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0. Summary. Simultaneous consideration of N statistical decision problems
having identical generic structure constitutes a compound decision problem.
The risk of a compound decision problem is defined as the average risk of the
component problems. When the component decisions are between two fully
specified distributions P; and P,, P; ¢ P., Hannan and Robbins [5] give a
decision function whose risk is uniformly close (for N large) to the. risk of a
best “simple” procedure based on knowing the proportion of component prob-
lems in which P, is the governing distribution. This result was motivated by
heuristic arguments and an example (component decisions between % (—1, 1)
and 91(1, 1)) given by Robbins [8]. In both papers, the decision functions for the
component problems depended on data from all N problems.

This paper generalizes and strengthens a result of Hannan and Robbins
(Theorem 4, [5]) to the case where each component problem consists of making
one of n decisions based on an observation from one of m distributions. Spe-
cifically, we find upper bounds for the difference in the risks (the regret function)
of a certain compound procedure and a best “simple’ procedure which is Bayes
against the empirical distribution on the component parameter space. Theorem
2 gives sufficient conditions for a uniform (in parameter sequences) bound on
the regret function of order N, while Theorem 3 states sufficient conditions
for a uniform bound of order N*. For m = n = 2, Theorem 2 furnishes a strength-
ening of Theorem 4 of [5]. More extensive results for the case m = n = 2 are
given in a paper by Hannan and Van Ryzin [6].

Please note that the case considered here makes the N-decisions after the data
from all N problems are available. The sequential case (kth decision after ob-
servations 1,2, --- ,k,k =1, --- , N) is treated by Hannan in [3] and by Samuel
in [10].

1. Statement of the problem and notation. Consider the following finite
statistical decision problem. Let X be a random variable (or arbitrary dimen-
sionality ) known to have one of m possible distributions Py , 6 in the finite param-

eter space @ = {1, ---, m}. Based on observing X we are required to make a
decision d e ® = {1, ---, n} incurring loss L(8, d) if decision d is made when
X is distributed as Py, 0 =1, --- ,m;d =1, --- , n.

If we simultaneously consider N decision problems each with this generic
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structure, then the N-fold global problem is called a finite compound decision
problem. More precisely, let Xi ,k = 1, - -- , N, be N independent observations,
X, distributed according to Py, with 6, in Q. Based on all N observations, a
decision di in D is to be made for each of the N component problems. For the
kth subproblem, the decision di = d represents selecting the dth column of the
m X n loss matrix (L(6, d)). Note that in the case considered here all N de-
cisions are held in abeyance until all random variables X3, k¥ = 1, ---, N,
have been observed.

Before proceeding, we introduce the following notation. Let there exist a
o-finite measure u dominating {P;, - -- , Pn} such that the densities

(1) fo(z) = (dPy/dp)(z) = K a.e.

for some K < . There is no loss of generality in this assumption since we may
always choose p = >y Pyand K = 1. Also, let f(z) = (fi(z), -+, fu(z))
denote the vector of densities in (1).

In referring to the m X n matrix of losses L(6, d), the rows will be denoted
by Ls , the columns by L°, and the ordered difference of two columns by LY =
L* — L* with components L(8, d) — L(8, d') = L™,0 =1, ---, m; d, d =
]_’ SN (8

The following notation will be used throughout the paper:

Let E™ be m-dimensional Euclidean space. Let y = (%1, **+, ¥m) and 2z =
(21, -+, 2m) be vectors in E™. Define the vector yz2 = (4121, *** , Ym2m). The
inner product and norm of E™ will be denoted respectively by (y, z) = Dy
and |y = (v, ). The dimension of the space in which these operations are
carried out will always be clear from the context.

The characteristic function of a set A will be denoted simply by A enclosed in
square brackets; that is

[Al(a) =1 ifacd
-0 ifarA.

