanasi.

$$n(S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_u}) \geq ur/k = umk/k = um,$$

$$1 \leq i_1 < \cdots < i_k \leq v; \quad 1 \leq k \leq v;$$

and hence by Theorem 2.1 we can choose an *m*-ple SDR, say (O_1, O_2, \dots, O_r) . Let $\bar{S}_i = S_i - \{O_i\}, i = 1, 2, \dots, v$.

Now every \bar{S}_i contains m(k-1) different block numbers and each block number is replicated (k-1) times.

$$n(\bar{S}_{i_1} \cup \bar{S}_{i_2} \cup \cdots \cup \bar{S}_{i_{u'}}) \ge u'm(k-1)/(k-1) = u'm,$$

$$1 \le i_1 < i_2 \cdots < i_{u'} \le v; \quad 1 \le u' \le v;$$

and hence there exists a second SDR. It is important to note that the second SDR is such that if the representations of S_i are $O_i^{(1)}$ and $O_i^{(2)}$ then $O_i^{(1)}$ and $O_i^{(2)}$ are disjoint. Evidently the process can be continued to get k SDR's which may be written as 1st, 2nd, \cdots , kth row. Replace the block numbers in the row by the set number which they represent. We will find that each treatment occurs in a row m times.

Example. Let us take a BIB design of [2] page 471 with parameters v = 5, k = 3, r = 6, b = 10, $\lambda = 3$.

							1st	2nd	3rd
							SDR	SDR	SDR
S_1	1,	2,	3,	6,	7,	8	1, 2	7, 6	3, 8
S_{2}	1,	2,	4,	6,	9,	10	9, 10	1, 2	4, 6
S_3	1,	4,	5,	7,	8,	9	7, 8	5, 4	1, 9
S_4	3,	4,	5,	6,	7,	10	6, 4	10, 3	7, 5
S_5	2,	3,	5,	8,	9,	10	3, 5	8, 9	2, 10

Hence the required design is as follows:

0ws	Block No.											
Ro	1	2	3	4	5	6	7	8	9	10		
1	1	1	5	4	5	4	3	3	2	2		
2	2	2	4	3	3	1	1	5	5	4		
3	3	5	1	2	4	2	4	1	3	5		

Theorem 3.2. In every binary equi-replicate incomplete block design (with blocks as columns) of constant block size k such that bk = vr and r = mk + t (m is a positive integer or zero and $0 < t \le k - 1$), the treatments can be rearranged into blocks so that every treatment occurs m or (m + 1) times in a row.

PROOF. b = vr/k = v(mk + t)/k = vm + tv/k.

Add (k-t) dummy replications of the v treatments in s blocks of constant block size k clearly s = [(k-t)/k]v. Our Lemma 3.1 asserts that this can always be done. Let the new blocks be numbered (b+1), (b+2), \cdots , (b+s).

As in Theorem 3.1, form the sets S_1 , S_2 , \cdots , S_v of (b + s) block numbers where S_i is the set of all block numbers containing treatment i.

Clearly b + s = (m + 1)v, and applying Theorem 2.1 there exist k SDR's. Write them as k rows. Delete the dummy block numbers and replace the block numbers by the set they represent. We find that every treatment occurs either m or (m + 1) times in a row.

EXAMPLE. Take the PBIB design SR-4 in [1] with parameters v=6, r=6, k=4,b=9,m=2,n=3. Introduce 3 dummy blocks say (10, 11 and 12) and form the sets S_1, S_2, \dots, S_6 .

									$_{ m SDR}^{ m 1st}$	$2\mathrm{nd} \ \mathrm{SDR}$	$3\mathrm{rd} \ \mathrm{SDR}$	$rac{4 ext{th}}{ ext{SDR}}$
S_1	1,	2,	3,	4,	5,	6,	10,	11	1, 10	4, 2	6, 11	3, 5
S_2	1,	2,	4,	6,	7,	9,	11,	12	3, 11	6, 7	9, 12	4, 1
S_3	1,	2,	3,	7,	8,	9,	12,	10	2, 12	8, 3	1, 10	7, 9
S_4	1,	2,	4,	5,	7,	8,	10,	11	4, 5	1, 10	7, 8	2, 11
S_5	4,	5,	6,	7,	8,	9,	11,	12	6, 7	9, 11	4, 5	8, 12
S_6	2,	3	5,	6,	8,	9,	12,	10	8,9	5, 12	2, 3	6, 10

Delete the dummy block numbers (10, 11 and 12) and we get the required design.

