ON SECOND MOMENTS OF STOPPING RULES'
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0. Summary. The current investigation is a natural outgrowth of [2], being
concerned with the variance of stopping rules and the effect of non-zero means
on the variance of a randomly stopped sum. Some martingale generalizations of
applications of [2] also appear.

1. Introduction. A stopping rule or stopping variable of a sequence {X, ,n = 1}
of random variables defined on a probability space (2, F, P) is a positive integer-
valued random variable ¢ such that for every n = 1 the event {{ = n} ¢&,,
the Borel field generated by X; --- X, . In contradistinction, a stopping time’
(likewise of a sequence {X,}) will be defined as a positive integer or + « valued
" function on Q subject to the same proviso that {t = n} £¢F,, n = 1. Thus, a
stopping time ¢ is a stopping variable or stopping rule if and only if P{{ < «} = 1.
In numerous problems of probability theory and statistics it is necessary to
demonstrate that what is obviously a stopping time is further a stopping variable
and even to obtain detailed information about the latter.

2. Comparison of stopping rules. Let the basic process {X,, n = 1} consist
of independent random variables with EX,, = 0, EX,” = 1, P{|X.| < a < »} =1
forn = 1.Set 8, = 2.2 X: and define #,(c) to be the smallest positive index
n=m(m=1,2, ---) for which 8, > ¢’n where c is a positive constant. For
the case of coin tossing (a = 1), it was shown in [1] that for all m, Et.(c) is
finite or infinite according as ¢ < 1 or ¢ = 1 and this was generalized in [2]
to the uniformly bounded case. (For ¢ = 1, the hypothesis of a uniform bound is
superfluous and was not stipulated in [2].) It will be proved in Section 3 that if
¢ <3 — 6 Bt (c) < o,allm = 1 whileif ¢ = 3 — 6! then Et,(c) = »
for all sufficiently large (but not necessarily all) m.

It is clear from a comparison technique that there is a non-increasing sequence
of non-negative constants {c;, ¥ = 1} such that Et,"(c) < « for ¢ < ¢ (if
¢ > 0) while Et,,*(¢) = = for all sufficiently large m if ¢ > ¢ . Such comparisons
may be formalized by the following

DEerINTTION. A stopping time ¢ will be called “more restrictive’” than a stopping
time sif {t =n} C {s=<n}forn=1,2, ... thatis,if t = s.

Clearly, if ¢ is more restrictive than s, and ¢ is a bonafide stopping variable, so
is s; moreover, the finiteness of Et” implies that of Es® for any « > 0.

Thus, if ¢ < ¢, Bt.*(¢) £ Et.*(¢'), (k,m = 1,2, ---) corroborating the
prior statement about the sequence cy -
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3. Second moments. When ¢* < 1, the situation changes in the coin tossing
example (¢ = 1) alluded to earlier since now P{i,(c) = 1} = 1 for m = 1.
Thus, to allow the second moment to attain an infinite value, it is necessary
to dawdle for a while so as to insure that S, does not prematurely escape its
parabolic bonds. This accounts for the appearance of the phrase ‘“for all suf-
ficiently large m’’ in

THEOREM 1. Let {X,} be independent random variables with P{|X,| £ a < =}
=1,EX, = 0, EX.’ = 1 forn = 1 and define t,, = smallest integer n = m for
which 8,* > ¢'n (n = 1,2, --+). If ¢ < 3 — 6, then Et,’ < 0, allm = 1 while
if & = 3 — 6% Et,’ = o for all sufficiently large m.

Proor. In the case ¢ < 3 — 6! we write t for tm . Set va = EX.} 8. = EX.*
and ¢’ = min (¢, k) where k > m. Since Et’' )=y 8; < a*Et” < o, by Theorem
3 of [2],

(1) ESY = 6E{'S% — 3B (' + 1) +4ESy > i v, + EX .t B;,
whence
E(Sh — &) = (6 — 2)Et'ST — (3 — ¢)Et” — 3Et
+ 4ESy > % vi + EX 1 Bi,

implying
(2) (3 — )Et” + (28 — 6)Et'S < (a' — 3)Et + 4a°Et'|S4|.
Let Ay = {m < t £ k}. From (2), recalling that Et' < Et < « for ¢ < 1, [2],
B — NMwn® + [0+ 2 — 6)[[15a 8 + [4,8(ct! + )]

< 40 ony k¥ + [ 4, t(ct? + )] + 0(1).
Consequently,

(c" — 66 + WPt > k} + [4, 1 < BE"P{t > &} + [4, "1 +0(1)
where B > 0 is a constant depending only on ¢ and a. Thus, letting k — o,
Eff < o regardless of m. .