2. Decision procedures and some preliminaries. For the compound decision
problem, a decision procedure may depend on the full observation X =
(X1, *++, Xy). Any N X n matrix of measurable functions 7'(x) = (tf(x))
will be called a randomized decision function (procedure) for the compound
decision problem if fork =1,--- ,N;d=1, --- ,n, t¥(x) = Pr{dy = d|X = x}
and Qs t(x) = 1. The kth row of T(x) will be denoted by P (x) =
(tlk(x)r T tnk(x))'

The decision function T'(x) is said to be simple if there exist functions #s(- ),
d =1, ---,nsuch that t*(x) = (ta(x), -+, ta(xe)) fork =1, --- ,N. A
simple decision function will be denoted by ¢t = (1, -* - , ta).

Let @ be the set of all N-tuples 8 = (61, -+, 0x), 6 £ Q. For each 0 ¢ Q,
let E denote expectation with respect to Xi— Ps, . Then denote by R(6, T')
the risk function for the compound decision procedure 7'(x). This risk is defined
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to be the average of the component risks Ri(8, T) = E{ D> 71 L(6: , d)t(X)} =
E(Ls, , t* (X)), for each subproblem, k= 1, --- , N. Hence

(2)  R(o,T) = N2 Ru(8, T) = EN' 20 (Lay, tP(X)).

The risk (2) may be cOnsiderably simplified in the case of a simple decision
function. For 6 e Q and § = 1, - - -, m, define the relative frequencies ps(8) =
N'#of 6 = 6,k < N}, of problems in the first N problems in which the
distribution Py governs. The vector p(8) = (pi(8), - -, pn(0)) will be called
the empirical distribution on Q.

Lett = (1, -+, ta) be a simple decision function and let Ey denote expecta-
tion with respect to Py . Then, by (2), the risk incurred in using procedure ¢ is

(3) R(8, 1) = N X E(Ls, , (X))
= 220 po(0)po(t) = (p(8), p(t)),
where
(4) po(t) = Eo(Lo, (X)) = Eof 201 L(6, d)ta(X)},
p(t) = (pu(t), -+, pm(1)).

Let ¢ = (&, +++, &) be any vector in m-dimensional Euclidean space. Let
¢t -be a siniple decision function, that is, t4(z) = 0,d = 1, ---, n is a set of
measurable functions such that ey ta(z) =
(5) Y& ) = (& p(2)).

Note that for ¢ = p(0) the function ¢ becomes the risk functlon (3) for the

simple decision procedure ¢.
The problem of choosing ¢(z) to minimize ¥(%, t) for fixed £ is straightforward.

‘From (1) and (5), we have
(6) Y& 0 = [ {228 (& Lf(@)ta(2)} du().

Therefore, (6) is minimized for fixed £ by any vector function ¢ (defined a.e.
u) which is chosen as a probablllty distribution concentrating on those d’s
for which (¢, L*f(z)) is a minimum. That is, # is of the form

tra(z) = 0 if (§ Lf(2)) > min; (¢ Lf())
1 if (% L(2)) < minj (£ Lf(z))

= arbitrary  if (¢ LYf(z)) = minsa(, Lf(2)),
such that #;4(z) = Oford = 1, -+, nand Doy tra(z) = 1 ace. p.

Note that if £ is a bona fide a priori distribution, (0 < &, D & = 1), then
such a t; would be a decision procedure Bayes against £.

We observe that any randomized procedure of the form (7) minimizing
¥(&, t) may be replaced by a non-randomized version which also minimizes
¥(&, ¢) for fixed £. In particular, one such non-randomized version is given by the

coordinate functions

()
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tra(z) = 1 if d is the smallest integer for which (¢, L%f(x)) =
(8) minj=1,"-.n (E) L]f(x))
=0  otherwise.

To see that (8) is of the form (7) we merely note that t;'(z) = (i, l(x),

ten(z))isa probability distribution concentrating on the first column m1n1m1z1ng
the quantities (£, L’f(x)). It should be noted that ¢ may possibly be inadmis-
sible, but this is not relevant to the results obtained herein. In what follows we
restrict ourselves to the non-randomized version # of the Bayes procedure i; .