SWO	Block No.												
\mathbb{R}_{0}	1	2	3	4	5	6	7	8	9				
1	1	3	2	4	4	5	5	6	6				
2	4	1	3	1	6	2	2	3	5				
3	3	6	6	5	5	1	4	4	2				
4	2	4	1	2	1	6	3	5	3				

COROLLARY. Let n_{ij} denote the number of times that the ith treatment occurs in the jth row.

Case (1). When t = 1, then in each row v/k treatments occur (m + 1) times each and the others m times each. Each treatment appears (m + 1) times in some row and m times in the other rows. Define the ith and uth treatments to be first associates if there is a row in which they both occur (m + 1) times each, and to be second associates otherwise. Then

$$\sum_{j} n_{ij}^2 = m^2 k + 2m + 1,$$
 $i = 1, 2, \dots, v,$
 $\sum_{j} n_{ij} n_{uj} = m^2 k + 2m + 1,$ if i and u are the first associates,
 $= m^2 k + 2m,$ if they are second associates.

The row association scheme is that of a group divisible design with k groups of v/k treatments each.

Case (2). When t = k - 1 each treatment appears exactly m times in some row and (m + 1) times in each of the other rows. In this case define the *i*th and *u*th treatments to be first associates if there is a row in which they both appear exactly m times each. Then

$$\sum_{j} n_{ij}^{2} = k(m+1)^{2} - 2(m+1) + 1, i = 1, 2, \dots, v,$$

$$\sum_{j} n_{ij} n_{uj} = k(m+1)^{2} - 2(m+1) + 1, if i \text{ and } u \text{ are first associates,}$$

$$= k(m+1)^{2} - 2(m+1), if i \text{ and } u \text{ are second associates.}$$

The row association scheme is again that of a group divisible design.

Thus, if the original design is a balanced incomplete block design with $r = mk \pm 1$, we obtain a partially balanced design for two-way elimination of heterogeneity [7].

- **4.** Concluding remarks. An algorithm to obtain an *m*-ple SDR and further applications will be given in a subsequent paper.
- 5. Acknowledgments. I am grateful to Professor M. C. Chakrabarti for his guidance and to the referee for his helpful suggestions.

REFERENCES

- [1] Bose, R. C., Clatworthy, W. H., and Shrikhande, S. S. (1954). Tables of partially balanced designs with two associate classes. North Carolina Agr. Exp. Tech. Bull. 107.
- [2] COCHRAN, W. G., and Cox, G. M. (1957). Experimental Designs. Wiley, New York.
- [3] HOFFMAN, A. J., AND KUHN, H. W. (1956). Systems of distinct representatives and linear programming. Amer. Math. Monthly 63 455-460.
- [4] Hall, Marshall, Jr. (1956). An algorithm for the distinct representatives. Amer. Math. Monthly 63 716-717.
- [5] Hall, Marshall, Jr. (1945). An existence theorem for latin squares. Bull. Amer. Math. Soc. 51 387-388.
- [6] HALL, PHILIP (1935). On representatives of sub-sets. Bull. Amer. Math. Soc. 10 26-30.
- [7] HARTLEY, H. O., SHRIKHANDE, S. S. and TAYLOR, W. B. (1953). A note on incomplete block designs with row balance. Ann. Math. Statist. 24 123-126.
- [8] MANN, H. B., and RYSER, H. J. (1953). Systems of distinct representatives. Amer. Math. Monthly 60 397-401.
- [9] Mendelsohn, N. S., and Dulmaze, A. L. (1958). Some generalizations of the problem of distinct representatives. *Canad. J. Math.* 10 230-241.