A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS!
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0. Summary. If P is a transient Markov chain having the invariant measure
u, and if at time O particles are distributed in the state space @ according to the
Poisson law, with mean u(x) at z, and these particles are then allowed to move
independently of the others according to the law P, the system maintains itself
in macroscopic equilibrium. In this paper we investigate several phenomena
connected with this system.

1. Introduction. Throughout this paper P.(z, y) will be the nth step tran-
sition matrix of an irreducible, transient Markov chain X, , with the set @ of
nonnegative integers for its state space. We will assume that the chain has at
least one positive invariant measure u(x), which henceforth will be taken as fixed.
Subsets B < @ will always be finite and nonempty. We will use the following
notation: Vs = min {n > 0: X, ¢ B} (= « if X, £ B for alln > 0) is the hitting
time of B; Ty = min {n = 0: X; ¢ B for all j > n} is the time of last visit to B;
and N,(B) = D% 85(X;), where 65(z) = 1forz ¢ B and = 0 for z £ B, is the
occupation time of B by time n. Since the chain is transient, P.(Vp = «) > 0
for at least one point z ¢ B, and N,.(B) T N(B) < « with probability one. The
dual chain has transition matrix, P(z, ¥) = w(y)P(y, z)u(x)”". Quantities
which refer to the dual chain will be denoted by *. Thus, e.g., P.(Vs = «)
is the quantity P,(Vs = « ) computed for the dual chain.

The system we wish to investigate may be described as follows. At time 0 we
put Ao(z) particles at the point z & @, where the A(x) are independent, Poisson
distributed, random variables with means u(z), respectively. We then allow
each particle to move, independently of the others, according to the same
transition law P. A system of this type was first investigated by Derman [1],
where a more precise description can be found. The salient fact about this
system [1], is that it maintains itself in macroscopic equilibrium, in the sense that
at any time n, the number of particles in the various states, A.(x), are again
independent Poisson variables with means u(z).

Our purpose here is to establish the following facts about this system.

THEOREM 1. For r = 1, let M,(B; r) denote the number of particles which have
hit B exactly r times by time n. Then

(1.1) P(limpe (Ma(B;7)/n) = C(B)) = 1,

Received 5 August 1965; revised 5 October 1965.

1 This research is sponsored by the United States Air Force under Project RAND—
Contract No. AF 49(638)-700 monitored by the Directorate of Development Plans, Deputy
Chief of Staff, Research and Development, Hq USAF. Views or conclusions contained in
this Memorandum should not be interpreted as representing the official opinion or policy
of the United States Air Force.

406

&5
ale
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%%
The Annals of Mathematical Statistics. BINORN

www.jstor.org



A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS 407

where
(1.2) Cr(B) = D zenu(2)Po(Vs = )P, (N(B) = r — 1).

Moreover, for each fixed n and B, the M.(B; r) are mutually independent Poisson
variates with means

(1.3) EM.(B;r) = 2. u(2)Po(Na(B) = 1),
and if C.(B) > 0 then
(1.4) limuww P{[Ma(B; 1) — EMu(B; 1)]/InCr(B)] = u}
= 2r)F X et
Here and elsewhere we will use the convention that a Poisson variate with 0

mean is the distribution degenerate at 0.
Tuuorem 2. Let 8,(B) = 2 j-1A;(B), where Aj(B) = 3.5 A;(z). Then

(1.5) P{limp.e [Sx(B)/n] = n(B)} = 1.

Moreover, .

(16)  liMp.e P{[Sa(B) — nu(B))/Ina*(B) < u} = (2r)7F [“. 2 dt,
where 6°(B) = Y .y 7°Cr(B).

TuEOREM 3. Let J.(B) denote the number of particles which are in B for a last
time at time n. Then for fixed B the J,(B) are independent, Poisson distributed,
random variables with a common mean C(B) = D 45 u(2)Po(Vs = ). Con-
sequenily, if Dn(B) = Ju(B) + -+ + Ju(B) then