In [2], p. 102, Hannan has given a useful inequality for Bayes rules. A state-
ment and proof of a similar result is given here.

LemmMa 1. Let Y be a space closed under subtraction. Let M (y, z) be a real-
valued function on Y X Z such that M (-, z) is linear on Y for each z ¢ Z and
inf, M (y, 2) is attained for each y & Y. Define g(y) = inf, M (y, z) and let 2(y)
be any Z-valued function such that g(y) = M(y, 2(y)) on Y. Then, y, y' ¢ Y,

0= M(y2(y)) —9(y) = My — ¢, 2(4)) — M(y — ¢/, 2(y)).

Proor. The lower inequality results from the definition of g(y) and the upper
inequality follows by adding the non-negative term M (y’, 2(y)) — g(y').
Now define for ¢ ¢ E™ the function

(9) o(&) = inf (& t) = (& p(t)).

Observing that (£, p(t)) is linear in £ and p, Lemma 1 and (9) yield
CoroLLARY 1. If £, £* ¢ E™, then

(10) 0 = Y(& tp) — 6(8) = (58— £ p(te) — o(t))-

Th1s corollary inspires the non-simple rule to be adopted later (see (12)).
If p* & E™ is a good approximation to p(8) in the sense that [p* — p(0)]| is
small, then Corollary 1 says that a simple procedure t,«(z) has risk within
lo* — p(8)] |le(tyr) — p(tp)|l of the minimum attainable risk in the class
of all simple procedures, given by ¢(p(8)). Therefore, not knowing p(8) in
general, we seek estimates p = p(X1, ---, Xu) of p(0) which with the aid of
Lemma 5 take advantage of the risk approximation of Corollary 1.

In Section 5, we shall use the following lemma which is a simple consequence
of the Berry-Esseen normal approximation theorem (see Logve [7], p. 288).

Lemma 2. If Y1, Yo, -+, Y, are independent identically distributed random
variables with mean 0, variance 1 and third absolute moment v, then for o and [ real,
=0,

Pla 2 XY S a4} £ (I2m) + 28v)n7,
where B 1s an absolute constant.

3. Estimation of empirical distributions on Q. The results of this section are
based on some unpublished lecture notes of Hannan [4]. See also Robbins [9],
Section 7, and Teicher [11].
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Let Li(p) and Lg(r) be the function spaces of u-integrable and u-square
integrable functions respectively. The usual norm and inner product for f,
g € Ly(p) will be denoted respectively by ||fll. and (f, ¢). . Note that the fy(x)
as densities are in L;(x) and hence in Lq(u) because they are bounded.

We make the following definitions. Let 8™ = {n | n e E™, ns = 0, D1 ms = 1}
be the simplex in E™. For 5 £ 8™ define the probability mizture P, = > mePs
with u-density f,(z) = (u, f(2)). The class of all mixtures ® = {P,|neS™}
is said to be identifiable if for any 4, n' ¢ 8™, P, = P, (or f, = f,,, a.e. p) im-
plies n = 7.

A vector function A = (hy(z), -+, hn(z)) into E™ with coordinate functions
h; € Li(i) is an unbiased estimate for the class @ if E,{h(X)} = n for all n £ 8™,
where E, denotes expectation with respect to the mixture P, . If such an k exists
the class @ is said to be estimable. Let & be the class of all unbiased estimates for
the class ®.

We state the following lemma without proof as its proof is simple and is
essentially contained in Hannan [4] or Teicher [11], Theorem 1.

LemMA 3. The class ® is identifiable if and mly if the set of densities {f1, + -+ , fum}
are linearly independent in Ly(u).