In the alternative case, we may clearly suppose 3 — 6° < ¢* < 1. Define un(c)
to be the first indexn = 1 for which |S,| > ¢(n + m)* — 1 where m is an arbitrary
positive integer.

Suppose it has been established for every ¢’ in [3 — 6!, 1) that Bu,.’(c) = «
for all sufficiently large m. Then, if v,, = first n = m 4 1 such that |S, — S.| >
en! — 1, both v, — m and u,,(¢) have the same distribution and thus Ev,l =

for ¢* in [3 — 6%, 1) and all sufficiently large m. However, on the set [t. = n,
|Sn| = 1], we have |Sn — Su| > en? — 1 whence

E(tn | 1Sm] £ 1) Z E(vw’ | |Sul £ 1) = Evw’ =

implying Et,’ = o for all sufficiently large m and ¢ =3— 6.
Thus, it suffices to prove the auxiliary proposition involving u.(c) and in
so doing we denote the latter variable by &.
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LemMa. For 0 < ¢ < 1,0(m) = Et = mc’/(1 — ) + O(m?).
Proor. Choose ¢ < ¢; < 1 and m; > O such that em? = e(n +m)t — 1
for all n = m; . By the comparison technique and Corollary 2 of [2], Et < .

By Theorem 2 of [2],
Et=ES’> CE(t+m) — 2cE(t + m)} + 1 = PE(t + m) — 2¢E} (¢ +m) + 1,

implying E*(t 4+ m) exceeds the larger or is dominated by the smaller of the
roots (1 — ) {—c x [ + (1 — )(m + 1)]}}. Thus, Et = mc*/(1 — &) +
O(m*). On the other hand,

Et=ES’<Elc(t+m—1 +a S PE(t+m—1) +2acE(t+m—1) + a®

or (1 — )E(t+m—1) — 2acE}(t + m — 1) — (¢’ +m — 1) < 0 whence
Et = O(m).
Suppose now that Ef* < e« for all m. By Theorem 3 of [2],

ES/! = 6EtS” — 3Et(t + 1) + 4ES, ) im1v; + EX 1 B;
(3) = 6CEt(t + m) — 3Ei(t + 1) — 4d°Ei|S| — 12cEi(t + m)}
> (6¢ — 3)Ef + (6md — 3)Et — 4d°cE(t + m — 1)*® — 44°Et
— 12¢Et(t + m).
On the other hand,
(4) ES! < Elc(t+m— 1) +al'=cE(t+m— 1)+ 4alE(t + m — 1)*?
+ 6CE(t +m — 1) + 4¢d®E(t + m — 1)} + o
whence, combining (3) and (4) and recalling that Et = O(m),
(68 — 3 — MNE? = m’ — 2mc’(3 — &)Et
+ [dac(a® + &) + 12cE(t + m)** + O(m).

Since E(t + m)*? < 2B + 2m*”* < 2B**¢ + 2m** and Et = mc*(1 — &)™ +
O(m}) (by the lemma),

(5) (6 — 3 — Ef < m’c'[1 — 28 — &)1 — )7 + OB + m*'?).

Employing the lemma again, we have Ef* = E’t = m’c*(1 — &) + O(m**) — «
and

(6) 6 —3—c S OE) +0m™) + (& —5)(1 =A™

Hence 6’ — 3 — ¢* < 0 which is patently false for ¢* in [3 — 6*, 1). Thus,
Ef = o for all sufficiently large m and the theorem is proved.

TueoREM 2. Let {X,} be independent random variables with P{|X,| < a < .}
=1, EX, = 0, EX,” = 1 for n = 1. If ¢ designates the smallest inleger n = m
such that |S.| > cn''®, then Ef* < o foralla > 2,¢> Oandm = 1.

Proor. For any ¢ > 0 and o > 2, if m is sufficiently large cn'* < 47'a? for
n = m. It follows therefore from the comparison technique and Theorem 1 that
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Eff < » for all sufficiently large m. Consequently, E < o« for all m = 1,
a>2¢>0.

4. Non-zero means. Let the random variables {X,} of the basic process be
independent with EX,, = pa, EX, = 1 + p,5,n = 1. If S, = D2y X; and
¢ is a stopping variable with Et < o, then

(7) E(St - Ef’=1 #i)z = Kt

by Theorem 2 of [2]. If in addition u, = 0, ES; = 0 by Wald’s theorem and the
left hand side of (7) is just the variance of S;, say o3, . On the other hand if
pn # 0, this is no longer the case and o3, may even be infinite despite the finiteness
of (7).