(L.7) Pflim,., [D.(B)/n] = C(B)} =1

and

(1.8)  limg.e P{[Da(B) — nC(B))/InC(B)]} = 4} = (2r)* [“n e dt.
ReEMARK. Theorem 1 is a refinement of Theorem 7.1 of [4] which asserts that

if Ly(B) = Y7 M.(B;r), then

(1.9) P{limp,e [La(B)/n] = C(B)} = 1

and

(1.10) limpae P{[La(B) — EL.(B)//InC(B)} < w} = (2r)7F [, e 4t

The constant C(B) enters in potential theoretic studies on transient Markov

chains and is called the capacity of B. (A discussion of capacities may be found

in [3].) From (1.7) and (1.9) we see that the number of new particles which

enter B per unit time equals the number of particles per unit time which leave B,

never to return, and that this common number is the capacity of B. The result

in (1.5) that u(B) is the number of particles per unit time in B is, of course,
intuitively very plausible.
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2. Proofs. )

Proor or THEOREM 1. Let V3’ be the time of the jth visit to B. More precisely,
Vs = Vsand if V5’ < » define V5™ = min {n > V5’: X,eB} (= « if
Ts = V5').If V5’ = o« define V5™ = «. Also, let I,,(B; r) denote the number
of particles which hit B for the rth time at time .

Lemwma 1. For fixed B and r, I,(B;r),n = 1, are mutually independent, Poisson
distributed, random variables with means EI.(B; r) = D . u(z)P(Vs = n).

Proor. Let I;:(B; r) be the number of particles starting at £ which hit B
for the rth time at time j. Then for arbitrary n = 1,

E(8,1®Ng,[2 B0 L 5 BN | 40(0), Ag(1), ---)
= TI2o B(a™®7 - 5,7 | 4g(a))
= II=0 + 25m (s — DP(VE = I
A simple computation now gives
E(JI=8") = exp [2o7 (8; — 1) Zau(a)Po(V5" = j)],

which establishes the lemma.
LemMA 2. Define V* = 0. Then for any r = 1,

limpsw EI(B; 1) = 2 s p(2)Po(V5 ™ < 0)P,(V5 = =),
and thus
(2.1) limpun 20 EI(B; 1) = 2 p(2)Pu(Vs™ < 0)Py(V5 = ).
Proor. For r = 0 we have
EL(B;r+ 1) = 2o u(2) X 231 Po(Vs = 3 X; = 2)Pu(Vs' = n — )
=22 es 231 PV 2 j; Xj = 2)u(@)Pu(Vs' = n — )
= 2 23 Po(Vs 2 §)u(z)P(Vs = n — j).

Using the fact that P,(V; = n) | Pu(Vs = ®) and D ey Pu(Vs = n) =
P,(V5 < =), we obtain, by a simple summability argument, that
Mo 2osen 1(2) 2J=1 PV 2 §)PA(Vs = n — j)
= ZnB M(Z)Pz(VB = w)Pz(VBr < °°)-

This establishes Lemma 2.

To complete the proof of Theorem 1 we now proceed as follows: From Lemma
2 we see that sup, EI.(B; r) = a(r) < o, while from Lemma 1 we have
EI.(B;r) = var I.(B;r). Consequently, Y me; [var I,(B;r)/n’] < o and thus,
by the strong law of large numbers,

limpaw 7D gt [I;(B; r) — EI;(B;r)] = 0, a.e.

Hence from (2.1) we have
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liMpao W'D g1 I;i(B; 1) = D oeenu(2)Pu(Vs = )P (V5! < ), ae.

However, > .iy Ij(B; 1) = Dot Ma(B; k) and P(V,' < o) =
P,(N(B) =z r — 1). Consequently,

1iMpoeo [Ma(B; ) /0] = liMpaen™ 2 3=t [I;(B; 1) — Ii(B; r + 1)]
= > ueau(2)P.(Vs = ©)Py(N(B) =r— 1) = C:(B), a.e.

This establishes (1.1). To establish the independence of the M.(B;r) we proceed
as in the proof of Lemma 1. For any r = 1 we have

E(s™ P .. M E0 | 44(0), ---)
= JIZ0 [l + 25aa(s; — 1)Pa(Na(B) = NI,
and thus
E(I]i= stn(B;j)) = exp [D g1 (sj — I)Zz p(z)P(N.(B) = ],

which shows the independence. (This also shows M,(B; r) is Poisson distributed
with the mean given in (1.3).) Now for any.r = 1 we have by (2.1),

(2.2) limp.o [EM,(B;1)/n]
= liMpaw W "D 1= [EI,(B; r) — EI;(B;r + 1)] = C.(B).

Since a normalized Poisson variable is asymptotically normally distributed when
its mean becomes infinite, we see that (1.4) follows from (2.2). This completes
the proof of Theorem 1.