Let S be any linear subspace of La(p) and S* be the orthogonal complement
of 8 in Ly(u). For any g & Ly(u), denote by gs, gs* the projection of g on S and
S* respectively. Note that if g £ Ly(r), g = gs + gs™.

Let 3¢ denote the subclass of & for which hj & Ly(p) forj = 1, -+ , m. We now
give a theorem which proves the existence of unbiased estimates for ® and which
yields the structure of the class 3¢. Forj = 1, --- , m, let S; be the subspace of
Ly(u) spanned by {fs |0 = j}. Let S be the subspace of L.(x)spanned by
{fl y 1T 7f'n}'

TuaeoreM 1. Let the set of densities {fi, -+, fu} be linearly independent in
Ll(u) Then, the class 3C s non-empty Furthermore, h € 3¢ if and only if h(x) =
(=) + y(x) a.e. p, where f;*(2) = (fis;s(2))([fis;2[u") ™" and gi(z) & 8* for
ji=1, , m.

PROOF Flrst note that linear mdependence of the densities {f;, --- x S}
implies “f,s,.L”,, > 0, and hence f;*(z) is well-defined. Furthermore, since f, (z) e
Si*, Bofi¥(X) = (fi*, fo)u = 69, , the Kronecker delta. Thus, f* ¢ 8, 3¢ is non-
empty, and g;€8*, j = 1, ---, m implies f* + ¢ ai‘fc Conversely, if & e 3¢,
Eo(h; — f;* )—Oforallo,] -+« ,mandg; = h; — f;*isin8*,j=1,--- ,m.

Observe that the functions f, of Theorem 1 form the dual basis to {f1, - - - , fa}
in the conjugate space of the subspace S.

CoOROLLARY 2. There exist h ¢ & such that |hj(z)| £ M ae.uforj=1,--- ,m
and M finite.

Proor. Choose h;(z) = f;*(z) for j = 1, ---, m. Then, since the f;*’s lie
in S, they are essentially bounded as linear combinations of the essentially
bounded densities {f1, - - , fu}-

COROLLARY 3. ® is identifiable if and only if ® s estimable.

Proor. If @ is identifiable, Lemma 3 and Theorem 1 establish estimability
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and necessity follows. Sufficiency follows by noting that @ estimable and #; 5 3,
implies E,,(h) = m 5 52 = E,,(h) and hence P,, = P,, .

See also Choi [1] for a slightly different version of this corollary.

In view of Lemma 3, Theorem 1 and Corollary 3, and our dependence on the
estimates h in defining our procedures (Section 4), we assume in the remainder
of the paper that the set of densities {f;, --- , fn} are linearly independent in

L1(P~)~

The importance of the class & in estimating p(0) can now be seen. With
X = (X1, ++-, X~) as before and h ¢ §, define the random variable,
(11) A(X) = N7° 2 h(Xe).

This equation yields an unbiased estimate of the empirical distribution p(8) for
all 0 ¢ Q, since EA(X) = N D i1, = p(0). If h £ & and h is bounded as in
Corollary 2, then 4(X) inherits this boundedness through (11).

Consider now the subclass 3¢ of 8. If h = (hy, - - , hy) € 3, then boundedness
of the densities f; implies Esh;*(X) < . Denote the variance of h; under P, for
0,7 =1,"-- ’mbyaoz(hi)' )

Lemma 4. If h € 3¢, then E ||k — p(8)|)> £ C°N™*, where C* = maxy ) 71 04’ (h;).