For example, let P{X, = p 4+ 1} = P{X, = u — 1} = %, u ¢ 0 and define ¢
as the first index n = m such that (S, — nu)® > 3n/4. According to Theorem
1 of the preceding section, Ef* = o for allm = m’ (and it will now be stipulated
thatm = m’) while according to (7), E(S; — tu)* < «.In view of the elementary
inequality u’Ef’ < 2E(S; — tu)® + 2ES/, it follows that ES® = «. By Wald’s
theorem, ES; = uEt < « and thusej, = .

Even when both quantities are finite, no general inequality between
E(S; — > 1w:)® and o3, obtains. It is not difficult to verify that

Cov (2St - Z{ iy Zf Ih') =0

is necessary and sufficient for of, < E(S, — X i u:)” if BE(2 1 w)? < o,
EZ{ E|X;| < ».When EX, = u, EX,’ =14 p*and tisa stopping variable
with Ef® < oo, the simple condition u Cov (¢, S;) < 0 implies 0%, < E(S; — tu)*.
If P{X, =1} = p=1— P{X, = —b}, b > 0and ¢ denotes the firstn = 1
for which X, = 1, then S; = —b(¢ — 1) + 1. Since ¢ and S; are negatively
correlated and Ef* < «», o5, < E(S, — tu)®if u = 0, i.e., if p = b/(b + 1). Here,
this condition is necessary as well.

6. Martingale generalizations. In the following, the basic process {X,} will
be postulated to satisfy E|X,| < o, E{X.u|F.} = 0,n = 1so0that S, = D _rX;
is a martingale.

TaEOREM 3. Let {X,,n = 1} satisfy E{Xn41|Fa} = 0, E sup X’ < . If
un. = E{X,’| Fn_s}, define t as the first integer n = m for which S,* > ¢ ) 1 u;’
where 0 < ¢ < landm =1,2--- . Then [(1<m D14’ = OQ) and [ isn; 21 ug’
= 0(1)asn — .

Proor. For any integer k = m, set { = min (¢, k) and define z = sup | X,
A, = {m < t £ k}. By Theorem 1 of [2],

Jusn 210 + [on 2iu’ = EX 4w = ESE = [4[e(Xiub) + of
+ f[t>k] 02211‘ ui2 + 0(1).

Thus,

(1 — Afon 25w + [o2Ziu] = 200 Ja Ziu’) + 001)

and the conclusion follows.
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CoROLLARY 1. If further, P{D T ui = o} = 1, P{t > k} = o(1) and
B Z{ u,-z < oo,

COROLLARY 2. If moreover P{u® > 6> 0} = 1, = 1then Bt < .

CororLrArRY 3. If { ,.} are independent with EX, = 0, EX,'= o, )
E(sup X,}) < ©, Y ron = o and t = Ist n = m such that S,> > ¢ DI
0<c<l1, thenP{t< w} =1and BE(Q j0/) < ©.Ifa,’ >a>0 Et < .

Corollary 3 generalizes Corollary 2 of Theorem 2 of [2] wherein s, = 1,7 = 1.

Finally, the method of stopping rules will be utilized to generalize a
Kolmogoroff inequality and to derive a result of Doob’s [3], p. 320, which does
not follow from this inequality.

THEOREM 4. Let {Xn,n = 1} satisfy EX,’ < ©, E{Xnp1 | Fa} = 0 and set

= E{X,’ | Sa_1}, 2 = sup | X.|. Then, if ¢ > 0 for any positive integer k,

S imaxncisit < 24wt < E(e + 2)°
Proor. Let ¢t = first » = 1 such that S,” > ¢. Set ¢ = min (¢, k). Then

E'(e + 2)2 = EISzr EZ1 u, f[tgk] Zl uj = J‘[mnx,.'<k3,.3§e’] lec uiz-

COROLLARY 1. If moreover E2® < «, S, diverges a.e.on A = [D_ 1 u? = «].
Proor. Lett = 1st n = m for which S, > €. Then for k = m it follows from
the theorem that

E(e + 2)" 2 [uzn 2mt’ 2 [avzn 2omw’ Z [ agma b s’

whence P{A[t = ]} = 0, i.e., SUPnzm [Sn — Sma| > ¢ a.e. in A. Since m is
arbitrary S, diverges a.e. in A.

CoROLLARY 2. If further E2® < o and P{) 3 u,’ = «} = 1, { is a bonafide
stopping variable.
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