PrOOF OF THEOREM 2. Since An(B) = D zes An(x) and p(B) = > .5 u(z),
it suffices to establish (1.5) for all one point sets {z}. Let x £ Q@ be arbitrary. Then
a simple computation shows

w@) = Zrmam@)PuVie = «)P(N({z}) = r— 1) = YarC({z)).

However,

(2.3) S.({z}) = X rMa({z}; ),
and thus by Theorem 1,

(24) P{p(x) = lim infu.q [Su({2})/n]} = 1.

But it is readily verified that the sequence {A.(z)} is strictly stationary. An
appeal to the pointwise ergodic theorem then yields the result that there is a
random variable 8* such that

(2.5) P{lima.e [Sa({z})/n] = 8%} =1,
and moreover,
(2.6) ES* = limn.o [ES.({z})/n] = u(z).

From (2.4)—(2.6) we must then have P(S* = u(x)) = 1. This establishes (1.5).
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Since S,(B) = Y .p1 Aj(B), and the A;(B) are stationary, it is clear that
ES.(B) = nu(B). To establish (1.6) we may proceed as follows. From (2.3)
we see that

varS,(B) = Yryrtvar M.(B;r) = Sy EM.(B;r).
But '
EM.(B;r) = 3. u(z)P.(Na(B) = 1)
= D uan(2) i PV = §)Po(Nacy(B) =1 — 1),
and thus
St EMa(B; 1) = 3owen u(2) 2ot Po(Vs = §)Eu(Nuy(B) + 1)

Since E,(Na(B) + 1)* 1 E(N(B) + 1)" and P.(V5 2 n) —» P(Vs = =) we
obtain, by a simple summability argument, that

i1 EMu(B; 1) ~ 13 u(2)P.(Vs = «)E(N(B) + 1)%
A simple computation now shows that
s u(2)P(Vs = «)E(N(B) + 1)" = X r’C/(B) = o'(B).
Thus
(2.7) limg,e [var Sn(B)/nd*(B)] = limp.e [ZLl "EM,(B; r)/ne’(B)] = 1.

Recall that if ¢(8) is the characteristic function of an infinitely divisible law
with finite variance, then the Kolmorgorov representation of ¢(0) is (see [2],
p. 307)

(2.8) log ¢(6) = iy + [Z0 (67 — 1 — i9z)2~°G(dx).
For the random variable:

Y.(B;r) = r[M.(B;r) — EM.(B; r](ne’(B)) 7,
v and @ are respectively, v., = 0 and

Gu(z) =0, =z < r(nd’(B))7,
"?EM.(B;r)/ns’(B), z > r(nd’(B))™L

Hence for the random variable > r, Y.(B;r) we find that v and @ are respec-
tively, v, = 0 and

(2.9) Gn(x) = ZLI Gnr(x) = £=1 [TzEM,,(B; r)/MZ(B)]:
if j(n*(B))?} = = < (j + 1)(nd*(B))?
clearly, Gu(z) < Gu(®) = > iy [PEM.(B; r)/ns’(B)], and thus by (2.7),

lim SUPnsw Ga(z) < liMpae Ga( o) = 1.
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On the other hand by (2.9) and (2.2) we have for any z > 0,
lim infy. Gu(z) Z 2741 [°C(B)/o*(B)] = 1.

Since G.(z) = 0 for z < 0 we see from the above that

limn,, Gu(z) = G(z) = 1, z > 0,

=0, z <0.

But this is precisely the G needed in (2.8) to represent the standard normal
distribution, and thus by appeal to a well known convergence theorem in the
theory of i.d. laws (see [2], p. 312) we see that (1.6) holds. This completes the
proof,

Proor oF THEOREM 3. We need to prove that {J,(B)} are independent,
Poisson variates with the common meanC'(B).To see this, first of all observe that

EJ.(B) = Zz p(x)Po(Tp = n) = Zz EveB u(x)Pa(z, y)Py(Vy = )
= 2 s u(y)Py(Vs = ) = C(B).
Now, proceeding as in the proof of Lemma 1, we readily obtain
E(JTt-187" | Ao(0), Ao(1), -+ -)
= IIZo [l + 228 (s = DPo(Ts = )],
and thus
E(JTt=187®) = exp 2201 (8i — 1) 2o p(2)Po(Tp = 1) = Jim e®70°2,
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