Proor. By direct computation, we have

E |k — p(8)|* = 271 E(h; — pi(8))*
= N 2 > r pe(8)as’(hy) < C'N7

4. Non-simple decision functions. With e3¢ and the estimate 4(X) of p(0)
given by (11), we now define a non-simple decision function which results from
substituting 4(X) for p(8) in £, as given by (7) (see [5], p. 44 and [6], Equation
(12)). In so doing, we shall confine ourselves to that particular non-randomized
version of #; given by (8) and denoted by #; . The resulting non-simple, non-
randomized decision procedure T’ consists of the N vector functions
t®(x) = &' (xr) = (thalaxr), -+, thn(ze)) fork =1, -+, N, where

(12) the(z) = 1 if d is the smallest integer for which (%, Lf(z:)) =
minj—_,...,n (’-';, Ljf(xk))
=0 otherwise, d=1,-,n

The question immediately arises regarding optimality properties of the pro-
cedure T". As a partial answer to this question, consider the function

(13) R(6, T) — ¢(p(6))

for the decision function T'(x) and 0 ¢ Q. This function will be called the regret
function against simple decision functions for the decision procedure 7'(x). We
shall consider decision procedures T'(x) which makes the regret function small
uniformly in 8 £ Q for all N. In Theorems 2 and 3 it will be shown that the pro-
cedure T’ has, under suitable conditions, good asymptotic properties in the sense
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that its regret function given by (13) has an upper bound approaching zero uni-
formlyin@e QasN — «.

We now give a useful decomposition lemma, for the risk (68, ') in (13) for
T(x) such that

(14) tP(x) = ti(m) = Ga(@), =+, thalz)),

where tj ¢(x;) is defined by (7) with ¢ = hand z = = .
LemmMA 5. Let X be a random variable independent of X. If T'(x) is a compound
decision function of the form (14) and 6 ¢ Q, then,

(15) R(8, T) = E(p(8), p(t)) + N~ D2%=1 D_aar EEg,Lii tictr a(X)t.ar(X),

where po(t;) = Eo(Lo, (X)) and A% = k + N7'(h(X) — h(X4)) and the Ey,

integral in each of the N terms in the sum on the right-hand side of (15) s on X.
Proor. Fixk = 1, -+, N and express E(L,, , t% (X)) as an iterated integral,

make a change of variable, and perform an added integration as follows ,

E(Ls, , t* (X)) = [ (Lo, , ti(22)) dPo,(2x) T i dPo,(:)
(16) = [ (Lo, , tiw(2)) dPa(2) [oae dPos(:)
= [ (Lo, taiwr(2)) APy () T]: dPo;(:)
= EEg,(Ly, , tir(X)),

where EEj, represents an iterated integral. Writing tix (2) = tim (z) — ti(x)
+ ti(z) in the right-hand side of (16) and averaging over all k, we have by (2)

(17) R(8, T) = N~* 2% EEy, (L, , ti(X))
+ N Z;z;l E‘Eok(Lok y tw (X)) — th(X)).

The first term on the right-hand side of (17) may be simplified to E(p(8), o(#))
by noting that for 6, = 6, Es,(Ls, , ti(X)) are pointwise equal to ps(ticy )-

Since the components of ¢;(z) and of ¢ (z) sum to unity, we have the simple
equation

(Lo, , tiewr (z) — ti(z))
= Yaa (L6, Dtiwr () thar(2) — L6, d)ticwr a(z) b (z)},

which shows that the second term in (17) is equal to the second term in (15).
LemMa 6. Let T'(x) be the procedure defined by (12). Then,

(18) R(6, T') — ¢(p(8)) < Ay + By,
where
Ay = E(p(8) — K, p(ti') — p(toe))
and
By = N7 200 > sr LiVEEg thoo o(X)t5.0/(X).



COMPOUND DECISION PROBLEM WITH m X 7 FINITE LOSS MATRIX 419

Proor. Identify T’ with T in Lemma 5. The result follows immediately from
(5) and Corollary 1 by taking £ = p(0) and ¢ = k.

5. A uniform bound of O(N*). The following theorem generalizes Theorem 1
of [6] (which strengthens Theorem 4 of [5]) to the case where the component
problem has an m X n loss matrix.

THEOREM 2. If h £ & and Ey |hy(X)|* < o for6,5 = 1, --- , m, then R(8, T")
— (p(0)) = cN *where cisindependent of 8 € Q for all N.

Proor. In inequality (18) we show: (i) Ay < aN* uniformly in 6 £ Q for all
N and (ii) By = ¢,N~* uniformly in 0 £  for all N.

(1) By the Schwarz m-space inequality, we have,
(19) N'Ay = N'E [k — p|l o) — o(t,)],  » = p(0).

Let Ly = ming L(6, d) and Ly = maxy L(6, d) and note that for every ¢
Ly = po(t) = Ly, Then

o) = p(t)I* = 20 {oo(ti) — po(t,)}’
(20) < 20 (In — L)’
= “I-‘ - LHZ’

where L = (L1, +++ yLm)and L = (Ly, -+ , Lm).

Also, note that by the Schwarz integral inequality and Lemma 4,
(21) NE [lh — p(0)|| = (NE Ik — p(®)['}* = C.

Inequalities (20) and (21), when substituted into (19), imply N4, <
C |L — L||. Hence, (i) is proved.
(ii) Observe that under Py,

h(X) — €& = (hl(X)7 o 1h0(X) -1, 1hm(X))

is an m-dimensional random variable with mean zero and covariance matrix
A of rank 7 . Hence, if under Py, 7, > 0, then there exists anm X 7y matrix W,
with transpose W' such that W,W, = Ap and WeZy' (X) = (h(X) — &)', where
Zy(X) is an rg-dimensional random variable with mean zero and identity covari-
ance matrix. Therefore, if X is distributed as Py and g is an re-vector with
llgll = 1, then

(22) Eo(Zy(X), 9)* = g’ = 1
and
(23) Eo | Zo(X)|* = 5.

Now fix 0, d, d'(d < d’) and k & I, = {k | 6, = 6}. Using our bracket notation
for characteristic functions and considering when ti# ¢ = ;s = 1, we observe
that
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thow a(X)thar(X) + thawr 0 (X)tha(X)

(24) = [0 < (k LYf(X)) = (h— &®, L¥f(X))]

+ [(F — &, LX) < (B LF(X)) < 0],
If h(X) is degenerate under Py and X is distributed as Py, then the E X E,
integral of the right-hand side of (24) is zero. Also, if A(X) is non-degenerate
under Py(rs > 0), but L*¥f(z)W, = 0 for fixed X = =, then the right-hand side
of (24) is zero at z since N(h — A%, L™f(X)) = (Zo(X:) — Zo(X),
L*f(X)W,). Omitting these degenerate cases, we shall bound the right-hand
side of (24) by a Berry-Esseen normal approximation argument.

Specifically, assume 7 > 0, Npe(6) > 1 and fix X = z such that
L*¥f(x)W, s 0. Define g(z) = ||L*f(z)W,||™" L*f(x)W, and note that
llg(z)|| = 1. Next, fix X; = zz and X, = z,, v £ I, . We observe that for the
right-hand side of (24) not to vanish, the sum

ILF @)Wl ™ Xseers (W(XD) = 0, LF(@)) = Zrsmers (Zo(X,), g(2))
of Nps(8) — 1 > 0 terms must fall into an interval of length
ILF(@)Wol| ™" [(R — h®, Lf(2))| = |(Zo(zs) — Zo(x), g())].
But the terms (Z4(X,), g(x)) are independent and identically distributed with
mean zero and variance 1 (by (22)) and hence the Berry-Esseen result of Lemma,
2 bounds the probability of the above event by
(25)  (Npo(0) — 17H{(2m) ™ |(Zo(m1) — Zo(2), 9(2))| + 28E:l (Zo(X), g(2)) [}
where the expectation is on X in the second term. Since (23) implies
EoEy [(Zo(X1) — Zo(X), 9(X))| S Eo By ||Zo(Xr) — Zo(X)||
< 2{B | Zo(X) |} = 2rd,
we see that if 7y > 0 and Npe(0) > 1, (24) and (25) yield
EE,, {thiw o(X)tha(X) + thor,ar(X)ha(X)} < {Npa(8) — 1)7°Co%,

where Co* = (2ren )} + 28E, | Zo(X) || with Es || Zo(X)||® being finite since
Zy(X) is a finite linear combination of random variables whose third absolute

moments are finite under P .

Since the right-hand side of (24) is zero if & is degenerate under P, and is
always bounded by unity, we may trivially include the cases ro = 0 and
Nps(08) < 1 by rewriting the above as

(26) EE{tiw o(X)tha(X) + thow,a(X)5,0(X)}
< min {1, |[Nps(8) — 17 Cy},

where €y’ = max {1, Cy*}.
Next observe that with p, = ps(8) and C' = (Cy, ---, C»), we have
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>0 Npymin {1, [Np, — 1|7 ¢y}

= Z{amwgu (Nps — 1) min {1, |[Nps — 1[‘* Ci} +m
(27) = Yiowwpezy (Nps — 1)'C5" +m

= {Zowmzy (Npo — DPIC) + m

< N ||| + m.

Finally, noting that

By £ N7 20, 3 uca |LE) EBo{tiw o(X)tha(X) + thwr a(X)E pa(X)},
we see that (26) and (27) yield
(28) N'By £ ()L(mN™ + |C'l]),

where L = max,q,q [Lo dd’ B
Equation (28) implies (ii), which together with (i) and inequality (18) com-
pletes the proof.

6. A theorem of higher order. In Hannan and Van Ryzin [6], Theorems 3
and 2, it is shown for the casem = n = 2, L(1,1) = L(2,2) = 0, L(1,2) =
b> 0,and L(2,1) = a > 0, that uniform upper bounds of o(N*) and O(N )
respectively are obtained for the regret function under suitable continuity as-
sumptions on the induced distribution of a certain function of the likelihood ratio
of the pair of densities. Hence, it is a natural question to ask whether one can do
better than O(N ~*) in the more general setting. The answer is no for general
m X n loss matrices. In [12], the author gives two examples of loss matrices for
which O(N?) is the best obtainable rate. These matrices are:

0 2 0111
20
11 -

The details of these examples can be found in Section 3, Chapter III of [12].
However, consider the following condition which is violated by the above two
examples.
(C) For two distinct columns d, d’ of the m X n loss matrix (L(6, d)),
let Tsar = {0|L(9, d) = L(6, d’)}. For any d, d' and 6-¢ T4 there
exists a j = j(d, d’, 0) such that L(6, d) > L(6, j) and L(¢', d) =
L(6', ) for all ' & Iaar .

The meaning of this condition is that in any subgame obtained by deleting
rows from the m X 7 loss matrix, there remains a column strategy which is
strictly preferable in the subgame to any pair of columns which are identical in
the subgame.

Three important cases in which (C) is satisfied are concerned with the dis-

ot i
e =]
- O N
O =
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crimination problem in which m = n, L(6, d) = 0 or >0 according as § = d or
6 # d. These three cases are:
(i) Letm = 2 or 3. The case m = 2 is treated in detail in [5] and [6].

(ii) Define L(0,d) = a(l — 86a), where 8yq is the Kronecker 6. Condition (C)
is satisfied by choosing j(d, d’, 8) = 6.

(iii) Let w(t) be a strlctly increasing function on [0, « ) with w(O)
Define L(O d) = w(|@ — d|). Since L(8, d) = L(6, d’) for d = d’ 1mp11es
d <9 <dord <8< d,condition (C) is satisfied by choosing j(d, d’ 0) = 0.

Now under condition (C), we can give a continuity assumption (C ) on the
family of distributions {P1, - - - , P»} under which Theorem 3 of O(N™") given
below is vahd The condition is
(C') Let P,™ be the probability measure on E™ induced under Py by the

measurable transformation z — f(z). The measure Py* is absolutely
continuous with respect to m-dimensional Lebesgue measure A, and
dPy*/d\, = K for some K < .

Assumption (C”) is closely related to condition (II) of Theorem 2 in [6]. For
an exact discussion of this and two related conditions (one implied by (C’) and
one equivalent to (II) of Theorem 2 in [6] when m = 2) see assumptions (I1")
and (II"") of Section 3, Chapter III of [12] as well as Appendix 1 of [12].

We now state without proof the following theorem. For details of the proof see
Theorem 6, Chapter IIT of [12].

TaroreM 3. Let (C) and (C') hold. If h e & such that |h; (x)| M a.e. u for

j=1,---,mand M < o, then (0, T') — ¢(p(0)) = ¢*N " where c* is inde-
pendent of 8 ¢ @ for all N.

Observe that the assumption of bounded 4’s may always be satisfied in view of
Corollary 2.

Assumption (C’) is rather unattractive and very stringent. Nonetheless,
Theorem 3 (or Theorem 6 of [12]) is of interest in that it shows that a uniform
bound of O(N™") is available in the more general m X n case as in the case
m = n = 2 of Hannan and Van Ryzin [6], Theorem 2. That Theorem 3 is not
vacuous is shown by the followmg example satlsfymg ().

Exampre. Let X = (X1, -+, Xn) be the generic random variable for the
component problem. Define for 0 =1, - - -, m, the probability measure Py having
densities with respect to A, given by fo(z) = 2z, if 2 € [0, 1]™, the unit m-cube.
If we let Po*(a1, - - - , an) be the cumulative dlstrlbutlon functlon corresponding
to the induced probablhty measure Py*, then Py*(ar, -+, an) =
27 (1] 71 a:)asfora e [0, 2] . Hence, P,* is absolutely continuous with respect
to A" and has )\m-densﬂ;y 27™as on [0, 2]™, which is bounded by 27" on [0, 2]".
Therefore, (C') is satisfied for this example.

7. Extension of results for a randomized procedure. We extend Theorems 2
and 3 to the non-simple, randomized procedure defined by substituting the esti-
mate h for p(8) in the simple randomized procedure which as31gns equal proba-
bilities of selection among all columns minimizing (p(9), L%) in (7). Such a



COMPOUND DECISION PROBLEM WITH m X 7 FINITE LOSS MATRIX 423

randomized, non-simple rule is given by N' X n matrix of functions T*(x) =.
(*t#(x)), where ford = 1, -+ ,n,k = 1,---, N,

*r(x) = v if (h, L(2:)) = min; (h, L’f(2:)) and the minimum
(29) is achieved by.exactly r indices _ |
=0 otherwise.

Theorems 2 and 3 hold for (29). To see this, let 9’ be the class of all permuta-
tions = = (w(1), ---,w(n)) of the integers {1, 2, --- , n}. Let x denote the
identity permutation having #'(j) = §,7 = 1, - -+ , n. Now define the following
class of non-randomized rules T7, = € 9, given by the N X n functions

tra(ze) = 1 if #(d) is a minimum subject to the equality
(30) (h, Lf(2:)) = min; (h, Lf(z))
=0 otherwise.

Note that 7™ (x) = (t;‘,,d(xk)) is that particular non-randomized, non-simple rule
given by (12) for which Theorems 2 and 3 hold. It is clear by analogy with =’ the
rule T™ for each 7 ¢ 9’ also satisfies Theorem 2 and 3. Hence, the rule

(31) (nl)_l Zws&)‘l,' tiz,d(xk), k = 1, ey, N’ dA= 1’ cee,m,

also satisfies Theorems 2 and 3. But with the aid of a simple combinatoric argu-
ment it is easy to show that (31) = *1,5(x) and thus Theorems 2 and 3 hold for
the non-randomized, non-simple rule (29).

The author believes that Theorems 2 and 3 hold for any measurable, well-
defined randomization in (12), but was unable to prove this. \
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